人工智能目前经历了哪几个研究阶段人工智发展史
人工智能一直是计算机技术研究的前沿阵地,人工智能研究的突破在很大程度上将决定计算机技术未来的发展方向。现在,已经有很多人工智能研究的成果被纳入了人们的日常生活。那么,人工智能目前经历了哪几个研究阶段?
从50年代开始,人工智能的研究经历了以下几个阶段:
第一阶段:
50年代人工智能的兴起和冷落。人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题、求解程序、LISTP表处理语言等。但由于消解法推理能力的有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段:
60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-Ⅱ语音处理系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议。
第三阶段:
80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:
80年代末,神经网络飞速发展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:
90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互联网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,使人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深人到社会生活的各个领域。
在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以关注小笨智能,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!
人工智能的六个发展阶段,一起来看看吧
原标题:人工智能的六个发展阶段,一起来看看吧人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能充满未知的探索道路曲折起伏,人工智能的发展历程基本划分为以下6个阶段:
1、起步发展期:1956年—20世纪60年代初人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
2、反思发展期:20世纪60年代—70年代初人工智能发展初期的突破性进展大大提升了人们对人工智能期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标落空使人工智能发展走入低谷。
3、应用发展期:20世纪70年代初—80年代中20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
4、低迷发展期:20世纪80年代中—90年代中随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
5、稳步发展期:20世纪90年代中—2010年由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。
6、蓬勃发展期:2011年至今随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长新高潮。
展开全文想学习云计算、大数据、新媒体的同学注意啦,博雅环球教育针对此次疫情特推出线上免费直播课程,同学们可以趁这个时期,好好充实一下自己,待到春暖花开时,学以致用,大展身手。想报名的同学快来联系我们吧!
北京|内蒙古|呼和浩特|IT计算机培训|云计算|大数据|新媒体|线上培训|免费课程|高薪就业
返回搜狐,查看更多
责任编辑:盘点人工智能发展史上的8个历史性事件
原标题:盘点人工智能发展史上的8个历史性事件人工智能被广大人民群众所熟知大概是从2016年阿尔法围棋(AlphaGo)与围棋世界冠军、职业九段选手李世石进行人机大战那次,并以4:1的总比分获胜。
不少职业围棋手认为,阿尔法围棋的棋力已经达到甚至超过围棋职业九段水平,在世界职业围棋排名中,其等级分曾经超过排名人类第一的棋手柯洁。此次人机大战,引起了全球前所未有的关注,开启了人工智能的新纪元。
实际上,早在上世纪40年代,人工智能的概念就已诞生。在那个时期的一些科幻小说、科幻电影里,就经常有关于人工智能的描述,如超级机器人、超级计算机、光脑等。
在人工智能的发展历程中,还经历了以下七个历史性事件:
一)1943年,WarrenMcCulloch和WalterPitts两位科学家提出了“神经网络”的概念,正式开启了AI的大门。虽然在当时仅是一个数学理论,但是这个理论让人们了解到计算机可以如人类大脑一样进行“深度学习”,描述了如何让人造神经元网络实现逻辑功能。
二)1955年8月31日,JohnMcCarthy、MarvinMinsky、NathanielRochester和ClaudeShannon四位科学家联名提交了一份《人工智能研究》的提案,首次提出了人工智能(AI)的概念,其中的JohnMcCarthy被后人尊称为“人工智能之父”。
三)1969年人类首次提出了反向传播算法(Backpropagation),这是80年代的主流算法,同时也是机器学习历史上最重要的算法之一,奠定了人工智能的基础。
这种算法的独特之处在于映射、非线性化,具有很强的函数复现能力,可以更好地训练人工智能的学习能力。
四)20世纪60年代,麻省理工学院的一名研究人员发明了一个名为ELIZA的计算机心理治疗师,可以帮助用户和机器对话,缓解压力和抑郁,这是语音助手最早的雏形。
语音助手可以识别用户的语言,并进行简单的系统操作,比如苹果的Siri,某种程度上来说,语音助手赋予了人工智能“说话”和“交流”的能力。
展开全文五)1993年作家兼计算机科学家VernorVinge发表了一篇文章,在这篇文章中首次提到了人工智能的“奇点理论”。他认为未来某一天人工智能会超越人类,并且终结人类社会,主宰人类世界,被其称为“即将到来的技术奇点”。
VernorVinge是最早的人工智能威胁论提出者,后来者还有霍金和特斯拉CEO马斯克。
六)1997年,IBM的超级计算机“深蓝”战胜了当时的国际象棋冠军GarryKasparov,引起了世界的轰动。虽然它还不能证明人工智能可以像人一样思考,但它证明了人工智能在推算及信息处理上要比人类更快。这是AI发展史上,人工智能首次战胜人类。
七)2012年6月,谷歌研究人员JeffDean和吴恩达从YouTube视频中提取了1000万个未标记的图像,训练一个由16,000个电脑处理器组成的庞大神经网络。在没有给出任何识别信息的情况下,人工智能通过深度学习算法准确的从中识别出了猫科动物的照片。
这是人工智能深度学习的首次案例,它意味着人工智能开始有了一定程度的“思考”能力。
人工智能未来的发展:
AI行业的六大发展趋势
·更聪明的机器人
·更快的分析
·更自然的互动
·更微妙的恐惧
·更智能的学习
·知识共享
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。
来源:人工智能返回搜狐,查看更多
责任编辑:人工智能产业发展现状与四大趋势
随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。
一人工智能的内涵与产业链
(一)人工智能的内涵
人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。
图1:人工智能内涵示意图
来源:火石创造根据公开资料绘制
(二)人工智能的发展历程
从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。
第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。
第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。
第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。
图2:人工智能的三次发展浪潮
来源:火石创造根据公开资料绘制
(三)人工智能的产业链
人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。
图3:人工智能产业链
来源:火石创造根据公开资料绘制
二全球人工智能产业发展现状
(一)人工智能产业规模保持快速增长
近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。
图4:2017-2025年全球人工智能产业规模(单位:亿美元)
数据来源:火石创造根据公开资料整理
(二)全球主要经济体争相布局,中美两国占据领先位置
人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。
图5:全球人工智能企业数量分布
数据来源:中国信通院,火石创造整理
(三)公共数据集不断丰富,关键平台逐步形成
全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。
(四)人工智能技术飞速发展,应用持续深入
近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。
三全球人工智能产业发展趋势
(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎
算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。
(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点
随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。
(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临
在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。
(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识
随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。
原文标题 : 全球视野下人工智能产业发展现状与四大趋势
人工智能可以分为哪三个阶段你知道多少!
原标题:人工智能可以分为哪三个阶段?你知道多少!随着人工智能技术的应用越来越广泛,AI即将取代人类的威胁论层出不穷,而恐怖源自未知,是我们对人工智能基础认知的缺失造成了很多空洞的猜测。
业界通常把人工智能分为三个发展阶段:弱人工智能,强人工智能,超人工智能。现阶段的人工智能,无论是会写诗、能一分钟写出一篇财经新闻稿的机器“文人”,还是棋艺纵横天下、能独立开车的运动型选手,都还只属于弱人工智能范围,它们只能在某些方面超过人类。
1、弱人工智能
可以代替人力处理某一领域的工作。目前全球的人工智能水平大部分处于这一阶段。就像超越人类围棋水平的阿尔法狗,虽然已经超越了人类在围棋界的最高水平,不过在其他领域还是差的很远,所以只是弱人工智能。
展开全文2、强人工智能
拥有和人类一样的智能水平,可以代替一般人完成生活中的大部分工作。这也是所有人工智能企业目前想要实现的目标。走到这一步之后,机器人大量替代人类工作,进入生活就成为的现实。
3、超人工智能
人工智能的发展速度是很快的。当人工智能发展到强人工智能阶段的时候,人工智能就会像人类一样可以通过各种采集器、网络进行学习。每天它自身会进行多次升级迭代。而那个时候,人工智能的智能水平会完全超越人类。
超级人工智能更接近于我们幻想中的神或者上帝,科学家们表示,当达到超人工智能时,AI的发展将呈指数级爆发,它将对人类造成极大的冲击,人类之所以能支配地球,因为智慧就是力量,而我们亲手创造的超级人工智能可能成为地球的新一任主宰。返回搜狐,查看更多
责任编辑: