博舍

人工智能产业发展现状与四大趋势 人工智能的各个领域

人工智能产业发展现状与四大趋势

随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。

一人工智能的内涵与产业链

(一)人工智能的内涵

人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。

图1:人工智能内涵示意图

来源:火石创造根据公开资料绘制

(二)人工智能的发展历程

从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。

第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。

第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。

第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。

图2:人工智能的三次发展浪潮

来源:火石创造根据公开资料绘制

(三)人工智能的产业链

人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。

图3:人工智能产业链

来源:火石创造根据公开资料绘制

二全球人工智能产业发展现状

(一)人工智能产业规模保持快速增长

近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。

图4:2017-2025年全球人工智能产业规模(单位:亿美元)

数据来源:火石创造根据公开资料整理

(二)全球主要经济体争相布局,中美两国占据领先位置

人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。

图5:全球人工智能企业数量分布

数据来源:中国信通院,火石创造整理

(三)公共数据集不断丰富,关键平台逐步形成

全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。

(四)人工智能技术飞速发展,应用持续深入

近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。

三全球人工智能产业发展趋势

(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎

算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。

(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点

随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。

(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临

在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。

(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识

随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。

       原文标题 : 全球视野下人工智能产业发展现状与四大趋势

人工智能AI技术如何在视频领域应用落地

众所周知,全民视频时代已经来临,用户的注意力已经从传统的文字、图片向视频转移,相信绝大部分用户的手机中都会有几个点播、直播、短视频的APP。据网络公开数据报告显示,互联网流量70%以上来自视频,未来这个数据将超过90%。而在人工智能时代,AI技术是如何在各行业和领域真正的发挥应用和商业价值,带来产业变革才是关键。在3月28日深圳云栖大会的人工智能专场中,阿里云视频服务技术专家邹娟将带领大家探索熟悉的视频场景中,AI技术如何应用落地,解决实际业务场景中的问题。 

纵观整个视频生命周期,包括视频采集、视频的生产制作、视频播出和被广大的用户所体验这几个环节。实际上在这个过程中,整个视频行业发生了很大的变化,在每一个阶段都从非常专业的参与者转向大众普适的参与。

 从采集阶段,最开始用专业的摄像机、录像机进行视频采集,转向如今的每个人都是自媒体产生者,用手机来拍摄。在制作阶段,从重量级的非线性编辑软件,到现在短视频APP都标配的特效、滤镜、美颜,都能够在手机端进行基本的视频制作。在播出领域,最开始电视台必须得有一个节目单,到现在用户可以在网站上按需播放点播视频,用手机实现个性化的搜索和观看。在体验这一环,用户从最原始的有线电视同轴电缆单项传输的观看,到现在我们可以去交互、评论、点赞、弹幕等等互动。所以,我们可以看出,从整个视频生命周期中,参与者是发生了巨大的变化,加入视频领域的应用也越来越多。 

从下图可以看出,视频和AI的结合已经贯穿了视频生命周期的每一个阶段。

 

那么,AI能为视频行业带来什么呢?

第一,提升生产效率AI和采集生产环节结合,是能够有效提高视频生产制作的效率的。传统的编辑是人来做的,当AI和视频采集生产环节结合,我们可以引入智能编辑技术,快速生产视频。天下武功,唯快不破,应用在视频领域也是一样的。设想我们很快的生产视频,第一时间发布到网上,就有机会获得更多的流量。第二,规避监管风险在视频中引入人工智能审核技术,可以缩短视频发布周期,减少了人工审核的干预,并且可以更高效、准确的规避监管风险。第三,释放人力降低成本因为前两个阶段中,机器和算法做了很多替代人的操作,所以释放人力,并且可以带来成本的降低。基于达摩院的AI算法,结合视频云团队多年在音视频技术领域的积累,阿里云构建了视频AI能力——视网膜,并将产品功能划分为审核、识别、理解、搜索四个模块。下图中的能力,其实是视频云AI服务的最小单元的基础能力,实际上可以基于这些能力进行组合,像搭积木一样,渗透在视频各个场景当中,形成各类匹配业务的解决方案。 

接下来邹娟老师介绍到,采集生产、分发播出、媒资管理是视频生产领域的三大场景,在这三个场景中,阿里云和客户一起成长,深入到客户的实际业务场景中,并结合自身产品规划,推出了视频AI的解决方案。

 

在采集生产的场景中,解决方案支持视频拍摄、字幕、剪辑合成与视频拆分;在视频播出场景,除了常见的视频审核,还有逐渐被大众认知的版权检测,以及在实时播出的过程中对视频中目标进行识别检测;在媒资管理场景中,最经典的是智能编目与智能封面,解决方案中还有基于指纹的去重和视频之间挖掘和整理的能力。我们可以看到,通过基础AI能力的组合,和结合客户的实际业务场景,阿里云已经提供了一些具体的解决方案,下面选取了其中一些典型场景来介绍具体落地。 

第一,视频采集场景——视频萌拍

市场上非常流行的短视频和拍照的APP中,基本都提供了基于人脸识别的技术的贴纸功能。很多客户希望能拥有丰富的拍摄效果,阿里云在短视频智能端的解决方案上就提供了视频实时的处理功能,内置人脸识别与动态贴纸库,未来还可以付费升级大眼、瘦脸等高级功能。 

第二,视频生产制作场景——精彩集锦

这个是很多客户都拥有的业务场景,可以利用的AI技术特别多。下图左侧的AI技术结合云端视频剪辑能力,就可以做出很多有想象空间的事情。比如将人物出现的时间线连接起来,自动生成人物集锦;再比如经典的体育赛事精彩瞬间,前期的素材整理的工作可以通过AI来自动处理;还有专题制作这个领域应用也十分广泛,比如去年江南的大雪,广电媒体从业者希望能快速的从素材库中找到与雪景相关的视频来生成一个专题视频,利用AI能力,其实就可以根据场景的识别,提取雪景在各个视频当中的位置片段,搭配云端剪辑能力,比较轻松将视频制作出来;同时,影视剧剧集的片花也可以利用智能摘要、智能GIF来形成,一些视频片段可以基于指纹和多模态技术去实现。 

第三,视频生产制作场景——ET字幕

还有一个需求量非常大的业务场景是ET字幕,实际上它是基于AI的自动字幕进行新视频创造的功能。首先,传统字幕生产是非常复杂的,首先得有一个团队去把语音转成文字,把时间线拍下来,在多语种情况下,可能还会有翻译团队介入,再把字幕导入到本地编辑软件进行合成。整个过程非常耗费时间和人力。如果利用AI技术,首先我们可以把语音生成文本,文本直接存在对应的有时间,我们也可以将文本翻译成所需的语种。同时,通过云剪辑的工具,对语音识别的结果和人工的结果进行check,人工干预量也远远低于传统的翻译量。这项技术除了可以应用于离线视频之外,也可以运用于会议直播的实时字幕,基于导播台切换多路流的时候,每一路流都可以自动生成字幕,产生互动的效果。ET字幕应用于视频生产制作场景,可以方便用户进行二次视频创作。 

第四,视频生产制作场景——智能拆条

智能拆条有两个好处,第一是加速新闻短视频的发布,第二是把原始的长段视频拆成各个小片段,进入素材库从而丰富媒资系统,更方便制作出新的视频来。智能拆条是基于AI的多模态信息进行拆条,目前是支持标准新闻形式,非标准的场景可以快速通过补充数据集快速训练来实现。  

第五,视频分发播出场景——内容审核

进入到视频分发和播出领域,随着国家对于互联网视频的监管的加强,内容审核已经成为非常强烈的需求。最开始的只是鉴黄,到后面的黄、反、暴、恐、都要去鉴别,利用AI技术可以非常快速的鉴别出视频当中不合规的内容。 

第六,媒资管理场景——智能编目

我们先来看下传统编目的效率,在电视台做深度编目,一个小时的视频大约需要二到四个小时完成编目,这个视频生产速度目前已经无法达到互联网的要求了。与传统的编目相比,AI技术可以从视频自动分类、视频自动打标、人物识别、语音和OCR识别等,自动生成源数据信息,进入媒资库,结合NLP、分词、语义分析、词性过滤等场景,进入到后续的搜索和推荐的领域。整个过程靠算法驱动,不需要人力,相对于人工处理,AI技术能更彻底地对视频进行结构化处理,标注出每个独立标签的时间线。通过智能编目的方案组合,可以快速生成最基础的源数据,方便媒资管理。  

那么用户如何接入视频AI服务呢?

分为三个步骤,首先,用户需要根据自身的业务场景来选择合适的产品进行开通,其次,根据实际需求来选择开通视频AI服务,支持自动处理和手动发起AI任务两种形式,最后是获取AI处理结果,接收AI结果回调或主动查询AI结果。 在分享的最后,邹娟老师为现场观众演示了整个视网膜系统,用户上传了视频,可以进行快速的AI处理。阿里云视频AI体验馆:https://retina.aliyun.com

什么是人工智能 (AI)

虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,127KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。

然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。

StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:

人类方法:

像人类一样思考的系统像人类一样行动的系统

理想方法:

理性思考的系统理性行动的系统

艾伦·图灵的定义可归入"像人类一样行动的系统"类别。

以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。

目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。 

随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇