人工智能三大关键能力,终于有人讲明白了
导读:人类的智慧宽广而复杂。有些人类成就远远超出现今机器可达的领域,要想让机器触及这些领域,还需要一段漫长的时间。对于解决抽象问题、概念生成、情绪知识、创造力甚至是自我认知,即便是最强有力的深度学习算法,也无法在这些领域与人类智慧相提并论。
把所有这些认知能力融合到一台机器中,从而能够应对所有通用场景的人工智能称为通用人工智能。目前,通用人工智能还停留在理论阶段。
不过,当前的技术在执行特定类型任务方面取得了较大成功,这些任务过去都依赖于人类智力。我们称这类人工智能为狭义人工智能或弱人工智能。弱人工智能主要指三种能力:学习、感知和认知。
作者:大卫·卡尔莫纳(DavidCarmona)
来源:大数据DT(ID:hzdashuju)
▲AI能力备忘单
上图概述了本文介绍的AI的核心能力。
谈到AI的时候,客户们不停地在问:“这事儿成了吗?”在一个AI被过度炒作的世界,确实很难分清AI是幻想还是现实,是实际能力还是营销表演。
所有这些能力在今天都是真实存在的。今天的AI是真实的,成千上万的公司正在使用AI进行业务转型。关注AI未来的可能性固然重要,但是你更需要了解现在的AI能做些什么。
01学习
▲学习——无显式编程的学习
机器学习的首要特征就是随时间学习的能力,并且不需要明确编程。和人类一样,机器学习算法通过探索与实践学习,而不是遵循一步步的指令(当然我知道有些读者是小孩子的父母,有时候你们可不希望孩子们这样)。
机器学习算法是按照学习方式分类的。当下最流行的、你的企业90%的时间可能都会采用的技术就是有监督学习。
有监督学习使用包含输入和期望输出的数据集。通过迭代优化,学习算法可以找到一个函数,对输入如何转化为输出进行建模。这个模型会被应用于训练集外的新的输入,并预测对应的输出。
找到正确的算法和参数,部分靠科学,部分靠创造力和直觉。如何将机器学习应用于这一过程本身就是个研究课题——这种技术称为自动化机器学习(AutoML)。
有监督学习算法都有相同的缺陷:它们需要大量数据。而且不是任何数据都行,它们需要同时包含输入和对应输出的训练数据,也称之为标记数据。
有时我们会有在记录系统或交互系统中存储的已经标记过的历史数据。例如,对于客户流失模型——我们可以查看流失客户的历史数据,加上客户的历史交互一起作为训练数据的输出部分。通过使用正确的算法,我们仅仅通过查看一系列的交互,就能够预测未来的客户流失情况。
然而有时我们不会如此幸运,数据并不会被标记。无监督学习算法会处理一组没有标记的数据并找出其中的结构。聚类算法是无监督学习算法中最流行的一种,它通过不同的技术,在数据中找到共性并对其分组。你可能使用这种算法对你的客户群或网页访问者进行客户细分。
其他常用的无监督学习算法有关联规则(定义数据间的关联,如购买某种特定产品的用户会对其他特定产品感兴趣)和异常检测(找出与主体数据不同的罕见或可疑部分数据)。
在其他情况下,我们完全不使用训练数据。想想人们如何学会玩一款视频游戏。解决这个问题的有监督方法就是观看成千上万的游戏视频并从中学习。这是许多Youtube播主的商业模式,我的孩子们就看这种视频,但我发现这种方式极度枯燥。
一个更有趣的学习方法是实际上手玩这个游戏。在玩的过程中,如果我们做对了(比如得分)就会得到正向强化,如果我们做错了(比如被杀死)就会得到负向强化。强化学习算法就是这么做的:它们通过探索环境并强化正确的行为来学习机器学习的功能。
强化学习由于其不需要数据的特性,成为商业上一种极其有前途的机器学习方式。它特别适合自动化系统——无论是移动的(如车辆、遥控飞机)还是静止的(如空调系统、电力系统)——同时也可以应用于复杂的业务流程。强化学习通常被认为是AI中最困难的学科。
02感知
▲感知——解释周边世界
如果说有某个领域为人类所独有,那就是感知了。数十年来,我们尝试模仿人类的能力去感知周围的世界,却鲜有成功。理解一幅图画或将语音转文字的复杂度使其几乎无法用编程的方式实现——想象一下如何用一步步的指令来定义图片里的一匹马。
机器学习算法更适合解决这类问题。然而,传统机器学习算法在处理感知任务时的准确性与人类能做到的程度相去甚远(我仍然记得在WindowsVista上给开发们演示语音识别功能的情景……这件事教我学会要做个更坚强的人!)。
以图像分类为例。ImageNet是图像分类中最著名的挑战。自2010年起,全球的参与者提交他们的算法来创建最精准的模型。在竞赛初期(即2010年),能达到的较好的误差率约在25%左右。作为比较,同一数据集下人类对应的误差率约为5.1%。
到了2012年,AlexKrizhevsky(一位来自多伦多大学的学生)提交了他的方案:一个包含8层名为AlexNet的神经网络。AlexNet击败了其他竞争对手,达到了15.3%的误差率—比仅次于他的竞争者低了10个点。
在接下来的数年内,他引入的技术被持续改进并增加了更多层数,直到2014年,一个名为GoogLeNet的22层神经网络达到了6.7%的误差率。
次年,一个来自微软研究院的团队提交了使用全新神经网络技术的作品,其神经网络的深度达到了超大的152层,误差率仅为3.57%,首次超过了人类的表现。
深度学习永远地改变了计算机视觉。如今,这项技术实际上已经被用于计算机视觉的所有高精度场景,这使其成为企业中最常见的用例。以下是一些计算机视觉在当今的应用:
为图像的内容分类(影像分类)
识别一幅图像中的多个物体,并识别每个物体的边界(物体检测)
识别图像中的场景或行为(如:工作场所的不安全情形,或零售商店的补货)
检测人脸,识别身份,甚至辨识每张脸的情绪
识别书写文本,包含手写体文本(光学字符识别)
鉴别图像或视频里的攻击性行为
研究员HaroldStolovitch和EricaKeeps在他们的书TellingAin’tTraining(ASTD出版社)中断言,我们获取的信息中,有83%来自视觉,次之是听觉,提供了11%的感觉输入。两者合起来占据了我们从外界获取信息的94%。毫无疑问,音频处理是人工智能关注的另一个较大领域,仅次于计算机视觉。
相似的深度学习技术可以应用到音频信号上,帮助计算机识别声音。你可以利用这项能力区分鸟儿们的歌声,或通过风力涡轮机发出的声音来预测故障。
不过人工智能在音频处理方面最激动人心的还是语音识别。用于语音识别的参照数据集被称为总机,它包含了约260小时的电话交谈录音。测量后人类的转录误差率为5.9%。该误差率在2016年被微软研究院设计的神经网络追平,并于1年后被其以5.1%的误差率击败。有史以来第一次,一台机器可以比人类自身更好地理解人类。
这些突破不但让机器更懂我们,而且使得机器可以用自然的方式与我们沟通。2018年,Azure上线了基于深度学习开发的文字转语音服务,该服务能够合成出与真人无异的人声。
这些能力的结合将实现计算机科学的法宝:全自然用户接口(NUI)。机器既可以看见和理解人类,又可以用自然语言与人类交流,这看起来就像是我们已经实现了科幻电影的幻想一样。不过,我们真的做到了吗?要与计算机进行真正有意义的交流,计算机不但要能转录我们说的话,还要能理解话里的意思。
自然语言处理(NLP)是人工智能中从人类语言中分析、理解并提取含义的领域。NLP最常见的场景之一就是语言理解,语言理解是现代会话型人工智能体验(比如数字助理)的基础。
当你向Siri、Alexa或Cortana询问天气时,系统首先将你的会话音频转换成文字,然后通过自然语言理解模型抽取出你的意图,然后将意图(如“获取天气”)映射到对应输出(在这个例子中,就是提供当地的天气信息)。
NLP技术在过去几年中飞速发展。有些只能处理简单任务,比如情绪分析、关键字抽取或个体识别,有些则可以处理更复杂的任务,如文本归纳或翻译。2018年,微软的机器翻译团队首次在自动翻译方面达到人类水平——这是个极度复杂的任务,曾一度被认为是不可能实现的。
自然语言理解最激动人心的应用之一便是机器阅读理解。2018年1月,来自微软亚洲研究院的团队使用斯坦福问答数据集(SQuAD)达到了人类的水平,该数据集由针对一组维基百科文章的问题所组成。实际上,有关这些文章的开放性问题,系统能够给出比人类更好的答案。许多公司为之做出了贡献,帮助它走得更远。
尽管如此,这些系统仍然无法达到人类的抽象层次。在其核心,问答算法会搜索文本来寻找可以指向正确答案的线索。对于每个问题,系统都要搜索整个文本来匹配。人类也这么做(特别是当我们很匆忙时),但是当我们真正想理解一段文字时,我们会从中抽取知识,进行概括,并使其更易于理解。
想象一段描述加利福尼亚的文字。人类会从这段文字中归纳出“加利福尼亚”这个实体并给它赋予属性(如人口、面积),甚至与其他实体的关系(如邻州、地方长官)。归纳后,我们不再需要那段文字来回答关于加利福尼亚的问题。我们已经概括了有关的知识。
人工智能中与此过程对应的是知识抽取,其对企业有着深远的意义。通过使用这些技术,我们可以从混沌、无序,甚至令人困惑的信息中抽取高阶概念。结果知识图不但能用于回答关于整个数据产业的宽泛问题,还能浏览和理解这些信息。
这种水平的抽象远远超出了传统NLP的能力范围,使其更接近我们所说的认知。
03认知
▲认知——基于数据进行推理
严格来说,认知是获取和处理知识的能力。它包含人脑用于推理、理解、解决问题、计划和决策的高层次概念。
我们目前探索的技术包含了一定程度的认知,虽然有时不那么明显。以图像分类为例,如果我们仔细审视用于图像分类的深度神经网络,实际上就可以看出神经网络是如何在每一层将问题分解成更小的步骤的。
没有人工干预,神经网络自动展示了某种程度的概括:第一层检测简单的特性,如边缘或纹理。往更深层走,每一层都能够抽取更复杂的属性,如图案或元素。某种意义上,神经网络已经可以获取一些知识并使用这些知识做一些基础推理。
自然语言处理展示了类似的内在抽象。在其核心,大部分现代的NLP技术都使用了被称为词嵌入的技术。通过词嵌入技术,文本中的每个词都转换为一个代表单词含义的向量。在这个新的空间,语义相似的词(如“天气”和“预报”)彼此接近。
通过这种方式,系统会将“今天天气如何?”和“获取未来24小时的预报”匹配为相同的意图。即使词不同,它们的含义却是相似的,因为它们的语义相近。翻译也是相同的工作原理:翻译技术使用词嵌入来抽象输入的文本,将其转换为与语言无关的“想法”,再用反向流程将其翻译为任意一种语言。
在这些例子中,认知是感知的内在。然而,许多人工智能场景是单纯的认知。它们不专注于感知周围的世界,而是专注于抽象这个世界并基于抽象进行推理。一些最基础的有监督学习方法便是如此。回归分析是根据现有信息预测数值的能力,例如基于房屋的特征和位置评估其价值,或根据历史数据预估其销售额。
分类是根据物品自身特征对其分级或分类的能力,例如,判断一栋房屋是不是会被出售给某个特定的买家。优化算法则是基于流程进行推论,从而最大化某个特定的结果,比如在医院里分配资源。
推荐系统仅通过评分或购买习惯就能够找出电影、书籍或歌曲等物品间不为人知的共性。其他技术,如前所述,如聚类分析能找出数据中的模式,并以无监督方式对物品归类。
我们在强化学习技术中也能看到认知能力。2017年,蒙特利尔微软研究院(前马鲁巴岛)跨越了100万分大关,创造了吃豆人游戏的新纪录。该系统通过玩成千上万把游戏来实现自我训练。
同样地,在2018年,OpenAIFive(一个由五个神经网络组成的团队)在Dota2游戏中打败了人类队伍。OpenAIFive通过自我对战进行训练,每天的训练量相当于180年游戏时长。
最著名的例子应该是由GoogleDeepMind取得的成就:其系统AlphaGo第一次击败了一位9段围棋专业选手。相对于其他游戏(如象棋),围棋被认为是对电脑来说更为困难的游戏。
深入观察所有AI系统参与的游戏,你会觉得它们展现出了认知的另外一种特征——计划。系统能够提前“思考”最佳的方式来获得长期看来最大化的分数。
关于作者:大卫·卡尔莫纳(DavidCarmona)负责领导微软AI的整体市场,并负责公司和开发者层面的AI产品、服务及创新的整体战略,在技术行业拥有20多年的经验。他在15年前加入微软,在国际上和雷德蒙德(微软总部)担任过各种技术和商业领导职务。
本文摘编自《AI重新定义企业—从微软等真实案例中学习》,经出版方授权发布。
延伸阅读《AI重新定义企业》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:基于真实案例,带你了解AI核心概念,探寻适合你的企业的AI用例,同时指导如何在组织和文化层面进行业务转型。
划重点????
干货直达????
5G时代不可或缺的关键技术:详解边缘计算参考架构3.0
6个关键步骤,手把手教你构建图模型
手把手教你用ECharts画折线图
什么是数字孪生?有哪些关键能力?
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????
人工智能时代的工作变化、能力需求与培养
摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。
关键词:人工智能;工作定位;能力需求;能力培养
基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。
当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。
一、人工智能时代的工作变化
人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。
现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。
(一)工作变化的特征
人工智能时代工作变化的特征体现在以下三方面。
1.程序化工作被人工智能取代
所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。
2.一部分非程序化工作被人工智能取代
相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。
3.工作向高度智慧化转移
装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。
(二)人机关系与工作定位
在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。
表12018年、2022年人与设备的工作时间占比值单位:%
资料来源:作者根据世界经济论坛《职业前景报告2018》整理。
在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。
二、人工智能时代的能力需求
随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。
(一)能力的两个方面
理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。
在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。
(二)能力需求变化与预测
技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。
以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。
表22018年、2022年关键能力需求
资料来源:世界经济论坛《职业前景报告2018》。
以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。
世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。
巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。
表32030年美国、英国各职业中最重要的15项能力
资料来源:作者根据Bakhshi等(2017)整理。
2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。
表42017年、2035年最需要的前10项重要能力
资料来源:作者根据西村崇(2017)整理。
(三)符合时代要求的能力要件
综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。
1.人工智能知识
正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。
2.社会交流能力
在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。
3.创造性思维能力
人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。
4.环境应变能力
环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。
以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。
三、人工智能时代的劳动者能力培养
为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。
(一)突出个性化培养理念
在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。
(二)构建人工智能素养教育体系
把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。
(三)实施问题导向及跨学科合作探讨的学习方式
创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。
现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。
(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力
现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。
目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。
参考文献
[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.
[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.
[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.
[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.
[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.
[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.
[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.
[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.
[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.
[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.
[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.
[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.
[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.
[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.
[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.
[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.
[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.
[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.
[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.
[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.
[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.
[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.
[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.
[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.
[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.
[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.
[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.
刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.
搞AI(人工智能)都要掌握哪些知识
大家好,我是YESLABAI的产品总监,大家可以叫我小产。
那个啥,YESLAB的华为AI课程HCNA快开班了,很多后续的AI课程也会很快陆续和大家见面。面对铺天盖地的咨询,我认为自己很有必要解答一下大家经常提出的疑问。
话说,在过去几个月,售小姐姐们最常被问到的问题是,学AI都要掌握哪些知识呢?今天我就回答一下大家的这个问题。
如果上网查查,你会发现各方牛人们都在说,入门级的AI玩家需要至少拥有:
•包括高等数学、线性代数、概率论与数理统计在内的大学数学知识;
•使用一种到多种编程语言的能力,如Python、C++、Java;
•比较熟练的英语阅读能力,用于阅读论文;
•相当的人工神经网络知识;
•……
等会儿啊,我还没说完,你们怎么都走了……
别着急啊,上面只是间接引语,我还没说我的看法呢。上述技能确实是从业AI领域所需的几大技能,但是这并不表示所有人都必须熟练掌握所有的技能。所以,一听学AI就觉得高不可攀的朋友,真的不用过于担心这个问题。
下面,我来逐项地和大家分析一下,上述技能是不是学习AI必须掌握的知识和技能;如果不是必备技能,那么掌握它们有哪些好处,不具备又会遇到哪些问题。
一、大学数学基础
很多朋友兴致勃勃地准备从事AI,但是一听到学习AI需要掌握大学数学基础知识,立刻感觉自己受到了10000点伤害,其实没有必要啊。
首先,大家在大学里面学习数学课程的侧重点是逻辑推论和举一反三。上课的时候,老师疯狂点击PPT演示推导过程和求解例题,大家则在下面兴致勃勃地……刷微信。
不过,在AI项目中学习这些数学课程,侧重点则是各类数学模型在AI中要如何使用,或者说如何在应用场合中套用这些数学模型。反而是平时数学上大家最头疼的那些推论啊、题海战术啊,在AI学习过程中可以暂时忽略掉。
不怕大家不信,熟悉数学模型的应用虽然特别简单,但有的时候还能反哺到推论的学习。所以,学不会大学数学课程的朋友,说不定反而能在我们的AI课程上找到突破,实现借道超车呢。
总而言之,即使是那些大学数学课基本都用来刷朋友圈的学渣同学,你们也可以应付AI课程的学习。打个比方,如果大学数学课程是教大家研发汽车,我们AI课程中的数学部分就是教大家学开车。
那么,如果我不想去掌握这些数学知识,可以学习AI吗?
可以,其实AI从业者中,拥有强大数学背景、数学知识足以支持一切AI应用场合的人依然是少数。只是,数学基础的缺陷,容易导致大家在从业中遇到一些障碍。那时,大家就需要按照查字典的方式,有针对性地去补充项目中用到的那个数学知识点了。另外,完全不掌握这些数学知识,学习人工神经网络的过程可能会痛苦一些。
二、编程语言
完全不会编程的人可以从事AI吗?
其实可以,不会写代码的AI从业者数量并不少。在AI领域,有一些拥有丰富从业经验的人喜欢大量钻研前沿的科技论文,然后构想怎么把这些最新科技动向投向产业。这类人群往往并不写代码,他们也不会写代码,但他们对于前言科技发展的眼光是敏锐而独到的。怎么说呢?程序猿的工作是满足AI的应用需求,这种人的工作是提出AI的应用需求,也就是充当PM。
所以,编程语言只是AI的实现工具,把编程语言培训美化成AI培训只是培训机构的宣传策略。YESLAB也一直强调,不讲人工神经网络的AI培训都是耍流氓。
不过在这里,小产还是得把丑话说在前面,拥有大量论文积累但不会写代码的人大量存在,并不代表大家应该这样规划自己的职业发展路径。对于新入行的朋友,把广泛阅读科技论文当成绕过学习编程语言的近路,有可能会在入行时遇到求职问题,因为一家企业很难相信一个没有写代码能力、也没有从业经验的新人在AI前沿科技方面能够拥有独到的眼光。
要不然,YESLABPython课程了解一下?
三、阅读论文
阅读科技论文的重要性,小产在前面刚刚介绍过了。那么,对英语阅读能力没有信心,或者不想在论文库里皓首穷经的人可以从事AI吗?
可以,只不过这样一来,大家的职业发展就会遇到瓶颈,或者说会固定在长期从事一线工作的状态。当然,长期从事一线工作也没有什么不好,只是如果大家关注大企业的AI人才需求,一定会发现它们都是十分青睐于那种同时拥有编写代码能力,和积累了大量前沿论文的人才。
那么,很多朋友可能想问,阅读科技论文对英语的要求是什么水平呢?
这么说吧,如果大家雅思阅读考到8.5以上,或者托福阅读考到28……
回来回来,我是说,如果大家四级都考不过,那也不要紧……
英语和数学确实是很多人的老大难,销售小姐姐们也确实反映很多朋友在咨询时都提出了论文阅读的问题。其实,英文水平的提升和论文阅读量的积累都是一个循序渐进的过程,可以提高大家职业发展的上限,但是并不会影响大家进入AI这个行业。
当然,小产注意到大多数负责任的AI培训机构为了消除这个门槛,都在课程中插入了一些论文带读的分享课。YESLABAI公会也决定在例行活动中,适时地选取一些在业内公认很有价值的经典科技论文,和一些比较有潜力的前沿科技论文来为大家进行带读,帮助大家彻底消除英语阅读障碍对诸位了解AI领域前沿科技动态造成的影响。
英文的事情,AI公会可以搞定,近期优惠呦。
四、人工神经网络
如果大学的专业与人工智能不相关,那么人工神经网络可能是大家在大学期间完全没有接触到的一个领域。于是,也有很多人问,不懂人工神经网络可以从事AI吗?
答案是可以,但是不推荐。说的直观一点吧,完全不懂人工神经网络从事AI,就像你在肯德基点了一份老北京鸡肉卷,然后告诉KFC的小姐姐不要加鸡肉。
确实,有很多根本不懂人工神经网络的人也在从事AI行业。在个别知名企业的认证培训体系中,也弱化了人工神经网络知识所占的比重。这是因为这些跨国企业的认证培训体系是服务于推广自身产品的,人工神经网络作为它们产品的核心技术架构,已经集成在了产品内部,受训者未来在工作中扮演的角色只是在它们产品的平台上用编程语言调试它们。
这种简化人工神经网络知识在培训体系中所占比重的做法,对于厂商的好处是明显的,毕竟有能力承担人工神经网络教学的人在行业中凤毛麟角,而培训师资人数受限则会限制产品推广的效果。学习这种课程的人只要拥有编程基础就可以比较快地上手,但却会在开源的时代背上比较浓重的厂商背景,压缩了职业发展的空间。当然,大多数厂商的认证培训体系,包括华为推出的HCNA认证中,还是会包含对人工神经网络的介绍。
其实,人工神经网络并不是太高深的技术。它说白了就是始于大脑仿生学的一种逻辑图,如果其中不包含数学函数,看上去比计算机网络的拓扑图都要容易很多。大家完全不需要特别担心这部分内容学不会啊。
总之,相比于担任网络工程师,从事AI技术人员的门槛确实提高了。根据入门同学大学各类基础课程的掌握水平不同,我认为门槛大概提高了10%-30%。但门槛的提高客观上增加了这个行业从业者的含金量,让从业者仅凭一段短时间内的集中投入,就可以拥有一份薪酬更加可观的体面工作。所以,有句话怎么说的来着?一件事的对与错,取决于你看待它的角度。
最后,相信大家也看明白了。这篇文章通篇就是向大家传达一个理念:学AI不怕起点低,AI从业者也不都是全才。
不过,凡事都得有个度。前一阵,一位销售小姐姐问我,有个咨询的大哥哥问她,不会数学,不懂人工神经网络,不想学编程,也不打算读论文,能不能直接搞AI?
(THEEND)
www.yeslab.net