博舍

人工智能引领未来 人工智能引领未来发展的作文题目有哪些

人工智能引领未来

人工智能(AI)是指计算机系统的一种形式,这些系统可以模拟人类的思维和行为。它通过学习、推理和适应来完成任务,而不需要人类干预。随着技术的发展,人工智能已经成为了我们生活中不可或缺的一部分,并在许多领域得到了广泛应用。本文将探讨人工智能对未来的影响以及它所带来的机遇和挑战。

一、人工智能对未来的影响

改变经济结构

人工智能将改变传统产业结构和就业方式。随着自动化、机器学习和深度学习等技术的发展,越来越多的职位将被机器取代。但同时也会创造更多新的就业岗位,例如AI开发者、数据科学家等。

促进医疗保健

AI在医疗保健方面有巨大潜力,可以帮助医生更快速地诊断疾病并制定治疗计划。AI还可以提高手术精度和效率,并且使得药物开发更加高效。

改善交通运输

自动驾驶汽车是一个正在迅速发展的领域,将彻底改变我们如何出行。自动驾驶汽车可以减少交通事故数量,降低交通堵塞程度,并提供更安全、舒适和便捷的出行体验。

提高教育水平

AI可以根据每个学生的需求量身定制教育计划,并提供在线教育资源以及实时反馈。这样可以使得教育更加个性化、有效,在全球范围内推广高质量教育。

二、机遇与挑战

机遇:提高效率与精度

随着AI技术不断进步,它们已经开始在各种领域中取代传统方法。例如,在金融服务中使用AI可以提高决策精确度并加速处理时间;在制造业中使用AI可以优化生产流程并减少错误率;在客户服务方面使用AI可以提供24小时客户支持等等。

挑战:数据隐私问题

尽管使用AI技术有很多好处,但也存在某些风险和挑战。其中最重要的挑战之一是数据隐私问题。由于大量数据被收集并存储在云端服务器上,在没有适当安全措施保护下可能会导致数据泄漏或滥用。

机遇:促进创新与合作

另一个重要机遇是促进创新与合作。由于各国政府都意识到了人工智能对未来社会和经济发展所带来的影响,因此他们积极采取措施鼓励各界开展合作研究以推动相关技术进步。

挑战:伦理问题

最后一个关键挑战是伦理问题。由于人工智能具有类似于人类思维过程的特点,在某些情况下可能会引起争议或引起道德困境。例如,在无人驾驶汽车中,人工智能必须做出决策,例如在紧急情况下是否撞向行人或保护乘客。这些决策可能涉及道德和伦理问题,因此需要制定相关政策来确保人工智能的使用是安全和道德的。

三、未来发展趋势

自动化将继续发展

自动化将成为未来几年内最重要的趋势之一。随着更多企业采用AI技术,自动化将在各个领域扩大规模,并且会对就业市场产生巨大影响。

数据分析将变得更加重要

数据分析已经成为许多企业成功的关键所在,并且随着AI技术的不断进步,数据分析将变得更加精确、高效和准确。这意味着公司必须拥有专门的数据科学家和AI开发者团队以应对市场上激烈竞争。

跨界合作将成为主流

由于人工智能涉及到多个领域和行业,跨界合作将变得越来越重要。这样可以促进技术创新并提高产品质量。

道德与法律问题将持续存在

随着人工智能技术不断发展,道德与法律问题也会持续存在。这些问题包括如何处理数据隐私、如何解决机器取代人类岗位等等。因此需要建立相应的政策框架以确保人工智能技术的合理使用。

人工智能无疑是未来社会中最具潜力的技术之一。尽管它带来了许多机遇和挑战,但只要我们善用它并采取适当措施解决相关问题,那么它必定会带给我们更美好、更先进、更高效的未来社会。未来,人工智能将在各个领域继续发挥作用,并且会不断进化和改进。预计,在医疗保健、交通运输、金融服务、教育和制造业等领域,人工智能技术将得到广泛应用。

同时,随着自动化的不断推进,一些传统行业将面临重大变革。因此,政府、企业和个人都必须积极采取措施以适应这种变革并利用好机遇。

最后,我们需要认识到人工智能只是技术的一种形式,并非万能的解决方案。我们必须谨慎使用它,并确保其安全性和道德性以及为社会带来正面影响。

人工智能技术发展趋势:未来十年将带来哪些变革

人工智能技术的不断发展和应用,我们生活和工作的方方面面都受到了影响。未来十年,人工智能技术将会继续快速发展,带来更多的变革和革新。在本文中,我们将探讨未来十年人工智能技术的发展趋势,以及这些趋势可能会对我们的生活和工作产生哪些影响。

一、人工智能技术的发展现状

人工智能技术在近年来得到了快速的发展。大数据、云计算、物联网等技术的不断发展和应用,为人工智能技术的发展提供了基础和支撑。现在,人工智能技术已经应用于多个领域,包括医疗、金融、交通、物流等等。

二、未来十年人工智能技术的发展趋势

未来十年,人工智能技术将会继续发展,可能会出现以下趋势:

更智能的机器学习算法

机器学习是人工智能技术的核心之一,未来十年机器学习算法将会变得更加智能化。通过对数据的深入挖掘和分析,机器学习算法将能够自主发现和学习规律,并且能够进行更加精准和高效的决策和预测。

更加普及的自然语言处理技术

自然语言处理技术已经应用于多个领域,包括机器翻译、智能客服等等。未来十年,自然语言处理技术将会变得更加普及和智能化,人们可以通过语音或者文字与计算机进行更加自然和流畅的交互。

更加广泛的人工智能应用场景

未来十年,人工智能技术将会应用于更加广泛的场景,包括智能家居、智能交通、智能制造等等。通过与物联网技术的结合,人工智能技术将能够实现更加智能化和自主化的系统和设备。

更加开放和共享的人工智能技术生态

人工智能技术的发展需要开放和共享的生态环境。未来十年,人工智能技术将会更加开放和共享,人们可以通过共享的算法和数据集来实现更加高效和智能的应用。

更加注重人工智能技术的伦理问题和社会责任

人工智能技术的发展带来了许多伦理问题和社会责任。未来十年,人工智能技术的应用将会更加注重伦理和社会责任,例如在自动驾驶汽车领域,需要考虑如何保障乘客和行人的安全,以及如何防止技术被滥用。同时,人工智能技术的开发者和使用者需要对其带来的影响承担相应的责任,确保其对人类社会的发展做出积极贡献。

本文来源:故事屋

人工智能对生活的影响有哪些

随着人工智能时代的来临,人工智能技术对我们的生活和工作都产生了一些影响。为了能够深入了解人工智能技术,需要明白人工智能对生活的影响有哪些。

人工智能对日常生活的影响,已经无处不在。人工智能于日常生活而言,深度学习,图像识别、语音识别等人工智能技术已经广泛应用于智能终端、智能家居、移动支付等领域。另一方面,人工智能提高了我们公共管理的服务水平,成为赋能实体经济、助推高质量发展的新动能。

同时,人工智能方便了人们的家庭生活,还在教育、医疗、养老、环境保护、城市运行、司法服务等领域广泛应用,给智能制造、智慧政务、智慧城市带来新气象。越来越多的快递分拣机器人、书店导购机器人、自助收银机器人、儿童早教机器人等也走进了人们的生活。

随着技术不断迭代更新,人工智能的应用场景将更加广泛。比如,智能电视可以和用户进行交互,实现多屏互动、内容共享;智能冰箱能提醒用户定时补充食品,对食物进行智能化管理,提供健康食谱和营养禁忌;智能家居系统则能控制窗帘、灯光、煤气等,还能实现防盗报警。

有人会问,如今互联网的生活挺好的,人工智能还能为我们做些什么呢?其实人工智能已经慢慢改变我们的生活,并且无处不在了。

一、解放双手

开车时手机发微信,亦或是看新闻,需要操作和看手机,很不安全。当下现有的技术可以实现用语音指令跟手机交互操作,或通过无人驾驶驾驶使你的车成为可休息的地方。

二、降低技术使用成本

不会上网查资料,不会上网订机票,不会网上订餐,不会淘宝购物,没关系,现在的语音助手类的APP已经可以像私人秘书一样,不仅直接通过内部搜索回答你的问题,而且还能直接帮你做事,甚至主动帮你出谋划策。

琐事处理

跟客户定时间会面,自己日常安排复杂也不知对方何时得空,来回发邮件沟通确定很复杂,直接用AI就可以了。虚拟人物会帮助你跟对方邮件沟通敲定时间保证双方都满意。旅游行程规划和麻烦,让AI帮你自动设计规划,跟着执行体验就好。

工作辅助

撰写招聘广告,AI可以帮你对广告进行打分,对其中的遣词造句进行批改,例如某些词太软或太硬、词性不匹配招聘对象、有更好的成语引用等,并提供修改建议,确保最终高品质的输出。财务工作繁忙,把各种发票提交扫描就行,自动识别其中数据汇总报表。

现在的AI有点像“电”刚发明的时候,人们当时觉得“电”似乎没什么用,各种技术也不成熟,甚至怀疑电会带来危险和灾难,可到了现在,电已经成为了一种无处不在的基础设施,技术成熟统一,上层应用层出不穷,这可能也是AI的未来吧。

相信在不久的将来,人工智能技术能够在教育,医疗,出行等与人民生活息息相关的领域里发挥更为显著的作用,为普通民众提供覆盖更广、体验感更佳、便利性更佳的生活服务。

人工智能发展现状及应用

导读:

人工智能(ArtificialIntelligence),英文缩写为AI。人工智能被认为是第四次科技革命的核心驱动力,目前许多领域都在探索AI技术的应用,可谓方兴未艾。那么什么是人工智能,它经历了怎样的发展历程,现阶段发展状况如何,它有哪些应用。本篇文章就为大家做个简单分享。同时也会为大家详细介绍一下百度的AI技术体系。

 

本文主要内容:

1.人工智能概念

①智能

②人工智能

2.人工智能的发展

①人工智能的发展历程

②AI是中国的机遇

3.AI与百度

①百度AI的发展历程

②百度AI的技术体系

③百度AI的场景化应用

 

 

1.人工智能概念

1.1智能

谈到人工智能,需要首先理解“智能”一词的具体含义。智能是指人类才具有的一些技能。人在进行各种活动的过程中,从感觉到记忆再到思维产生了智慧,智慧产生了人类本身的行为和语言,行为和语言统称为能力;智慧和能力结合在一起就是人工智能中的智能一词。

比如,人类的语言表达能力就是一种智能(语言智能);人类进行复杂数学运算的能力也是一种智能(数字逻辑智能);人类的交往能力也是一种智能(人际智能),人们对音调、旋律、节奏、音色的感知能力,也是一种智能(音乐智能)。他们都属于智能的范畴。

1.2人工智能

把智能的概念与人的逻辑理解相结合,并应用到机器中,让机器能更好的模拟人的相关职能,这就是人工智能。人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。

人工智能概念,最早可以追溯到上世纪90年代初,这个时候需要提到一位科学家:图灵。

艾伦·麦席森·图灵(英语:AlanMathisonTuring,1912年6月23日—1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

图灵最早定义了什么是人工智能,怎样去界定一个机器(或一个设备)是否具备智能。他最早提出了图灵测试(即:一个人在不接触对方的情况下,经过某种特殊的方式和对方进行一系列的问答,如果在某些时间之内,他无法根据这些问题判断对方是人还是计算机,那么我们就认为这台机器具备智能化的思维)。直到2000年左右,才真正有计算机通过了图灵测试,才实现了一个突破。在2014年图灵测试大会上,出现了一个通过图灵测试的机器(或者称为智能聊天的机器人)。这两年人工智能的高速发展,也印证了最早的图灵测试,这也让我们反向看到了图灵在人工智能定义方面做出的突出贡献。

现今,在做图灵测试时,判断这个设备是否具备人工智能,更多的还是从模拟人的角度来考量。但在当前科技背景下,人工智能需要涵盖更广的内容,它不仅仅要模拟人本身的职能,还需要具备一些扩展、替代甚至延伸的职能。

举个例子,在医疗领域,需要经常在实验室进行病毒化验,人处这样的实验环境下会比较危险,经常会出现一些事故,如果能够用机器替代人来做这些实验,这些事故就可以避免。此时,这台机器就不仅仅是在模拟人,而是在替代人,机器本身就具备了替代人的能力。

当前,很多人在担忧:人工智能的发展会不会对人类造成威胁。其实,目前人工智能还处于早期的阶段(或者称之为婴幼儿阶段),我们还处于弱人工智能时代。

当然,随着时间的推移,将来我们可能会把弱人工智能时代推进到强人工智能,甚至再往前推进到超人工智能和智能爆炸时代。但至少目前,我们离这样的时代还有非常远的距离,要实现这样的目标,需要非常多的时间积累,可能要通过几代人甚至十几代人的努力。所以大家不要有过多的担心,人工智能现在更多的还是用于服务人类,用来提高人们的工作效率。

上图引自MIT大学一位教授。

针对人工智能所覆盖的领域,这位教授提出一个观点:“我们要尽可能避免做这些容易“进水”的工作,以免被日后所淘汰掉”。

这张图水平面以下的工作,如存储,计算、甚至象棋活动等,已经被海平面淹没。在海平面边缘的工作,如翻译、驾驶、视觉和音频等,很有可能在未来的一段时间,随着技术的进步也会被淹没。再来看图上高海拔地区的工作,如艺术创新、科学研究,文学创作等,让人工智能替代人类去做这些工作,在现阶段是比较困难的。要让人工智能实现像人一样具备主观能动性,还需要比较长的时间。我们在选择工作,或者在做技术探索的时候,应该从更高的层面布局,而把那些可以被人工智能替代的工作交给计算机去做,这样我们就可以从一些重复性、冗余性的工作中抽离出来,去专门从事创造性的工作(比如艺术创作等)。

2.人工智能的发展2.1人工智能的发展历程

我们回顾一下人工智能发展的历程。

人工智能并不是特别新鲜的词,在计算机出现后不久,大家就已经开始探索人工智能的发展了。

1943到1956年这段时间,为人工智能的诞生期,期间有很多人尝试用计算机进行智能化的应用,当然此时不能称为人工智能,只是有类似的概念。

人工智能的分水岭是1956年达特茅斯会议,在本次会议上正式提出了AI这个词。

1956到1974年这段时间,是人工智能发展的黄金时代,是人工智能的第1个高速发展期,通常把这段时间称之为人工智能大发现时代。

1974到1980年这6年的时间里,进入了人工智能发展的第1个低谷,在这个低谷期,出现了非常多的问题,比如计算上的问题、存储上的问题、数据量的问题,这些问题限制了人工智能的发展。

1980到1987年这段时间是人工智能的第2个繁荣期。期间诞生了大量的算法,推动了神经网络的高速发展,同时出现了许多专业的科研人员,发表了许多创造性的论文。

1987到1993年这段时间是人工智能的第2个低谷期,期间有个词叫“AI之冬”。有大量的资本从AI领域撤出,整个AI科研遇到了非常大的财政问题,这是导致”AI之冬”的主要原因。

1993年之后,人工智能又进入到高速发展期,期间出现了许多经典案例,比如1997年IBM公司的深蓝案例,2001年IBM的沃森案例,2016年谷歌AlphaGo案例。这些案例是人工智能在应用层面的体现。

上图概括了人工智能的发展历程。

可以看到,从1956年达特茅斯会议AI这个词诞生,一直发展到现在,人工智能共经历了60多年的跌宕起伏,并不是仅在2016、2017这两年间才出现了人工智能这个概念。

从宏观上看,AI的发展历程经历了三次比较大的起伏。

第1次起伏是从1943年到1956年,首次出现了神经网络这个词,把人工智能推到一个高峰,期间出现了许多大发现。而第1次低谷使人工智能进入到了反思的阶段,人们开始探讨人工智能的应用。

第2次起伏是在上世纪80年代,期间BP算法的出现,神经网络新概念的普及,推动了人工智能又进入第2次高峰和发展。然而从1987年到1993年又进入到了了第2次低谷,这主要因为一些财政原因导致。

第3次起伏从2006年开始,由辛顿提出了深度学习的概念,把神经网络往前推动了一大步,也把人工智能推到了高速发展阶段,尤其是近几年在非结构化领域取得了许多突破(例如在语音与视觉方面),给人工智能进入商业化应用带来许多的基础性技术沉淀。

人工智能为什么会在前面的发展过程里遇到了那么多的坎坷?为什么在最近这几年会进入一个高速发展期?

我们归结了近几年人工智能高速发展的三点原因:

①算力飞跃

人工智能(尤其是深度学习),对底层计算能力的要求非常高。早期的计算受到了极大限制,从CPU发展到了GPU,使得算力几乎能达到几倍甚至十几倍量级的增长。再从GPU到TPU,计算速度能达到15~30倍的增长,使得在算力层面不断取得突破。此外,大量云资源的出现将我们计算的成本压到了最低,我们在处理海量计算的同时,也可以享受比较低的成本。再者,芯片技术的发展,使得端处理能力持续提高,这些都帮助我们在算力层面取得了很大的突破。

②数据井喷

从PC互联网时代到移动互联网时代,再到可穿戴设备的应用,都产生了大量的数据。这两年,每年产生的数据量可以达到50%左右的增长。2017年到2018年,这段时间内基本上每个月产生的数据量可以达到几十个亿的量级,数据量已经非常高。物联网的连接,能帮助我们把更多的数据采集回来,帮助我们在数据层面做更多的积累,这是数据井喷带来的积极影响。

③算法突破

近几年来,从机器学习到深度学习,算法不断取得突破。使得我们可以处理更多的大规模、无监督、多层次等复杂业务。

算法、算力、数据是人工智能的三要素,算力是骨骼,数据是血液和食物,算法就是大脑,三者不断取得突破,才能促进人工智能高速发展。

2.3AI是中国的机遇

人工智能技术的发展也促进了很多产业的发展。中国目前有非常好的历史机遇,不仅仅是在技术上有大量的积累,同时,国家也为人工智能的发展提供了非常好的政策环境。此外,市场空间、资金支持、人才储备,也都为人工智能的发展提供了非常好的条件。

通过上图可以看到,人工智能的研发人才目前还比较短缺。图上数据来源于领英在2017年所做的全球AI人才报告。以2017年的数据来看,全球人工智能专业的人才数量超过190万,在这190万人才中,美国处于第一梯队,有85万+;而中国在人工智能领域的人才积累比较少,从数据上来看,目前国内人工智能方面的专业技术人才可能只有5万+,当然这是2017年的数据,现在可能会有一些增长,但是量级也没有达到我们想象的那么大。

所以从国内目前来看,这约5-10万的AI技术人才,对比AI产业的高速发展需求,两者之间有巨大矛盾。那怎样更好的用这些人才作为突破,把人工智能方面的技术人才储备提高到百万级别。这正是整个百度(包括百度的教育合作与共建,包括百度所有对外输出的体系,包括我们今天所做的课程)所努力的方向,我们期望通过百度的技术赋能,真正的帮助人工智能取得更好的人才积累,真正培养一些在未来对人工智能行业有巨大贡献的专业人才,这是百度现在的定位目标。

AI浪潮已然到来,行业人工智能时代已经到来。目前,人工智能已经大量应用在2c和2b领域,怎么让人工智能跟具体行业有更好的接触,产生更多的积累,是我们正在重点探索的方向。

比如百度的搜索引擎,已经融入了很多AI元素。模糊匹配、拍照识图、深度挖掘检索等都应用到了大量的人工智能技术。

再如推荐系统,他会基于个人的一些喜好和历史阅读习惯来给用户做一些内容的推荐和匹配,这是很典型的结合大数据做的精准应用,实际上也属于人工智能的范畴。

再如人脸识别技术、语音技术、智慧交通和无人驾驶等,都是AI技术与行业应用的融合,并且这些技术正在不断取得突破。百度现在L4级别的无人驾驶车已经初步实现了一些小规模的量产,未来会有更多的人将真正的体会到无人驾驶给生活带来的便利。

3.AI与百度

3.1百度AI的发展历程

上图为百度在人工智能领域的发展轨迹,早在2009年,百度就开始尝试探索人工智能相关技术,直到2019年,百度用了近十年的时间布局人工智能。

2009年尝试性布局人工智能,2013年发布IDL,2014年成立硅谷实验室以及百度研究院,2015年首次发布DuerOS,2016年发布百度大脑1.0版本,同年,百度的自动驾驶技术进入试运营状态,2017年是百度人工智能技术高速发展的一年,不仅成立了深度学习国家实验室,同时也成立了硅谷第二实验室以及西雅图实验室,并且Apollo平台开始运行并对外推广,在2018年到2019年,DuerOS和Apollo平台发展到3.0版本,百度大脑发展到5.0版本。经过近十年的发展和积累,百度的人工智能技术目前处于相对领先的位置。

百度在人工智能领域领域取得的进展有目共睹,比如,百度成立了首个国家级AI实验室;2016年被美国《财富》杂志评选为深度学习领域四大巨头之一;百度的刷脸支付、强化学习、自动驾驶等技术入选MIT2017年全球十大突破性技术;在AI领域,百度的中国专利申请超过2000项。

3.2百度AI的技术体系

百度的技术体系非常全面,覆盖了计算体系、大数据技术体系以及人工智能技术体系等,在机器学习、深度学习、区块链、知识图谱、自然语言处理、量子计算等领域均有雄厚的技术积累。这些技术可以按内容划分成三个板块,第一是A板块(即AI技术板块),第二是B板块(即大数据板块),第三是C板块(即云计算板块)。这就是百度在2016年提出的ABC概念。从一开始的1.0版本,发展到如今的3.0版本,代表着百度在人工智能领域的整体布局。在人工智能领域的布局中,百度的探索不仅停留在最核心的技术上,也同时将核心技术与更多的领域相结合,如边缘计算、物联网(InternetofThings,IoT)和区块链等,得到了如ABC+区块链、ABC+DuerOS、ABC+Apollo等对外输出模式,向各行各业提供解决方案。

在A板块中,将百度大脑分成了不同的层次。最底层是算法层,包含机器学习和深度学习算法,使用百度的PaddlePaddle深度学习框架提供算法层的基础支撑;算法层之上为感知层,感知层可分为对声音的感知和对光的感知,其中,对声音的感知主要是语音技术板块,对光的感知主要是图像技术、视频技术、AR/VR等技术板块;在感知层之上是认知层,认知层更多的是处理人类听到和看到的内容,对其进行深度理解,深度理解需要自然语言处理(NLP/NLU)、知识图谱等技术作为支撑,同时也需要积累大量用户画像数据,这些技术能帮助人们快速的理解和分析人类听到和看到的内容,并对内容进行有效的反馈,这是认知层面的技术;在认知层之上是平台层,平台层将底层的内容进行融合、封装,对外提供开放、完整的AI技术,并引入大量的生态合作伙伴,共同探讨人工智能产业的布局。

百度人工智能整体技术体系,最底层是深度学习框架飞桨PaddlePaddle,作为底层计算框架,飞桨PaddlePaddle支撑着上层场景化能力与平台中的全部板块。在场景化能力与平台中,包含了诸多场景大板块,每个大板块下又细分为多个技术板块,比如语音板块包含了语音合成以及语音唤醒等技术板块;计算机视觉技术中的OCR技术,包括传统通用OCR识别,以及垂直领域OCR的识别,可以对30多个OCR识别领域进行精准识别,比如票据识别、证件识别以及文字识别等;在人脸/人体识别板块,同时也会引入图像审核以及图像识别方面的技术;在视频板块,有视频比对技术,视频分类和标注技术,以及视频审核技术;在自然语言处理板块,有机器翻译技术;知识图谱板块,有AR/VR技术。这些板块构成了人工智能体系的技术蓝图。

近两年来,人工智能技术在各行各业中的应用不断加深,实践证明,单一的技术在落地时会受到诸多限制,所以现在人工智能在落地时可能不仅仅用到某一个单独的技术板块,而是需要先把这些板块进行融合,然后再进行实际应用,比如在拍照翻译的应用场景下,既需要用到OCR技术,同时也用到NLP技术。因此在实际应用中,需要综合各个板块的技术,把不同的技术体系和技术内容有机地融合起来,再去解决行业中面临的痛点。

 

3.3百度AI的场景化应用

2014年到2015年期间,在计算机视觉领域的部分场景下,计算机视觉识别准确率已经超过了人眼识别。而利用深度学习技术的计算机听觉识别,在2017年左右也已经超过人耳听力极限。

人工智能业务场景化不仅依赖底层的硬件资源,也需要超大规模的标注数据,这是监督学习的特点,所以在人工智能早期研究中,有评论说“有多少人工就有多少智能”,这句话在特定角度来看是具有一定意义的。在监督学习中,训练模型需要庞大的标注数据,再结合GPU强大的数据处理能力去训练特定模型,也就是从算法的层面去做更多的工作,在训练模型的过程中需要发挥人的主观能动性,更好的解决在行业应用中出现的一些痛点,构建出行业专属的模型。

比如,将人体分析技术应用到实际行业场景中时,需要结合人脸识别技术和人体识别技术。可以通过基础手势识别,识别一个人在开车时有没有系安全带、是不是在打电话等。

利用人体分析技术,可以做到行为识别,首先设定特定区域,然后对区域内的人员行为进行识别,比如人群过密、区域越界、人员逆行、徘徊以及吸烟等,在特定场景下,行为识别能够帮助用户避免安全隐患。

自然语言处理有很多相关技术,比如说词法分析、词向量表示、语义相似度、短文本相似度、情感相似度分析等。这些技术用在不同的应用场景下。

在公检法系统应用中,为了避免出现非常严重的问题,如同案不同判,具体解决方案是当诉讼呈递给法官时,根据当前诉讼内容在公检法系统中寻找历史上类似的案件,参考历史类似案件的判决,给法官提供判案依据。

在媒体领域应用中,对基础的财经类新闻,可以由机器进行新闻文章的编写,即机器写作。这些技术都是基于NLP在相应领域做的智能化应用,可以让编辑或记者从重复性的工作中解脱出来。

人工智能从广义上来看,也包括大数据及云计算相关技术,这些技术也都涵盖在百度AI技术体系中。在大数据领域,主要包括数据采集、数据存储、数据分析以及数据可视化等,利用这些技术,我们在进行模型训练的时候,对数据进行科学的管理可以帮助我们提高模型训练效率。

百度AI技术体系也提供算力层面的支持,通过GPU服务器以及FPGA服务器提供的算力,更好的解决应用层面的问题。

百度AI就是这样一个从基础层,到感知层、认知层的完整体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

回顾

本篇文章,我们和大家分享了人工智能的相关概念,人工智能的发展历程,从中也可以看出AI是我们的历史机遇。同时本文也为大家详细介绍了百度的AI技术体系,经过10余年的努力,百度AI已经形成从基础层,到感知层、认知层的完整技术体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

牛法网:“人工智能+法律”引领未来

目前,牛法网已经从60多个领域出发精选出3000+“牛律师”,组成“最强法律资源网”,能够在接到企业需求24小时内通过独有的案件分析系统,迅速挑选出合适的律师,为腾讯、百度、港中旅、华润、华大基因、赛格股份、彩生活等等近百家上市公司提供法律服务,做其“补充律师资源库”。

资本寒冬融千万,牛法网凭什么这么牛?

2016年5月,牛法网获得千万融资,这犹如一颗炸弹,落在几近寒冬的法律服务融资市场上,让同行们看到新的希望。

牛法网凭什么这么牛?

首先,与其他互联网+法律平台相比,牛法网有3个特点:第一,高逼格。上线律师为牛律师,按地域、专业领域细分;服务对象为大中型企业客户。第二,高成交。平台过滤掉泡沫需求,筛选出真实的需求,为企业推荐靠谱的律师,为律师对接靠谱的案源。根据平台运营的历史数据,经牛法网平台对接的需求成交率达60%以上。第三,付费。牛法网倡导尊重知识,尊重经验,鼓励付费咨询,获取价值。

其次,帮企业降低20%的成本。牛法网深知行情,帮企业砍价的同时律师也愿意做,通过平台,将不透明的价格做透明。甚至未来还可以用人工智能评价,比如,根据互联网大数据模型,一个律师费平均10万的案子,如果超过标准20%,就不行。

最后,帮助客户提升3倍的效率。比如说,某保险公司内地分公司有聘律师诉讼,通常情况下,各种途径找到律师一星期,谈价格一星期,内部审批签合同至少两个星期,总时间可能平均一个月。但如果按照牛法网独创的找律师模式,选律师1-2天,谈价格,签合同,平均只需7—10天。

“有人说牛法网未来可能会取代法务甚至律所,我不同意这种观点。一方面,牛法网整合全国乃至全世界各领域的优秀律师,为企业对接最合适的律师,用最高的效率达到理想的效果;另一方面,牛法网帮助牛律师对接适合他们专业领域的优质案源。我们提供的是对双方互利的服务,真正解决大中型企业异地找律师难、突发事件找律师难、疑难案件找律师难、海外找律师难、精准找律师难问题。所以我们不会取代法务或者律所,我们希望能够通过互联网的优势,帮助大家享受到更快更好的法律服务。”

米律创始人郑明龙接受采访时曾表示,牛法网的出现从某种程度上对行业具有积极促进作用,彰显了互联网法律服务的价值。谈及牛法网为行业带来的变化,郭世栈很谦虚,他说谈不上什么改变,牛法网是在给客户带来价值,让客户了解他们的同时培养用户习惯。等到牛法网做到一定量级就会催生质变,可能带来的变化就是出现一种新形态、更加高效的法律服务机构。

瓶颈期需要创新,人工智能大有可为

互联网的跨界融合颠覆了很多行业,但就法律服务行业而言,目前似乎多以影响为主,并慢慢沉静下来。小微律政CEO王芬曾在一次采访时提出:为企业提供法律服务,首先要确定哪些服务是标准的,若仅是信息层面的撮合,很难创造平台价值。就目前而言,除了定位高端法律服务之外,暂且看不出牛法网其他“独特之处”。

郭世栈也深知,互联网改变了传统客户对接律师的模式,使法律服务更加便捷高效。但如今的“互联网+法律”仍处于一个瓶颈期,需要更好的创新。

近来,随着人工智能基础技术的逐渐成熟,AI在法律领域的应用越来越突显。“互联网+法律”向“人工智能+法律”的方向发展,整个法律市场会有一个全新的、高效的、专业的境况出现。而牛法网作为一个有着深厚技术背景的法律平台,敏锐的察觉到这一新机遇,快速切入“法律AI领域”,并于今年6月份正式上线法律合同机器人。

“人工智能是牛法网的大未来,我们将全力投入到法律人工智能,用科技创新为企业客户、个人用户及法律工作者提供更好的产品,更好的服务。我们的愿景是‘无论一小步,还是一大步,都要带动法律AI的进步’。”

据悉,初步阶段的法律合同机器人已经完成劳动领域的合同审核与起草,后续牛法网会让法律合同机器人学习更多领域的技能。除此之外,牛法网也已经在结合NLP(自然语言处理)和深度学习技术做新研发,打算在法律咨询领域做整体布局。他们的目标是把法律机器人打造成在合同审查、起草与法律咨询三个方面全面发展的法律助理,致力于减轻法律工作者工作量,提高法律服务效率。

随着经济发展水平的不断提高,人们的法治观念也在不断更新,我国步入法制社会的脚步定会越来越快。不管当下面临怎样的困境,未来的法律服务市场一定是一块大蛋糕。对于任何一个从律师端切入的平台而言,能否形成大规模的案源体量,在产品设计、运营和服务质量把控等层面,需要做的事情很多。

郭世栈曾说,“互联网+法律”已来临,拥抱互联网可能会成为风口的猪,抗拒互联网则可能会成为餐桌上的猪。如今,人工智能已经成为法律服务市场的新趋势,期待牛法网在原来优质法律服务平台的基础上,积极研发新技术,为法律服务市场带来更多可能。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇