博舍

【人工智能学习心得 人工智能课程总结报告1000字内容怎么写

【人工智能学习心得

2023-06-10人工智能心得体会400字

人工智能学习心得今天是我学习人工智能的第一堂课也是我上大学以来第一次接触人工智能这门课通过老师的讲解我对人工智能有了一些简单的感性认识我知道了人工智能从诞生发展到今天经历一个漫长的过程许多人为此做出了不懈的努力...

2023-06-10人工智能学习心得3300字

人工智能学习心得对人工智能的理解通过这学期的学习我对人工智能有了一定的感性认识个人觉得人工智能是一门极富挑战性的科学从事这项工作的人必须懂得计算机知识心理学和哲学人工智能是包括十分广泛的科学它由不同的领域组成如...

2023-06-10对人工智能学习的感想3800字

学校苏州科技学院学院电子信息工程班级电科0812班姓名钟建峰学号0820xx8224谈谈人工智能的学习感想人工智能ArtificialIntelligence英文缩写为AI它是研究开发用于模拟延伸和扩展人的智能...

2023-06-10《人工智能》学习报告3500字

深圳大学硕士研究生课程作业人工智能人工智能学习报告深圳大学机电与控制工程学院彭建柳学号09430102101引言人工智能ArtificialIntelligenceAI曾经有一部电影著名导演斯蒂文斯皮尔伯格的科...

2023-06-10计算智能学习心得体会3700字

计算智能学习心得体会本学期我们水利水电专业开了计算智能概论这门课有我们学院的金菊良教授给我们授课据说这门课相当难理解我们课下做了充分的准备借了计算智能和人工智能相关方面的书籍并提前了解了一点相关知识我感觉看着有...

人工智能课程设计报告

人工智能课程设计报告1.引言

随着我国经济快速发展,城市人口急剧增加,带来了一系列的社会问题。交通拥堵,环境遭到破坏,公共交通的快速发展可以有效解决人们出行和交通拥堵的问题。自行车具有机动灵活、低碳环保的优点,若自行车可以取代现在的机动车,那么道路就不会那么拥挤,人们的出行效率就会大大提升,汽车废气的排放量也将大大的减少,环境的质量也会提升。同时,为了完美的解决从地铁站到公司、从公交站到家的“最后一公里”路程,共享单车应运而生.共享单车有效的解决了“走路累,公交挤,开车堵,打车贵”的苦恼。一夜之间,北上广深、甚至部分二线城市,共享单车大街小巷随处可见。继2016年9月26日ofo单车宣布获得滴滴快车数千万美元的战略投资,双方将在共享单车领域展开深度合作之后,摩拜单车也于2017年1月完成D轮2.15亿美元(约合人民币15亿元)的融资,国内共享单车更加火爆,最近一张手机截屏蹿红网络。在这张截图上,24个共享单车应用的图标霸满了整个手机屏幕,真的是“一图说明共享单车的激烈竞争”。而在街头,仿佛一夜之间,共享单车已经到了“泛滥”的地步,各大城市路边排满各种颜色的共享单车。共享经济的不断发展逐渐的改变着人们的日常生活,共享精神也逐渐深入人心。1.1任务要求要求运用人工智能相关理论和方法设计计算机系统解决实际问题。2.详细设计2.1设计步骤1.共享单车骑行数据的获取运用python库(BeautifulSoup,requests,scrapy)对优易数据网站(http://www.youedata.com/)Kaggle和进行爬取共享单车的骑行数据。将爬取的数据写入csv文件中:分析数据集:数据集来源于加利福尼亚大学欧文分校(UCI)大学的公开数据集:https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset,本次数据集的信息参考该网站。共享单车数据集包含有两个文件,一个是按天来统计的共享单车使用量数据,另一个是按照小时数来统计的使用量。共享单车数据集是在2011年至2012年间收集的,此处的共享单车是采用固定桩形式的单车,类似于中国的永安行,并不是我们目前所看到的满大街的小黄车,摩拜之类。本数据集总共有17389个样本,每个样本有16列,其中,前两列是样本序号和日期,最后三列数据是不同类型的输出结果。

2.导入并理解数据

首先导入并读取查看训练数据和测试数据:

测试数据共7列,10886行,且所以数据完整,没有缺失。然后需要我们通过模型来进行预测。导包:3.数据处理与分析在数据处理过程中,最好将训练数据与测试数据合并在一起进行处理,方便特征的转换。通过查看数据,确保测试数据均无缺失,或不一致。特别是在,日期时间特征由年、月、日和具体小时组成。可以根据日期计算其星期,然后就可以将日期时间拆分成年、月、日和星期5个特点。分析按天来统计的共享单车使用量数据集:4.数据分析规范数据后,快速查看各影响因素的结果:从相关系数,不同月份、季节对骑行人数的影响。未来更加值观地展现所有特征之间的影响,通过绘制柱状图来实现。接下来,深入分析各特征的影响规律,对每个特征进行可视化:由随机森林模型预测分析:结果说明:Instant记录号Dteday:日期Season:季节(1=春天、2=夏天、3=秋天、4=冬天)yr:年份,(0:2011,1:2012)mnth:月份(1to12)hr:小时(0to23)(在hour.csv有)holiday:是否是节假日weekday:星期中的哪天,取值为0~6workingday:是否工作日1=工作日(是否为工作日,1为工作日,0为周末或节假日weathersit:天气(1:晴天,多云;2:雾天,阴天;3:小雪,小雨;4:大雨,大雪,大雾)temp:气温摄氏度atemp:体感温度hum:湿度windspeed:风速casual:非注册用户个数registered:注册用户个数cnt:给定日期(天)时间(每小时)总租车人数,响应变量y(cnt=casual+registered)1.输出结果可以看出,这个数据集中没有缺失值,且每一列的数据特征都一致的,不需要进行额外的修改2.数据集中的season等7列是int64类型,意味着这些数据需要重新转换为独热编码格式,season中的1=spring,2=summer,3=autumn,4=winter,需改成独热编码形成的稀疏矩阵。构建随机森林回归模型:直接使用随机森林回归模型直接拟合

绘制不同特征的相对重要性直方图:3.关键技术1.导包操作:科学计算包nnumpy,pandas。可视化工具matplotlib,seabornMatplotlib是一个python的2d绘图库,我们可以通过这个库将数据绘制成各种2D图形(直方图、散点图,条形图等)。2.我们做数据可视化,其实就是对数据进行分析,pandas是一个非常强大的数据分析工具包。通常使用pandas进行下列图形的快速绘图:1.‘line’2.‘bar’forbarplots3.‘box’forboxplot4.‘area’forareaplots5.‘scatter’forscatterplots3.NumPy(NumericalPython)是目前Python数值计算中最为重要的基础包,主要包含以下内容:·高效多维数组ndarray,提供了基于数组的便捷算数操作以及灵活的广播功能;·对所有数据进行快速的矩阵计算,而无需编写循环程序;·对硬盘中数组数据进行读写的工具,并对内存映射文件进行操作;·线性代数、随机数生成以及傅里叶变换功能;·用于连接NumPy到C、C++和FORTRAN语言类库的C语言API。4.Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。5.在Python中,有很多数据可视化途径。Matplotlib非常强大,也很复杂,不易于学习。Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。

4.运行结果4.1运行环境硬件配置:Cpu主频2.80GHz,8GB内存软件配置:Windows操作系统(x86),python3.6,pycharm4.2运行结果打印初始数据集:直接使用随机森林回归模型结果:不同特征的相对重要性直方图:

数据可视化分析

一周内骑行时间分析

不同月份骑行人数可视化分析4.3实验结果分析

1.在没有对数据集进行任何处理的情况下,采取了默认的随机森林回归模型得到的模型在测试集上的MSE很大,解释方差分和R2都是0.93,表明模拟还可以。2.从相对重要性图中可以看出,温度对共享单车的使用有较大的影响性,从正常生活中可以理解,冬天太冷或夏天太热,骑行共享单车的人数就会显著减少。所获取的数据集是2011和2012年的,如果要得到更加可信的结果,还需要更多年份的数据。

1.可以从图表中看出秋季和冬季的骑行人数较多,可能是气候的原因,太热人们不愿意骑车出行2.早上上班和晚上下班高峰期,骑行人数有明显的增加,反观工作时间,骑车的人数较少,上下班时段为使用共享单车的高峰。3.非工作日中人们出行可能会更多使用汽车或其他公共交通出行,工作日中使用共享单车较多,周末时可能数量会相对减少。

1.在夏季5,6,7,8月份是全年的共享单车使用最多的时候,相比12月与1月是全年用车低峰,冬季户外太冷,共享单车使用急剧下降。5.心得和结论5.1结论和体会本次人工智能课程设计完成了对共享单车数据的分析和数据可视化,从中更加直观的反映不同月份,不同时间共享单车的使用情况,以及使用随机森林回归模型反应影响共享单车使用的因子的重要性。设计中通过直方图,曲线图等图表简练地反映了共享单车的使用情况。但由于数据集采用的年份较少,不能得到一个更加可信的参考结果,因此还需要更多年份的数据。影响共享单车使用还有地域等等客观因素,这些还没考虑周全,希望以后能完善对其的研究。设计中遇到的问题:1)normalize是标准化,另外你这里分别对训练和测试数据标准化是有问题的。分别处理会导致数据分布变得不一样。2)数据特征工程做的少,类别型特征没有处理。3)模型跑出来之后,完全没有结果的解析主要参考文献[1]加利福尼亚大学欧文分校(UCI)大学的公开数据集https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset,访问日期:2019年12月.[2]优易数据网站http://www.youedata.com/,访问时间:2019年12月[3]Python机器学习经典实例,PrateekJoshi著,陶俊杰,陈小莉译[4]《ProbabilisticGraphicalModels-PrinciplesandTechniques》Koller著[5]《IntroductiontoMathematicalStatistics》第六版,Hogg著[6]TwoFacesofActiveLearning50,Dasgupta,2011[7]ActiveLearningLiteratureSurvey8,Settles,2010[8]ASurveyofOnlineFailurePredictionMethods2,Salfner,2010[9]《统计学习方法》作者李航[10]《机器学习及其应用》周志华、杨强主编。[11]《数学之美》,作者吴军[12]《PatternClassification》(《模式分类》第二版)作者RichardO.Duda[5]、PeterE.Hart、David。

人工智能课程心得

        我第一次听说人工智能这个词源自初中的时候AlphaGo与李世石的围棋比赛,印象中的AlphaGo以大比分的优势击败了李世石,后来经过了解知道了在2016年比赛时的李世石是近十年来获得世界冠军最多的棋手。从表面上来看,李世石当时是和一台机器下棋,实际上也是与历史上所有的围棋高手下棋。在2017年AlphaGo再次挑战我国棋手柯洁,以3:0击败了柯洁,此时是AlphaGo2.0。在1.0时代并不是真正的人工智能,只是基于大数据是一些查询的检索,在他的棋路够熟,反应够快的前提下,是有机会能赢得。AlphaGo2.0就完全不同,它像人一样有学习能力和思考能力,能够通过一些基本规则,通过不断的学习,得到异于人类的能力。能够像人类一样去学习,思考和行动,才叫真正的人工智能。通过强大的算力和先进的算法,人工智能可以在短时间完成人类在几千年都不能完成的事情,所以,运用好人工智能,就可以让人类社会产生巨大的进步,这种进步在以前是无法想象的。

        通过一个学期的人工智能课程的学习,自己也只是浅浅的入门了,了解了人工智能这门学科的应用,一些知识的表示方法,真正人工智能的核心部分我还没有完全的接触到,一个是这门课程的安排仅仅靠这些课时学懂一人工智能这门学科显然是不可能的,另一方面自己在这方面花费的时间精力去深入了解也是完全不够的。

        人工智能是一门十分有发展前景的同时对我来说具有挑战性的科学,想要学好这门课程必须要懂得计算机知识以及基本的算法认识。人工智能研究的主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。虽然这个课程中上机题并不完全是自己独立完成的,在网上找到了一些代码,学习这些算法的每一个代码块的意义从而有了一定的理解和认识。可以说是反向学习的过程,从已有的代码学习其用法,再到对宽度优先搜索以及遗传算法有了自己的认识。即使网上相关的代码十分的多,但是在学习代码的过程中我也有自己的调试以及修改,使其更符合上机的要求。经过反复的调试,在期间不断的思考以及理解,才对一开始对上机要求中的文字的陌生到代码实现后对算法有了更加清晰的思路。

        十四五”规划建议列举出的几大前沿科技中,人工智能位列第一,预示着其未来的良好发展前景。图灵提出“机器可以具有智能”的观点受到了各种批判,其中有关“机器能否具有意识”的观点引起了学界讨论,塞尔通过“中文屋”思想实验与图灵测试进行类比,指出机器没有智能的原因在于缺少产生意向性的生物基础。计算机将会向网络化,智能化,并行化方向发展,人工智能的总趋势,通过理论联系实际,与其他学科交叉,逐步走向应用,在应用中体现人工智能的理念。

        在机器学习这一章节的学习中,我了解过基于人工智能与医学影像方面的交叉应用,科技从人民中来,又回到人民中去,个人觉得十分有意义并且有发展前景。二十一世纪的信息技术领域将会以智能信息处理为中心,基于人工智能在医学影像方面[1]突破了传统方法的技术壁垒,是近些年发展最快的领域之一。医学影像+AI目前已应用于临床,在病灶识别和诊断、疗效评估等方面辅助医师做出了出色的成果,大大提高了医师的诊断效率。本文对医学影像+AI的发展历程,现状和未来可能的发展方向进行综述,辅助相关人员进一步了解该领域。医学影像作为临床和科研的一种可视化手段,在医疗健康领域发挥着极为重要的作用。人工智能技术的发展有可能从根本上改变医学实践的方式,将会在很大程度上推动个性化医疗和精准医疗的发展。

【人工智能调查报告】人工智能调查报告精选八篇

人工智能研究报告

成员:XXX

基本信息

概念

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone(称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

原理

设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?

问题

蚂蚁究竟是怎么找到食物的呢?在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。

…………余下全文

人工智能心得总结

【www.myplaymate.cn--个人总结】

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。下面是我的公文网为大家整理的人工智能心得总结,供大家参考选择。人工智能心得总结

今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

人工智能心得总结

今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。

人工智能心得总结

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay-ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

对人工智能对世界的影响的感受及未来畅想

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生

在当前社会中的呢?

在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

人工智能研究的近期目标;是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的智能系统。例如目前研究开发的专家系统,机器翻译系统、模式识别系统、机器学习系统、机器人等。随着社会的发展,技术的进步,人工智能的发展是任何人都无法想象的。通过对人工智能的学习,以及与所听所见所闻的结合,我大胆的对未来人工智能的发展做出了以下拙劣的猜想:

一,融合阶段(2014—2014年):

1、在某些城市,立法机关将主要采用人工智能专家系统来制定新的法律。

2、人们可以用语言来操纵和控制智能化计算机、互联网、收音机、电视机和移动电话,远程医疗和远程保健等远程服务变得更为完善。

3、智能化计算机和互联网在教育中扮演了重要角色,远程教育十分普及。

4、随着信息技术、生物技术和纳米技术的发展,人工智能科学逐渐完善。

5、许多植入了芯片的人体组成了人体通信网络(以后甚至可以不用植入任何芯片)。比如,将微型超级计算机植入人脑,人们就可通过植入的芯片直接进行通信。

6、抗病毒程序可以防止各种非自然因素引发灾难。

7、随着人工智能的加速发展,新制定的法律不仅可以用来更好地保护人类健康,而且能大幅度提高全社会的文明水准。比如,法律可以保护人们免受电磁烟雾的侵害,可以规范家用机器人的使用,可以更加有效地保护数据,可以禁止计算机合成技术在一些文化和艺术方面的应用(比如禁止合成电视名人),可以禁止编写具有自我保护意识的计算机程序。

三、自我发展阶段(2014—2014年):

1、智能化计算机和互联网既能自我修复,也能自行进行科学研究,还能自己生产产品。

2、一些新型材料的出现,促使智能化向更高层次发展。

3、用可植入芯片实现人类、计算机和鲸目动物之间的直接通信,在以后的发展中甚至不用植入芯片也可实现此项功能。

4、制定“机器人法”等新的法律来约束机器人的行为,使人们不受机器人的侵害。

5、高水准的智能化技术可以使火星表面环境适合人类居住和发展。

四、升华阶段(2014—2014年):

1、信息化的世界进一步发展成全息模式的世界。

2、人工智能系统可从环境中采集全息信息,身处某地的人们可以更容易地了解和知晓其他地方的情况。

3、人们对一些目前无法解释的自然现象会有更清楚的认识和更完善的解释,并将这些全新的知识应用在医疗、保健和安全等领域。

4、人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。人工智能一但拥有长足的进步,必将带动其他计算机技术的发展。网络化将虚拟的世界变得无限大,届时,足不出户将成为一种习惯。人工智能必将带动人类的发展,起到决定性作用。

虽然不知道其中有多少在未来会得到实现,但也算是我通过对人工智能的学习所收获的总结。人工智能的繁荣景象和光明前景已展示出其诱人的魅力,让我们一起期待未来的世界吧,一个全新的人工智能世界。

本文来源:https://www.myplaymate.cn/gongzuozongjie/40920.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇