科学网—人机智能的分界
人机智能的分界已有289次阅读2023-7-113:22|个人分类:2023|系统分类:科研笔记
本文摘自《科技导报》2023.41(13)
智能不是人脑(或类脑)的产物,也不是人自身的产物,而是人、物、环境系统相互作用的产物,正如马克思所言:“人的本质不是单个人所固有的抽象物,在其现实性上,它是一切社会关系的总和”,比如狼孩尽管具有人脑的所有结构和组成成分,但没有与人类社会环境系统的交流或交互,也不可能有人的智能和智慧。事实上,真实的智能同样也蕴含着这人、物、环境这三种成分,随着科技的快速发展,其中的“物“却也逐渐被人造物――”机“所取代,简称为人机环境系统(为简化起见,后面均以“人机环境系统”一词代替“人物环境系统”一词),平心而论,人工智能要超越人类智能,在现有数学体系和软硬件的设计模式基础之上,基本上不大可能,但在人机一体化或人机环境系统中却是有着可能。人工智能是逻辑的,智能则不一定是逻辑的。智能是一个非常辽阔的空间,它可以随时打开异质的集合,把客观的逻辑与主观的超逻辑结合起来。
研究复杂性问题是困难的,但把它分解成人机环境系统问题就相对简单一些,至少可以从人、机、环境角度去思考理解;研究智能――这个复杂问题也是困难的,但同样也可把它分解成人机环境系统问题研究分析处理,人所要解决的是“做正确的事(杂)”,机所要解决的是“正确地做事(复)”,环境所要解决的是“提供做事平台(复杂)”。正如郭雷院士所言:“复杂性和智能化是系统科学发展的两个永恒的主题。复杂性主要体现的是系统科学认识世界的一面,而智能化主要体现的是系统科学改造世界的一面。”
2020、2021年注定是两个人类难忘的年份,这两年除了席卷全球的新冠疫情外,还出现了一个奇特的现象,即人件、软件、硬件、环件等智能化条件均属世界第一的美国新冠感染者世界排名第一,并且死亡人数也是世界排名第一的现象。不难看出,对于人+机+环境系统而言,美国不但不是第一,而且是规模性失调,所以,中美角力的焦点不仅仅是人、机、环境每一或所有单项人工智能的领先优势,更重要的是人、机、环境系统混合智能的整合。下面将针对人机智能分界问题展开分析和探讨。
一、人工智能的瓶颈在于:总想用逻辑的手段解决非逻辑问题
1997年深蓝的胜利,使得人们重燃对于人工智能的兴趣。2006年,杰弗里・辛顿(GeoffreyHinton)提出深度置信网络,使深层神经网络的训练成为可能,这也使得深度学习迎来了春天。2011年,IBM的Watson参加“危险边缘”问答节目,并打败了两位人类冠军,轰动一时。2012年,辛顿的学生AlexKrizhevsky使用AlexNet已大幅度的优势取得了当年ImageNet图像分类比赛的冠军,深度神经网络逐渐开始大放异彩。同年,运用了深度学习的技术的谷歌大脑(GoogleBrain)通过观看数千段的视频后,自发的找出了视频中的猫。2016年,GoogleDeepMind的AlphaGo战胜了世界顶级围棋高手李世石,由此推动了人工智能的再一次发展,此后“阿尔法Zero”、“ MuZero”、“AlphaFold”等一系列算法陆续出现,从而引发了人工智能将如何改变人类社会生活形态的话题。目前正处于人工智能发展的第三次高潮期。
现在经常有人问这样的问题:未来数字世界中,人与智能机器是何种分工模式?人与机器的边界将如何划分呢?
实际上,当前人机的关系主要是功能分配,人把握主要方向,机处理精细过程,而未来的人机关系可能是某种能力的分工,机也可以把握某些不关键的方向,人也可以处理某些缜密的过程。人机的边界在与should――“应”和change――“变”,即如何实现适时的“弥“(散)与“聚“(焦)、“跨”(域)与“协”(同)、“反”(思)与“创”(造)。
人类学习的秘密在于数据信息知识的弥散与聚焦(弥聚),人类使用数据信息知识的秘密在于跨域与协同(跨协),人类智能的核心在于反思与创造(反创)。人有内外两种态势感知系统(SituationAwareness)耦合而成,共振时最强,抵消时最弱,另外还有一个非智能(即智慧)影响决策系统:想不想、愿不愿、敢不敢、能不能……这些因素虽在智能领域之外,但对智能的影响很大。外在的SA是联结客观环境的眼耳鼻舌身等客观事实通道,内在的SA是联结主观想象环境的知情意等主观价值通道,阿尔法狗试图完成主观价值的客观事实化,可惜只完成了封闭环境下的形式化计算,没有完成开放环境下的意向性算计,究其因,在于传统映射思想是确定性的同质对应,远没有不确定性异质散射、漫射、影射的跨域变尺度的对应机制出现。
真正智能领域的瓶颈和难点之一是人机环境系统失调问题,具体体现在跨域协同中的“跨”与“协”如何有效实现的问题,这不但关系到解决各种辅助决策系统中“有态无势”(甚至是“无态无势”)的不足,而且还涉及到许多辅助决策体系“低效失能”的朔源。也许需要尝试把认知域、物理域、信息域构成的基础理论域与陆海空天电网构成的技术域有机地结合起来,为实现跨域协同中的真实“跨”与有效“协”打下基础。人工智能中的强化学习不能够实现人类强化学习后的意图隐藏(比如小孩被强制学习(惩罚)后表面上顺从但实际上是隐匿想玩的意图;另外,那些因为做了一项任务而得到奖励的人,可能没有那些因为做同样的任务而没有得到奖励的人愉快,这是因为他们把他们的参与仅仅归因于奖励而不是情感与体验。),机器深度学习容易实现局部优化却很难实现全局优化和泛化等等。
电脑先驱阿兰・凯伊(AlanKay):“预测未来的最好办法就是创造未来。”。判断力和洞察力,是广域生存最核心的竞争优势。判断力和洞察力,常基于‘直觉’。正是这样的直觉,使‘企业家’完全不同于‘管理者’,使“军事家”完全不同于“指挥员”,使“优秀者”不同于“普通者”。
二、智能的第一原理
1、计算与算计
休谟认为:“一切科学都与人性有关,对人性的研究应是一切科学的基础。”,任何科学都或多或少与人性有些关系,无论学科看似与人性相隔多远,它们最终都会以某种途径再次回归到人性中。科学尚且如此,包含科学的复杂也不例外,其中真实的智能有着双重含义:一个是事实形式上的含义,即通常说的理性行动和决策的逻辑,在资源稀缺的情况下,如何理性选择,使效用最大化;另一个是价值实质性含义,既不以理性的决策为前提,也不以稀缺条件为前提,仅指人类如何从其社会和自然环境中谋划,这个过程并不一定与效用最大化相关,更大程度上属于感性范畴。理性的力量之所以有限,是因为真实世界中,人的行为不仅受理性的影响,也有“非理性”的一面。人工智能“合乎伦理设的计”很可能是黄粱一梦,原因很简单,伦理对人而言还是一个很难遵守的复杂体系。简单的伦理规则往往是最难以实现的,比如应该帮助处在困难中的人,这就是一条很难(遵守者极容易上当被骗)操作的伦理准则。对于AI这个工具而言,合乎伦理设计应该科幻成分多于科学成分、想象成分多于真实成分。
当前的人工智能及未来的智能科学研究具有两个致命的缺点:(1)把数学等同于逻辑;(2)把符号与对象的指涉混淆。所以,人机混合深度态势感知的难点和瓶颈在于:(1)(符号)表征的非符号性(可变性);(2)(逻辑)推理的非逻辑性(非真实性)(3)(客观)决策的非客观性(主观性)。
智能是一个复杂的系统,既包括计算也包括算计,一般而言,人工(机器)智能擅长客观事实(真理性)计算,人类智能优于主观价值(道理性)算计。当计算大于算计时,可以侧重人工智能;当算计大于计算时,应该偏向人类智能;当计算等于算计时,最好使用人机智能。费曼说:“物理学家们只是力图解释那些不依赖于偶然的事件,但在现实世界中,我们试图去理解的事情大都取决于偶然。”。但是人、机两者智能的核心都在于:变,因时而变、因境而变、因法而变、因势而变……
如何实现人的算计(经验)与机的计算(模型)混合后的计算计系统呢?太极八卦图就是一个典型的计算计(计算+算计)系统,有算有计,有性有量,有显有隐,计算交融,情理相依。其中的“与或非”逻辑既有人经验的、也有物(机)数据的,即人价值性的“与或非”+机事实性的“与或非”,人机混合智能及深度态势感知的任务之一就是要打开与、或、非门的狭隘,比如大与、小与,大或、小或,大非、小非……大是(being)、大应(should)、小是(being)、小应(should)。人的经验性概率与机器的事实性概率不同,它是一种价值性概率,可以穿透非家族相似性的壁垒,用其它领域的成败得失结果影响当前领域的态势感知,比如同情、共感、同理心、信任等。
人类智能的核心是意向指向的对象,机器智能的核心是符号指向的对象,人机智能的核心是意向指向对象与符号指向对象的结合问题。它们都是对存在的关涉,存在分为事实性的存在和价值性的存在、还有责任性的存在。比如同样的疫情存在,钟南山院士说的就是事实性存在,特朗普总统说的就是价值性存在,同时他们说的都包含责任性存在,只不过一个是科学性责任,一个是政治性责任。
一般而言,数学解决的是等价与相容(包涵)问题,然而这个世界的等价与相容(包涵)又是非常复杂,客观事实上的等价与主观价值上的等价常常不是一回事,客观事实上的相容(包涵)与主观价值上的相容(包涵)往往也不是一回事,于是世界应该是由事实与价值共同组成的,也即除了数学部分之外,还有非数之学部分构成,科学技术是建立在数学逻辑(公理逻辑)与实验验证基础上的相对理性部分,人文艺术、哲学宗教则是基于非数之学逻辑与想象揣测之上的相对感性部分,二者的结合使人类在自然界中得以不息的存在着。
某种意义上,数学就是解决哲学上“being”(是、存在)的学问(如1/2,2/4,4/8……等价、包涵问题),但她远远没有、甚至也不可能解决“should”(应、义)的问题。例如,当自然哲学家们企图在变动不居的自然中寻求永恒不变的本原时,巴门尼德却发现、没有哪种自然事物是永恒不变的,真正不变的只能是“存在"。在一个判断中(“S是P”),主词与宾词都是变动不居的,不变的惟有这个“是”(being)。换言之,一切事物都“是”、都"存在”,不过其中的事物总有一天将“不是”、“不存在”,然而“是”或“存在”却不会因为事物的生灭变化而发生变化,它是永恒不变的,这个“是”或“存在”就是使事物“是”或“存在”的根据,因而与探寻时间上在先的本原的宇宙论不同,巴门尼德所追问的主要是逻辑上在先的存在,它虽然还不就是但却相当于我们所说的“本质”。这个“是”的一部分也许就是数学。
人机环境之间的关系既有有向闭环也有无向开环,或者有向开环也有无向闭环,自主系统大多是一种有向闭环行为。人机环境系统混合的计算计系统也许就是解决休谟之问的一个秘密通道,即通过人的算计结合机器的计算实现了从“事实”向“价值”的“质的飞跃”。
有人认为:“全场景智慧是一个技术的大混合。”,实际上,这是指工程应用的一个方面,如果深究起来,还是一个科学技术、人文艺术、哲学思想、伦理道德、习俗信仰等方面的人物环境系统大混合,如同这次抗疫。较好的人机交互关系如同阴阳图一样,你中有我,我中有你,相互依存,相互平衡,就像当前的中美关系一样,美国想去掉华为的芯片,英特尔等就受损。简单地说,目前人机关系就是两条鱼,头尾相连,黑白相间。
每个事物、每个人、每个字、每个字母……都可以看成一个事实+价值+责任的弥聚子,心理性反馈与生理性反馈、物理性反馈不同。感觉的逻辑与知觉的逻辑不同,易位思考,对知而言,概念就是图型,对感而言,概念就是符号。从智能领域上看,没有所谓的元,只有变化的元,元可以是一个很大的事物,比如太阳系、银河系都可以看成一个元单位。我们称之为智能弥聚子。
科学家们常常只是力图解释那些不依赖于偶然的事件,但在现实世界中,人机环境系统工程往往试图去理解的事情大都取决于一些偶然因素,如同人类的命运。维特根斯坦(LudwigWittgenstein)就此曾有过著名的评论:“在整个现代世界观的根基之下存在一种幻觉,即:所谓的自然法则就是对自然现象的解释。”,基切尔也一直试图复活用原因解释单个事件的观点,可是,无穷多的事物都可能影响一个事件,究竟哪个才应该被视作它的原因呢?。更进一步讲,科学永远都不可能解释任何道德原则。在“是”与“应该”的问题之间似乎存在一道不可逾越的鸿沟。或许我们能够解释为什么人们认为有些事情应该做,或者说解释为什么人类进化到认定某些事情应该做,而其他事情却不能做,但是对于我们而言,超越这些基于生物学的道德法则依然是一个开放的问题。牛津大学的彭罗斯教授也认为:“在宇宙中根本听不到同一个节奏的“滴答滴答”声响。一些你认为将在未来发生的事情也许早在我的过去就已经发生了。两位观察者眼中的两个无关事件的发生顺序并不是固定不变的;也就是说,亚当可能会说事件P发生在事件Q之前,而夏娃也许会反驳说事件P发生在事件Q之后。在这种情形下,我们熟悉的那种清晰明朗的先后关系――过去引发现在,而现在又引发未来――彻底瓦解了。没错,事实上所谓的因果关系(Causality)在此也彻底瓦解了。”,也许有一种东西,并且只有这种东西恒久不变,它先于这个世界而存在,而且也将存在于这个世界自身的组织结构之中:它就是――“变”。
某种意义上讲,智能是文化的产物,人类的每个概念和知识都是动态的,而且只有在实践的活动中才可能产生多个与其它概念和知识的关联虫洞,进而实现其“活”的状态及“生”的趋势。同时,这些概念和知识又会保持一定的稳定性和继承性,以便在不断演化中保持类基因的不变性。时间和空间是一切作为知识概念的可能条件,同时也是许多原理的限制:即它们不能与存在的自然本身完全一致。可能性的关键在于前提和条件,一般人们常常关注可能性,而忽略关注其约束和范围。我们把自己局限在那些只与范畴相关的原理之上,与范畴相关,很多与范畴无关的原理得不到注意和关涉。实际上,人机环境系统中的中态、势、感、知都有弹性,而关于心灵的纯粹物理概念的一个问题是,它似乎没有给自由意志留多少空间:如果心灵完全由物理法则支配,那么它的自由意志就像一块“决定”落向地心的石头一样。所有的智能都与人机环境系统有关,人工智能的优点在于缝合,人工智能的缺点在于割裂,不考虑人、环境的单纯的人工智能软件、硬件就是刻舟求剑、盲人摸象、曹冲称象……简单地说,就是自动化。
人的学习是初期的灌输及更重要的后期环境触发的交互学、习构成,机器缺乏后期的能力。人的学习是事实与价值的混合性学习,而且是权重调整性动态学习。人的记忆也是自适应性,随人机环境系统而变化,不时会找到以前没注意到的特征。通过学习,人可以把态转为势,把感化成知,机器好像也可以,只不过大都是脱离环境变化的“死”势“僵”知。聪明反被聪明误有时是人的因素,有时是环境变化的因素。我们生活在一个复杂系统(complexsystem)中,在这种系统中有许多互相作用的变主体(agent)和变客体。人机混合中有多个环节,有些适合人做,有些适合机做,有些适合人机共做,有些适合等待任务发生波动后再做,如何确定这些分工及匹配很重要,如何在态势中感知?或在一串感知中生成态势?从时间维度上如何态、势、感、知?从空间维度上如何态、势、感、知?从价值维度上如何态、势、感、知?这些方面都很重要。
那么,如何实现有向的人机混合与深度的态势感知呢?一是“泛事实”的有向性。如国际象棋、围棋中的规则规定、统计概率、约束条件等用到的量的有向性,人类学习、机器学习中用到的运算法则、理性推导的有向性等,这些都是有向性的例子。尽管这里的问题很不相同,但是它们都只有正、负两个方向,而且之间的夹角并不大,因此称为“泛事实性”的有向性。这种在数学与物理中广泛使用的有向性便于计算。二是“泛价值”的有向性,亦即我们在主观意向性分析、判断中常用到的但不便测量的有向性。我们知道,这里的向量有无穷多个方向,而且两个方向不同的向量相加通常得到一个方向不同的向量。因此,我们称为“泛价值”的有向量。这种“泛向”的有向数学模型,对于我们来说方向太多,不便应用。
然而,正是由于“泛价值”有向量的可加性与“泛物”有向性的二值性,启示我们研究一种既有二值有向性、又有可加性的认知量。一维空间的有向距离,二维空间的有向面积,三维空间、乃至一般的N维空间的有向体积等都是这种几何量的例子。一般地,我们把带有方向的度量称为有向度量。态势感知中态一般是“泛事实”的有向性,势是“泛价值”的有向性,感一般是“泛事实”的有向性,知是“泛价值”的有向性。人机关系有点像量子纠缠,常常不是“有或无”的问题,而是“有与无”的问题。有无相生,“有”的可以计算,“无”的可以算计,“有与无”的可以计算计,所以未来的军事人机混合指控系统中,一定要有人类参谋和机器参谋,一个负责“有”的计算,一个处理“无”的算计,形成指控“计算计”系统。既能从直观上把握事物,还能从间接中理解规律。
西方发展起来的科学侧重于对真理的探求,常常被分为两大类:理论的科学和实践的科学。前者的目的是知识及真理,后者则寻求通过人的行动控制对象。这两者具体表现在这样一个对真理的证明体系的探求上:形式意义上的真理(工具论――逻辑),实证意义上的真理(物理――经验世界),批判意义上的真理(后物理学――形而上学)。俞吾金先生认为:“迄今为止的西方形而上学发展史是由以下三次翻转构成的:首先是以笛卡尔、康德、黑格尔为代表的“主体性形而上学”对柏拉图主义的“在场形而上学”的翻转;其次是在主体性形而上学的内部,以叔本华、尼采为代表的“意志形而上学”对以笛卡尔、康德、黑格尔为代表的“理性形而上学”的翻转;再次是后期海德格尔的“世界之四重整体(天地神人)的形而上学”对其前期的“此在形而上学”的翻转。”通过这三次翻转,我们可以引申出这样的结论:智能是一种人机环境系统交互,不但涉及理性及逻辑的研究,还包括感性和非逻辑的浸入,当前的人工智能仅仅是统计概率性混合了人类认知机理的自动化体系,还远远没有进入真正智能领域的探索。若要达到真正的智能研究,必须超越现有的人工智能框架,老老实实地把西方的“真”理同东方的“道”理结合起来,形成事实与价值、人智与机智、叙述与证明、计算与算计混合的计算计系统。
自此,真正的智能将不仅能在叙述的框架中讲道理,而且还应能在证明的体系中讲真理;不仅能在对世界的感性体验中言说散文性的诗性智慧以满足情感的需要,而且能在对世界的理智把握中表达逻辑性的分析智慧以满足科学精神的要求,那时,智能才能真正克服危机――人性的危机。
当前制约机器人科技发展的瓶颈是人工智能,人工智能研究的难点是对认知的解释与建构,而认知研究的关键问题则是自主和情感等意识现象的破解。生命认知中没有任何问题比弄清楚意识的本质更具挑战性,或者说更引人入胜。这个领域是科学、哲学、人文艺术、神学等领域的交集。意识的变化莫测与主观随意等特点有时严重偏离了追问人工智能:科学技术的逻辑实证与感觉经验验证判断,既然与科学技术体系相距较远,自然就不会得到相应的认同与支持了,顺理成章,理应如此吧!然而,最近科技界一系列的前沿研究正悄悄地改变着这个局面:研究飘忽不定的意识固然不符合科技的尺度,那么在“意识”前面加上“情境”(或“场景”、“上下文”、“态势”)二字呢?人在大时空环境下的意识是不确定的,但“格物致知”一下,在小尺度时空情境下的意识应该有迹可循吧!自古以来,人们就知道“天时地利人和”的小尺度时空情境对态势感知及意识的影响,只是直至1988年,才出现了明确用现代的科学手段实现情境(或情景)意识的研究,即米卡・安德斯雷(MicaEndsley)提出的态势感知概念框架。但这只是个定性分析概念模型,其机理分析与定量计算还远远没有完善。
在真实的人―机―环境系统交互领域中,人的情景意识、机器的物理情景意识、环境的地理情景意识等往往同构于统一时空中(人的五种感知也应是并行的),人注意的切换使之对于人而言发生着不同的主题与背景感受/体验。在人的行为环境与机的物理环境、地理环境相互作用过程中,人的情景意识被视为一个开放的系统,是一个整体,其行为特征并非由人的元素单独决定,而是取决于人―机―环境系统整体的内在特征,人的情景意识及其行为只不过是这个整体过程中的一部分罢了。另外,人机环境中许多个闭环系统常常是并行或嵌套的,并且在特定情境下这些闭环系统的不同反馈环节信息又往往交叉混合在一起,起着或兴奋或抑制的作用,不但有类似宗教情感类的柔性反馈,不妨称之为软调节反馈,人常常会延迟控制不同情感的释放;也存在着类似法律强制类的刚性反馈,不妨称之为硬调节反馈,常规意义上的自动控制反馈大都属于这类反馈。如何快速化繁为简、化虚为实是衡量一个人机系统稳定性、有效性、可靠性大小的主要标志,是用数学方法的快速搜索比对还是运筹学的优化修剪计算,这是一个值得人工智能领域深究的问题。
人―机―环境交互系统往往由有意志、有目的和有学习能力的人的活动构成,涉及变量众多,关系复杂,贯穿着人的主观因素和自觉目的,所以其中的主客体界限常常模糊,具有个别性、人为性、异质性、不确定性、价值与事实的统一性、主客相关性等特点,其中充满了复杂的随机因素的作用,不具备重复性。另外,人―机―环境交互系统有关机(装备)、环境(自然)研究活动中的主客体则界限分明,具有较强的实证性、自在性、同质性、确定性、价值中立性、客观性等特点。在西方国家,无论是在古代、中世纪还是在现代,哲学宗教早已不单纯是意识形态,而是逐渐成为各个阶级中的强大政治力量,其影响不断渗透到社会生活的各个领域,更有甚者,把哲学、政治、法律等上层建筑都置于宗教控制之下。总之,以上诸多主客观元素的影响导致了人―机―环境交互系统的异常复杂和不确定性。所以,对人―机―环境交互系统的研究不应仅仅包含科学的范式,如实验、理论、模拟、大数据,还应涉及人文艺术的多种方法,如直观、揣测、思辨、风格、图像、情境等,在许多情况下还应与哲学宗教的多种进路相关联,如现象、具身、分析、理解与信仰等。
在充满变数的人―机―环境交互系统中,存在的逻辑不是主客观的必然性和确定性,而是与各种可能性保持互动的同步性,是一种得“意”忘“形”的见招拆招和随机应变能力。这种思维和能力可能更适合人类的各种复杂艺术过程。对此种种,恰恰是人工智能所欠缺的地方。
人机智能是人―机―环境系统相互作用而产生的新型智能系统。其与人的智慧、人工智能的差异具体表现在三个方面:首先,在混合智能输入端,它把设备传感器客观采集的数据与人主观感知到的信息结合起来,形成一种新的输入方式;其次,在智能的数据/信息中间处理过程,机器数据计算与人的信息认知相混合,构建起一种独特的理解途径;最后,在智能输出端,它将机器运算结果与人的价值决策相匹配,形成概率化与规则化有机协调的优化判断。人机混合智能是一种广义上的“群体”智能形式,这里的人不仅包括个人,还包括众人,机不但包括机器装备,还涉及机制机理;此外,还关联自然/社会环境、真实/虚拟环境、网络/电磁环境等。
2、有关人机几个问题的思考
(1)人机环中是不是要先考虑任务目标,任务的模型该考虑哪些关键要素?
从多维度到边维度,从多尺度到变尺度,从多关系到变关系,从多推理到变推理,从多决策到变决策,从多边界条件到变边界条件。计算-算计相互作用的整合法则(线性与非线性的整合)。神经中的序可以装任何东西,并可进行泛化成新的序。任务需求是智能的目的,一切行为都是任务和目标驱动的。任务的模型最基础的是5W2H(who、where、when、what、why、how、howmuch),并结合各服务领域的关键要素展开,进行事实性与价值性混合观察、判断、分析、执行。(2)人机混合是不是要对人、机建模?若是,人和机的模型,要考虑哪些关键因素?
人和机的混合肯定是基于场景和任务(事件)的,要考虑输入、处理、输出、反馈、系统及其影响因素等,具体如下:a、客观数据与主观信息、知识的弹性输入――灵活的表征;b、公理与非公理推理的有机混合――有效的处理;c、责任性判断与无风险性决策的无缝衔接――虚实互补的输出;d、人类反思与机器反馈之间的相互协同调整;e、深度态势感知与其逆向资源管理过程的双向平衡;f、人机之间的透明信任机制生成;g、机器常识与人类常识的差异;h、人机之间可解释性的阈值;i、机器终身学习的范围/内容与人类学习的不同。
(3)人机混合(人机高效协作)的衡量的关键指标?
粗略地说,可分别从人、机和任务三个方面研讨:人机环境系统高效协同的关键指标在于三者运行绩效中的反应时、准确率,具体体现在计划协同,动作协同,特别是跨组织实现步调上的协同,当然还有资源、成本的协同等等方面。比如人的主动、辩证、平衡能力,机的精确、逻辑、快速功能,任务的弹性、变化、整体要求。如何有机地把人、机、任务的这些特点融入到系统协同的反应时、准确率两大指标之中呢?又是一个关键问题。
(4)从认知工程的智能系统框架、以及中西方的基础理论来看,哪些是未来认知功能具备可工程化的能力框架?哪些是尚不具备工程化的认知功能?
简单的说就是:计算部分与算计部分之分。未来认知功能具备可工程化的能力框架在于软硬件计算功能的快速、精确、大存储量的进一步提高,尚不具备工程化的认知功能在于反映规划、组织、协同算计谋划能力的知几趣时变通得到明显改善。智,常常在可判定性领域里存在;能,往往存在于可计算性领域。认知工程的瓶颈和矛盾在于:总想用逻辑的手段解决非逻辑问题,例如试图用形式化的手段解决意向性的问题。不同的人机其任务上下文中的上下程度弹性也是不同的。计算是算计的产物,计算常是算计的简化版,不能体现出算计中主动、辩证、矛盾的价值。计算可以处理关键场景的特征函数,但较难解决基本场景的对应规则,更难对付任意场景的统计概率,可惜这些还仅仅只是场景,尚远未涉及情境和意识……计算常常是针对状态参数和属性的(客观数据和事实),算计则是一种趋势和关系之间的谋划(根据主观价值的出谋划策),所以态势感知中,态与感侧重计算推理,势和知偏向算计谋划。计算计最大的特点就是异、易的事实价值并行不悖。人类的符号、联结、行为、机制主义是多层次多角度甚至是变层次变角度的,相比之下,机器的符号、联结、行为、机制主义是单层次单角度以及是固层次固角度的。人类思维的本质是随机应变的程序,也是可实时创造的程序,能够解释符号主义、联结主义、行为主义、机制主义之间的联系并能够打通这些联系,实现综合处理。达文波特认为:人类的某种智能行为一旦被拆解成明确的步骤、规则和算法,它就不再专属于人类了。这在根本上就涉及到一个基本问题,即科学发现如何成为一个可以被研究的问题。
三、人机混合智能是人工智能未来的发展方向
人机混合智能有两大难点:理解与反思。人是弱态强势,机是强态弱势,人是弱感强知,机是强感若知。人机之间目前还未达到相声界一逗一捧的程度,因为还没有单向理解机制出现,能够幽默的机器依旧遥遥无期。乒乓球比赛中运动员的算到做到、心理不影响技术(想赢不怕输)、如何调度自己的心理(气力)生出最佳状态、关键时刻之心理的坚强、信念的坚定等等,这都是机器难以产生出来的生命特征物。此外,人机之间配合必须有组合预期策略,尤其是合适的第二第三预期策略。自信心是匹配训练出来的,人机之间信任链的产生过程常常时:从陌生-不信任-弱信任-较信任-信任-较强信任-强信任,没有信任就不会产生期望,没有期望就会人机失调,而单纯的一次期望匹配很难达成混合,所以第二、第三预期的符合程度很可能是人机混合一致性的关键问题。人机信任链产生的前提是人要自信(这种自信心也是匹配训练出来的),其次才能产生他信和信他机制,信他与他信里就涉及到多阶预期问题。若being是语法,should就是语义,二者中和相加就是语用,人机混合是语法与语义、离散与连续、明晰与粗略、自组织与他组织、自学习与他学习、自适应与他适应、自主化与智能化相结合的无身认知+具身认知共同体、算+法混合体、形式系统+非形式系统的化合物。反应时与准确率是人机混合智能好坏的重要指标。人机混合就是机机混合,器机理+脑机制;人机混合也是人人混合,人情意+人理智。
人工智能相对是硬智,人的智能相对是软智,人机智能的混合则是软硬智。通用的、强的、超级的智能都是软硬智,所以人机混合智能是未来,但是混合机理机制还远未搞清楚,更令人恍惚的是一不留神,不但人进化了不少,机又变化的太快。个体与群体行为的异质性,不仅体现在经济学、心理学领域,而且还是智能领域最为重要的问题之一。现在主流的智能科学在犯一个以前经济学犯过的错误,即把人看成是理性人,殊不知,人是活的人,智是活的智,人有欲望有动机有信念有情感有意识,而数学性的人工智能目前对此还无能为力。如何混合这些元素,使之从冰冻的生硬的状态转化为温暖的柔性的情形,应该是衡量智能是否智能的主要标准和尺度,同时这也是目前人工智能很难跳出人工的瓶颈和痛点,只有钢筋没有混凝土。经济学融入心理学后即可使理性经济人变为感性经济人,而当前的智能科学仅仅融入心理学是不够的,还需要渗入社会学、哲学、人文学、艺术学等方能做到通情达理,进而实现由当前理性智能人的状态演进成自然智能人的形势。智能中的意向性是由事实和价值共同产生出来的,内隐时为意识,外显时叫关系。从这个意义上说,数学的形式化也许会有损于智能,维特根斯坦认为:形式是结构的可能性。对象是稳定的东西,持续存在的东西;而配置则是变动的东西,非持久的东西。维特根斯坦还认为:我们不能从当前的事情推导出将来的事情。迷信恰恰是相信因果关系。也就是说,基本的事态或事实之间不存在因果关系。只有不具有任何结构的东西才可以永远稳定不灭、持续存在;而任何有结构的东西都必然是不稳定的,可以毁灭的。因为当组成它们的那些成分不再依原有的方式组合在一起的时候它们也就不复存在了。事实上,在每个传统的选择(匹配)背后都隐藏着两个假设:程序不变性和描述不变性。这两者也是造成期望效用描述不够深刻的原因之一。程序不变性表明对前景和行为的偏好并不依赖于推导出这些偏好的方式(如偏好反转),而描述不变性规定对被选事物的偏好并不依赖于对这些被选事物的描述。
人机混合智能难题,即机器的自主程度越高,人类对态势的感知程度越低,人机之间接管任务顺畅的难度也越大,不妨称之为“生理负荷下降、心理认知负荷增加”现象。如何破解呢?有经验的人常常抓关任务中的键薄弱环节,在危险情境中提高警觉性和注意力,以防意外,随时准备接管机器自动化操作,也可以此训练新手,进而形成真实敏锐地把握事故的兆头苗头、恰当地把握处理时机、准确地随机应变能力,并在实践中不断磨砺训练增强。即便如此,如何在非典型、非意外情境中解决人机交互难题仍需要进一步探讨!
计算与算计,合久必分,分久必合。算计需要的是发散思维,计算需要的是缜密思维,这是两种很不一样的思维方式,这两种方式同时发生在某个复杂过程中是小概率的事件,由此带来的直接后果就是,复杂领域的突破也只能是小概率的事件。对待场景中的变化,机器智能可以处理重复性相同的“变”,人类智能能够理解杂乱相似性(甚至不相似)的“变”,更重要的是还能够适时的进行“化”,其中“随动”效应是人类计算计的一个突出特点,另外,人类计算计还有一个更更厉害的武器――“主动”。
有人说:“自动化的最大悖论在于,使人类免于劳动的愿望总是给人类带来新的任务。”解决三体以上的科学问题是非常困难的,概念就是一个超三体的问题:变尺度、变时空、变表征、变推理、变反馈、变规则、变概率、变决策、变态势、变感知、变关系……犹如速度与加速度之间的关系映射一般,反映者智能的边界。有效概念的认知是怎样产生的,OODA还是OAOODDDAA?亦或是OA?这是一个值得思考的问题。多,意味着差异的存在;变,意味着非存在的有;复杂,意味着反直观特性;自组织/自相似/自适应/自学习/自演进/自评估意味着系统的智能……,人机环境网络中重要/不重要节点的隐匿与恢复是造成全局态势有无的关键,好的语言学家与好的数学家相似:少计算多算计,知道怎么做时计算,不知道怎么做时算计,算计是从战略到策略的多逻辑组合,人机混合计算计机制犹如树藤相绕的多螺旋结构,始于技术,成于管理。如果说计算是科学的,算计是艺术的,那么计算计就是科学与艺术的。
价值不同于事实之处在于可以站在时间的另一端看待发生的各种条件维度及其变化。仅仅是机器智能永远无法理解现实,因为它们只操纵不包含语义的语法符号。系统论的核心词是突显(整体大于部分),偏向价值性should关系;控制论的核心词是反馈(结果影响原因),侧重事实性being作用。耗散结构论的核心词是开放性自组织(从非平衡到平衡),强调从being到should过程。控制论中的反馈是极简单的结果影响(下一个)原因的问题,距离人类的反思-这种复杂的“因果”(超时空情境)问题很遥远。算计是关于人机环境体系功能力(功能+能力)价值性结构谋划,而不是单事实逻辑连续的计算,计算-算计正是关于正在结构中事实-价值-责任-情感多逻辑组合连续处理过程,人机混合智能难题的实质也就是计算-算计的平衡。
人机混合智能是人工智能发展的必经之路,其中既需要新的理论方法,也需要对人、机、环境之间的关系进行新的探索。人工智能的热度不断加大,越来越多的产品走进人们的生活之中。但是,强人工智能依然没有实现,如何将人的算计智能迁移到机器中去,这是一个必然要解决的问题。我们已经从认知角度构建认知模型或者从意识的角度构建计算-算计模型,这都是对人的认知思维的尝试性理解和模拟,期望实现人的算计能力。计算-算计模型的研究不仅需要考虑机器技术的飞速发展,还要考虑交互主体即人的思维和认知方式,让机器与人各司其职,互相混合促进,这才是人机混合智能的前景和趋势。
https://blog.sciencenet.cn/blog-40841-1393647.html上一篇:人机融合是自由与决定的交互下一篇:人机环境系统中的一多分有问题探讨收藏IP:123.119.251.*|热度|基辛格谈人工智能:如何看待人工智能时代的国际秩序
0分享至从谷歌AlphaGo击败人类棋手,到ChatGpt引发科技界热议,人工智能科技的每一次进展都牵动着人们的神经。毋庸置疑的是,人工智能正深刻改变着我们的社会、经济、政治甚至是外交政策,而对于解释这一切的影响来说,过往传统的理论往往失灵。在《人工智能时代与人类未来》一书中,著名外交家基辛格、谷歌前CEO施密特和麻省理工学院苏世民计算机学院院长胡滕洛赫尔从不同角度梳理了人工智能的前世今生,并全面探讨了其发展可能给个人、企业、政府、社会、国家带来的种种冲击。几位顶尖的思想者认为,随着人工智能的能力越来越强,如何定位人类的角色,将是我们在未来的时间中必须长期思考的命题。以下内容经过出版社授权摘编自《人工智能时代与人类未来》,有删改,小标题为摘编者所加。《人工智能时代与人类未来》,作者:[美]亨利·基辛格/[美]埃里克·施密特/[美]丹尼尔·胡滕洛赫尔,版本:中信出版社,2023年5月。原作者|[美]亨利·基辛格/[美]埃里克·施密特/[美]丹尼尔·胡滕洛赫尔通用人工智能会带来什么?人类和人工智能是否从不同的角度接近同一个现实,并且可以优势互补、相辅相成呢?还是说,我们会感知到两种不同但部分重叠的现实:一种是人类可以通过理性阐述的,另一种则是人工智能可以通过算法说明的?如果答案是后一种,那么人工智能就能感知我们尚未感知也无法感知的事物——不仅因为我们没有足够的时间以我们的方式去推理它们,还因为它们存在于一个我们的心智无法概念化的领域之中。人类对“完全了解世界”的追求将会发生改变,人们会意识到,为了获得某些知识,我们可能需要委托人工智能为我们获取知识,并向我们回禀消息。无论答案是哪一个,随着人工智能追求的目标愈加全面和广泛,它在人类看来都将越来越像一个体验和了解世界的“生灵”——一种结合了工具、宠物和心智的存在。当研究人员接近或已然实现通用人工智能时,这个谜题只会显得越发深邃。正如我们在第三章所述,通用人工智能将不会局限于学习和执行特定的任务;相反,根据其定义,通用人工智能将能够学习并执行范围极广的任务,一如人类所为。开发通用人工智能将需要巨大的算力,这可能导致只有少数资金充足的组织有能力创建此类人工智能。与目前的人工智能一样,尽管通用人工智能可能随时被分散部署,但鉴于其能力,其应用有必要受到限制。可以通过只允许经批准的组织运营通用人工智能来对其施加限制。那么问题将变成:谁来控制通用人工智能?谁来授权对其的使用?在一个少数“天才”机器由少数组织操纵的世界里,民主还是可能的吗?在这种情况下,人类与人工智能的合作会是何种模样?如果通用人工智能真的出现在世上,这将是智力、科学和战略上的重大成就。但即便未能如此,人工智能也同样能为人类事务带来一场革命。人工智能在应对突发事件(或者说意外事件)及提供解决方案方面展现出的动力和能力使其有别于以往的技术。如果不受监管,人工智能可能会偏离我们的预期,进而偏离我们的意图。到底是限制它、与它合作还是顺从它的决定,将不仅仅由人类做出。在某些情况下,这将由人工智能本身决定;在其他情况下,则取决于各种助力因素。人类可能参与一场“逐底竞争”。随着人工智能实现流程自动化、允许人类探索大量数据,并组织和重构物质和社会领域,那些先行者可能获得先发优势。竞争压力可能会迫使各方在没有足够时间评估风险或干脆无视风险的情况下竞相部署通用人工智能。关于人工智能的伦理道德是必不可少的。每个个体的决定——限制、合作或顺从——也许会产生戏剧性的后果,也许不会,但当它们汇合起来,影响就会倍增。这些决定不可能是孤立的。如果人类想要塑造未来,需要就指导每一个选择的共同原则达成一致。确实,集体行动很难实现,有时甚至不可能,但缺乏共同道德规范指导的个人行动只会让人类整体陷入更大的动荡与变乱。那些设计、训练人工智能并与人工智能合作的人所能够实现的目标,将达到迄今人类无法企及的规模和复杂程度,比如新的科学突破、新的经济效率、新的安全形式,以及社会监控的新维度。而在扩展人工智能及其用途的过程中,那些未能获得主导权的人却可能会感到,他们正在被自己不了解,而且并非由自身设计或选择的力量所监视、研究和采取行动。这种力量的运作是不透明的,在许多社会中,这是传统的人类行为者或机构不能容忍的。人工智能的设计者和部署者应该准备好解决这些问题,首先要做的是向非技术人员解释人工智能在做什么、它“知道”什么,又会如何去做。人工智能的动态性和新兴性至少令其在两个方面产生了模糊性。首先,人工智能可能按照我们的预期运行,但会产生我们无法预见的结果。这些结果可能会把人类引入其创造者也始料未及的境地,就像1914年的政治家没有认识到军事动员的旧逻辑加上新技术会把欧洲拖入战争一样。如果不加审慎的考虑就部署和运用人工智能,也可能会造成严重后果。电影《阿丽塔:战斗天使》剧照。
这些后果可能是小范围的,比如自动驾驶汽车做出的决定危及生命;也可能是极其重大的,比如严重军事冲突。其次,在某些应用领域中,人工智能可能是不可预测的,它的行动完全出人意料。以AlphaZero为例,它只是根据“赢棋”的指示,就发展出一种人类在几千年的国际象棋历史中从未设想过的棋风。虽然人类可能会小心规定人工智能的目标,但随着我们赋予其更大的自由度,其实现目标的路径可能会让我们感到惊讶,甚至感到恐慌。因此,对人工智能的目标和授权都需要谨慎地设计,尤其是在其决策可能致命的领域。我们既不应将人工智能视为自动运作、无须照管的存在,也不应允许其在无人监督、监视或直接控制的情况下采取不可撤销的行动。人工智能由人类创造,故也应由人类来监管。但在我们这个时代,人工智能面临的挑战之一是,具备了创造人工智能所需的技能和资源的人并非必然具有理解其更广泛内涵的哲学视角。许多人工智能的创造者主要关注的是他们试图实现的应用和他们想要解决的问题:他们可能不会停下来考虑这个解决方案是否会产生一场历史性的革命,或者他们的技术将如何影响不同的人群。人工智能时代需要它自己的笛卡儿和康德,来解释我们创造了什么及其对人类有何意义。我们有必要组织政府、大学和私营行业创新者均参与其中的理性讨论和协商,其目标应该是对实际行动建立限制就像今天管理个人和组织行动的那些限制一样。人工智能具有的属性,部分与目前受监管的产品、服务、技术和实体相同,但在一些重要方面又与它们不同,其缺乏自身完全界定的概念和法律框架。例如,人工智能不断演变、推陈出新的特性给监管带来了挑战:它在世界上的运作对象和方式可能因不同领域而异,并随着时间的推移而演变,而且并不总是以可预测的方式呈现。对人的治理是以道德准则为指导的。人工智能需要一种自己的道德准则,这种准则不仅反映了技术的本质,也反映了它所带来的挑战。通常,既有原则并不适用于此处。在信仰时代,当神明裁判中的被告面临战斗裁决时,法院可以判定罪行,但上帝决定谁获得胜利。在理性时代,人类根据理性的戒律来确定罪责,并根据因果关系和犯罪意图等概念来判罪和施以惩罚。但是人工智能并不依靠人类的理性运作,也没有人类的动机、意图或自我反省。因此,人工智能的引入将使适用于人类的现有正义原则更为复杂化。当一个自主系统基于自己的感知和决策行动时,其创造者承担责任吗?还是说,人工智能的行为不可与其创造者相混同,至少在罪责方面不应连坐?如果人工智能被用来监测犯罪行为的迹象,或者帮助判断某人是否有罪,那么人工智能必须能够“解释”它是如何得出结论的,以便人类官员对此加以采信吗?此外,在技术发展的哪个时点、何种背景之下,人工智能应该受到国际协商的限制?这是另一个重要的辩论主题。如果试探过早,这项技术的发展可能会受到阻碍,或者可能诱使其隐藏自身能力;而如果拖延太久,则可能会造成破坏性后果,尤其是在军事方面。对于一种虚无缥缈、晦涩难懂且易于传播的技术,难以对其设计有效的核查机制使得这一挑战更加复杂。官方的协商者必然是政府,但也需要为技术专家、伦理学家、创造和运营人工智能的公司以及其他领域外人士搭建发声平台。美剧《西部世界》剧照。
对不同社会来说,人工智能带来的两难困境均具有深远意义。如今,我们的社会和政治生活很大程度上是在人工智能赋能的网络平台上发生的,民主国家尤其如此,它们依靠这些信息空间进行辩论和交流,形成公众舆论并赋予其合法性。谁,或者什么机构,应该界定技术的角色?谁又应该监管它?使用人工智能的个人应该扮演什么样的角色?生产人工智能的公司呢?部署使用它的社会政府呢?作为这些问题解决方案的一部分,我们应该设法使其可审核,即使其过程和结论既是可检查的又是可纠正的。反过来,纠正能否实施,将取决于能否将针对人工智能感知和决策形式的原则加以细化。道德、意志甚至因果关系都不能很好地契合自主人工智能的世界。从交通运输到金融再到医药,社会的大多数层面都会出现类似的问题。想想人工智能对社交媒体的影响吧。借助最近的创新,这些平台已迅速成为我们公共生活的重要方面。正如我们在第四章中所讨论的,推特和脸书用以突显、限制或完全禁止内容或个人的功能全都仰仗人工智能,这便是其力量的证明。使用人工智能进行单边的、通常不透明的内容和概念推广或删除,这对各国尤其是民主国家来说都是一个挑战。随着我们的社会和政治生活越来越多地转向由人工智能管理的领域,并且我们只能依靠这种管理来驾驭这些领域,我们是否有可能保留主导权?使用人工智能处理大量信息的做法也带来了另一挑战:人工智能加大了对世界的扭曲,以迎合人类的本能偏好。在这一领域,人工智能可以轻易地放大我们的认知偏差,而我们却还与之共鸣。伴随着这些声音,面对选择的多样性,又被赋予了选择和筛选的权力,人们接受的错误信息将会泛滥。社交媒体公司不会通过新闻推送来推动极端和暴力的政治极化,但显而易见的是,这些服务也没有导致开明话语的最大化。人工智能、自由信息和独立思考那么,我们与人工智能的关系应该是怎样的呢?在管理这些领域时,它应该被约束、被授权,还是被当作伙伴?某些信息的传播,尤其是故意制造的虚假信息,会造成损害、分裂和煽动,这是毋庸置疑的。因此一些限制是需要的。然而,现在对“有害信息”的谴责、打击和压制显得过于宽松,这也应该引起反思。在一个自由社会里,有害信息和虚假信息的界定不应该被囿于公司的职权范围。但是,如果将此类职责委托给一个政府小组或机构,该小组或机构应该根据确定的公共标准并通过可核查的程序来运作,以避免被当权者利用。如果将其委托给人工智能算法,则该算法的目标函数、学习、决策和行动必须清晰并接受外部审查,而且至少要有某种形式的人类诉求。当然,不同的社会会对此得出不同的答案。有些社会可能会强调言论自由,强调程度可能因其对个人表达的相对理解差异而有所不同,并且可能因此限制人工智能在调和内容方面的作用。每个社会都会选择各自重视的观念,这可能会导致其与跨国网络平台运营商之间的复杂关系。人工智能就像海绵一样善于吸收,它向人类学习,甚至在我们设计和塑造它的时候也是如此。美剧《西部世界》剧照。
因此,不仅每个社会的选择是不同的,每个社会与人工智能的关系、对人工智能的感知,及其人工智能模仿人类、向人类老师学习的模式也是各不相同的。但有一点是确定的,那就是人类对事实和真理的追求不应该使一个社会通过一个轮廓不明、无法检验的过滤器来体验生活。对现实的自发体验尽管有其矛盾性和复杂性,却是人类境况的一个重要方面,即使这种体验导致了低效或错误。人工智能和国际秩序在全球范围内,有无数问题正亟待解答。如何对人工智能网络平台进行监管,而不会引发担心其安全性的国家之间的紧张关系?这些网络平台是否会侵蚀传统的国家主权观念?由此产生的变化会给世界带来自苏联解体以来从未有过的两极分化吗?小国会反对吗?试图调解这些后果的努力会成功吗?或者有成功的希望吗?随着人工智能的能力不断增强,如何定位与人工智能合作时人类的角色将变得愈加重要和复杂。我们可以设想这样一个世界:在这个世界里,人类在日益重要的问题上越发尊重人工智能的意见。在一个进攻对手成功部署人工智能的世界里,防御方的领导人能否决定不部署自己的人工智能并为此担责吗?即使他们也不确定这种部署将带来怎样的演变。而如果人工智能拥有推荐一种行动方案的优越能力,那么决策者是否有理由接受它,即使该行动方案需要做出一定程度的牺牲?人类怎能知道这种牺牲是否对胜利必不可少呢?如果确实必不可少,那么决策者真的愿意否决它吗?换句话说,我们可能别无选择,而只能选择扶植人工智能。但我们也有责任以一种与人类未来相容的方式来对它加以塑造。不完美是人类经验中的常态之一,尤其是在领导力方面。通常,决策者会因偏狭的担忧而杯弓蛇影。有时,他们的行动基于错误的假设;有时,他们的行动纯粹是出于感情用事;还有一些时候,意识形态扭曲了他们的视野。无论用何种策略来构建人类与人工智能的伙伴关系,它们都必须适应人类。如果人工智能在某些领域显示出超人的能力,则其使用必须能够被不完美的人类环境所兼容并包。在安全领域,人工智能赋能系统响应速度非常快,使得对手可能会在系统运行之前尝试攻击。结果是可能造就一种内在不稳定的局势,堪比核武器所造成的局势。然而,核武器被置于国际安全和军备控制概念的框架中,这些概念是由各国政府、科学家、战略家和伦理学家通过不断的提炼、辩论和谈判,在过去几十年里发展起来的。人工智能和网络武器没有类似的框架。事实上,政府可能并不愿意承认它们的存在。各国——可能还有科技公司——需要就如何与武器化的人工智能共存达成一致。人工智能通过政府防务职能的扩散,将改变国际平衡以及在我们这个时代维持这种平衡所依赖的计算。核武器代价高昂,而且由于其规模和结构而难以被隐藏。与之相反,人工智能却可以在随处可见的计算机上运行。由于训练机器学习模型需要专业知识和计算资源,因此创造一个人工智能需要大公司或国家级的资源;而由于人工智能的应用是在相对较小的计算机上进行的,因此其必将被广泛使用,包括以我们意想不到的方式。任何拥有笔记本电脑、连接到互联网并致力于窥探人工智能黑暗面的人,最终都能获得人工智能赋能的武器吗?政府是否会允许与其关系若即若离或毫无关系的行为者使用人工智能来骚扰他们的对手?恐怖分子会策划人工智能袭击吗?他们是否能够将这些活动嫁祸给国家或其他行为者?美剧《西部世界》剧照。
过去,外交在一个有组织、可预测的舞台上进行;如今,其信息获取和行动范围将获得极大的扩展。以往因地理和语言差异而形成的清晰界线将逐渐消失。人工智能翻译将促进对话,而且不用像以往的译者那样不仅要有语言造诣,还要精通文化。人工智能赋能的网络平台将促进跨境交流,而黑客攻击和虚假信息将继续扭曲人们的认知和评估。随着形势愈加复杂,制定具有可预测结果的可执行协议将变得更加困难。将人工智能功能与网络武器相结合的可能性加深了这一困境。人类通过明确区分常规武器(被认为与传统战略相调和)和核武器(被认为是例外)而回避了核悖论。核武器的破坏力量一旦释放就是无差别的,不分对象;而常规武器可以辨别打击目标。但是,既能辨别目标又能进行大规模破坏的网络武器消除了这一区分。如果再有人工智能推波助澜,这些武器将如虎添翼,变得更加不可预测,潜在的破坏性也更大。同时,当这些武器在网络中伺机游弋时,是无法确定归属的。它们无法被察觉,因为它们不像核武器那么笨重;它们还可以通过U盘携带,而这有利于扩散。在某些形式下,这些武器一旦被运用就难以控制,如果考虑到人工智能的动态和新兴特性就更加如此。这种形势挑战了以规则为基础的世界秩序的前提。此外,它还让发展人工智能军备控制的相关概念成了当务之急。在人工智能时代,威慑将不再依照历史上的准则,它也做不到这一点。在核时代之初,依据哈佛大学、麻省理工学院和加州理工学院的领军教授、学者(有政府工作经验)在讨论中形成的真知灼见,人们搭建了一个核军备控制的概念框架,继而又促成了一个制度(以及在美国和其他国家实施该制度的机构)的建立。尽管学术界的思想很重要,但它与五角大楼对常规战争的考量是分开实施的——它是一种新的补充,而非对原有的修改。但人工智能的潜在军事用途比核武器更广泛,而且至少目前其进攻和防御还谈不上泾渭分明。在一个如此复杂、内在又如此叵测的世界里,人工智能成了另一种误解和错误的可能来源,拥有高科技能力的大国迟早将不得不就此进行一场持续对话。这种对话应聚焦于一个根本问题:避免灾难,并以此求得生存。人工智能和其他新兴技术(比如量子计算)似乎正在让超越人类感知范围的现实变得更加触手可及。然而,最终我们可能会发现,即使是这些技术也有其局限性。我们的问题是,我们尚未领会它们的哲学蕴含。我们正在被它们不由自主地推动向前,而非有意识的。上一次人类意识发生重大变化是在启蒙运动时期,这一转变的发生是因为新技术产生了新的哲学见解,而这些见解又通过技术(以印刷机的形式)传播开来。在我们这个时代,新技术已经发展起来,但相应的指导性的哲学理念却暂付阙如。人工智能是一项具有深远潜在利益的宏大事业。人类正在努力开发人工智能,但我们是用它来让我们的生活变得更好还是更糟?它允诺带来更强力的药物、更高效公平的医疗保健、更可持续的环境实践,以及其他种种进步图景。然而与此同时,它也可以使信息失真,或者至少使信息的消费和真相识别的过程变得更加错综复杂,并由此令一部分人的独立推理和判断能力日渐萎落。最后,一个“元”问题浮现出来:在对世界有着不同解释和理解的人工智能的“辅助”下,人类能否满足对哲学的需求?人类并不完全了解机器,但我们最终将与它们和平共处,并以此改变世界?伊曼努尔·康德在他的《纯粹理性批判》一书的序言中以这样一个观点开篇:人类理性具有此种特殊运命,即在其所有知识之一门类中,为种种问题所困,此等问题以其为理性自身之本质所加之于其自身者,故不能置之不顾,但又因其超越理性所有之一切能力,故又不能解答之也。在此后的几个世纪里,人类对这些问题进行了深入的探索,其中一些问题涉及心灵、理性乃至现实的本质。人类已取得了重大突破,但也遇到了康德提出的许多限制:一个其无法回答的问题领域,一个其无法完全了解的事实领域。人工智能的出现,带来了人类仅凭理性无法实现的学习和处理信息的能力,其可能会让我们在那些已被证明超出我们回答能力的问题上取得进展。但是,成功将产生新的问题,其中一些问题我们已经试图在本书中阐明。人类智能和人工智能正值风云际会,两者将彼此融汇于国家、大洲,甚至全球范围内的各种追求之中。理解这一转变,并为之发展一种指导性道德准则,需要社会各个阶层,包括科学家和战略家、政治家和哲学家、神职人员和首席执行官们,群策群力、各抒己见并做出共同的承诺。不仅各国内部应有此承诺,国与国之间也同样如此。我们与人工智能究竟能建立何种伙伴关系,由此又会产生什么样的现实呢?现在,是时候对此加以界定了。本文为独家原创内容。作者:[美]亨利·基辛格/[美]埃里克·施密特/[美]丹尼尔·胡滕洛赫尔;摘编:刘亚光;编辑:刘亚光;校对:赵琳。未经新京报书面授权不得转载,欢迎转发至朋友圈。最近微信公众号又改版啦大家记得将「新京报书评周刊」设置为星标不错过每一篇精彩文章~全年合辑!2022《新京报·书评周刊》年度合订本来啦!点击阅读原文即可购买~特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端