人工智能需要学哪些课程
人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部研究设立人工智能专业,进一步完善中国高校人工智能学科体系…
人工智能需要学习的基础课程首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;
然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
人工智能专业的主要领域是:机器学习人工智能导论(搜索法等)图像识别生物演化论自然语言处理语义网博弈论等。需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(最好有数据结构基础)。
自学人工智能需要学的专业知识人工智能是一个综合学科,如楼上所说。而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。
大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++MATLAB应该多学习点。对于你想买什么书学习。我只能对我看过的书给你介绍一下,你再自己酌量一下。
人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了~第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。
机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。
机器人方面:新版《机器人技术手册》日译的书,可能是我当初在网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。
人工智能专业发展历史2018年4月3日,中国高校人工智能人才国际培养计划启动仪式在北京大学举行。教育部将进一步完善中国高校人工智能学科体系,在研究设立人工智能专业,推动人工智能一级学科建设。教育部在研究制定《高等学校引领人工智能创新行动计划》,通过科教融合、学科交叉、进一步提升高校人工智能科技创新能力和人才培养能力。
2018年4月8日,西安交通大学人工智能拔尖人才培养试验班宣告成立,将于2018年面向全国招生。每年计划招生40人左右,高考招生选拔15人左右,校内新生选拔15人左右,少年班再选拔10人左右。
《人工智能导论》教学大纲(含课程思政内容)
05
教学内容和课时安排(含课程思政内容)
(一)课程学时分配
(二)课程思政参考内容
(三)课程教学内容与重点难点
第1章人工智能导引
教学目的:了解人工智能的概念、学习人工智能的目的和意义、应用;了解人工智能的分支。
教学内容:人工智能的概念、应用场合;人工智能的分支。
重点难点:重点是了解人工智能的分支,难点是人工智能各个分支之间的关系。
第2章Python基础知识
教学目的:了解Python在不同环境下的安装;熟练使用python的基本编程,包括各种数据结构;掌握第三方模块的安装和使用,文件的读写;掌握NumPy包的熟练使用;掌握Python的绘图基础。
教学内容:编程基础(列表、元组及字典、基本语句;函数);模块的安装与使用;文件的读写;NumPy的使用;Python的绘图基础。
重点难点:重点是使用Python进行相关的编程,如NumPy的编程,绘图基础等。难点是使用NumPy进行较为复杂的开发与绘图。
第3章机器学习初步
教学目的:了解机器学习的概念、其与人工智能的关系、机器学习的分类;了解数据预处理与特征工程,包括数据清洗、数据变化、过滤、特征工程;熟练使用Sklearn包;熟练使用回归分析。掌握聚类的基本原理与常见的聚类算法。
教学内容:机器学习及其工作流程;机器学习的分类;数据预处理与特征工程;Sklearn库的使用;逻辑回归分类和线性回归预测;聚类的原理与K-Means聚类算法。
重点难点:重点是机器学习的流程与Sklearn的实践。难点是聚类算法及其调优。
第4章自然语言处理
教学目的:了解自然语言处理的概念;掌握文本分词与词汇还原的方法;掌握文本分块与词袋模型;熟练使用TF-IDF算法,并据此构建文档类别预测器。
教学内容:自然语言处理的概念;文本分词与词汇还原;文本分块与词袋模型;文档类别预测;语义分析器;主题模型。
重点难点:重点是文本分词及其文档类别判断的方法。难点是语义分析器的理解与实现。
教学目的:了解处理语音信号的方式,可视化处理的过程;掌握处理语音信号的的相关技术;能够独立建立一个英文的语音识别系统。
教学内容:处理语音信号;可视化音频信号;音频信号从时域转换到频域;生成音频信号的方法;提取语音特征;构建语音识别系统。
重点难点:重点是语音特征的提取策略和方法;难点是构建语音识别系统,尤其是适当结合深度学习机制进行语音信号的识别。
第6章计算机视觉
教学目的:了解什么是计算机视觉,掌握安装流行的计算机视觉库—OpenCV。了解利用帧间差分法检测视频中的移动部分。掌握使用色彩空间和背景差分法来跟踪对象,使用CAMShift算法来构建一个目标跟踪器,并学习光流的基本知识。熟悉人脸检测的相关概念,构造一个人脸检测和跟踪器。
教学内容:计算机视觉的概念;OpenCV介绍;视频中移动物体检测方法;目标跟踪器的构建;基于光流的跟踪;Harr级联和积分图;人脸检测与跟踪。
重点难点:重点是熟悉基于OpenCV进行的各种视觉处理方法,为进一步深入视觉学习奠定基础。难点是人脸检测和跟踪,尤其是复杂的场景,如戴口罩情况下。
第7章人工神经网络
教学目的:了解什么是人工神经网络,熟悉如何建立人工神经网络;了解感知器,掌握基于感知器构建一个分类器;掌握单层和多层神经网络;掌握循环神经网路。
教学内容:神经网络的概念;建立和训练人工神经网络;感知器;构建单层人工神经网络和多层人工神经网络;循环人工神经网络;构建光学字符识别引擎。
重点难点:重点是熟悉构建单层、多层以及循环神经网络;难点是神经网络的使用,如利用神经网络来构建一个光学自负识别引擎。
第8章强化学习与深度学习
教学目的:掌握强化学习的概念及其表现;了解深度学习以及卷积神经网络;熟练使用卷积神经网络构建简单的应用。
教学内容:强化学习的概念;深度学习的概念;卷积神经网络;利用卷积神经网络建立图像分类器。
重点难点:重点是深度学习及其使用;难点是利用卷积神经网络进行实际的应用开发,尤其是其可解释性问题是需要学生简单了解的。
第9章区块链
教学目的:了解区块链的基本概念;掌握区块链和人工智能的关系;了解如何利用人工智能技术对区块链进一步优化。
教学内容:区块链概念;人工智能与区块链;在区块链中使用朴素贝叶斯;优化区块链。
重点难点:重点是区块链概念的理解,产生的原因的深入分析;难点是如何充分的利用区块链技术进行多方向(领域)融合的设计与开发,包括在教育领域、知识产权保护等等。
第10章人工智能算法
教学目的:了解人工智能常用的启发式算法;掌握其基本的思想方法;掌握遗传算法、模拟退火算法、蚁群算法等。
教学内容:启发式搜索算法;遗传算法;模拟退火算法;蚁群算法。
重点难点:重点是掌握典型的启发式算法,如遗传算法、模拟退火等;难点是这些算法优化的特定目标和适用的场景;同时,也希望同学能够探索一些其它的启发式算法,并进一步比较分析,这也是本章的另一个难点。
06
课程教学方法
本课程教学采用以多媒体教学为主,以板书为辅的教学方式,并加强图示教学和实例教学以增强学生的学习兴趣并加深学生对重点知识以及理论与实际工程问题相结合的理解。
1、教师课堂讲授:基本概念和核心知识内容的传授,由主讲教师完成。
2、课堂讨论:要求学生以小组的形式对所学的知识点进行现场讨论。
3、MOOC:对课程的一些知识点采用国内外知名专家学者的视频公开课进行知识的传授。
4、SPOC:对于授课难点问题尤其是实际运用的问题时,采用翻转课堂的形式积极引导学生的参与意识,提高学生的创新能力。
5、学生/项目组讲授/表达:学生小组讨论,对于常识性的知识点的表达,提高学生的沟通和表达能力。
07
课程学习资源
1.教材
《人工智能导论(Python版)微课视频版》
ISBN:978-7-302-57239-8
作者:姜春茂
定价:49元
|学习资源|
500分钟视频、PPT课件、示例源码、习题答案。返回搜狐,查看更多
中小学人工智能课程内容设计及实施案例分析
我国中小学人工智能教育取得飞速发展与瞩目成绩的同时,也存在以下几点主要问题。
其一,缺乏完善的课程体系,无论是国家课程还是校本课程,人工智能教育都是依托其他课程开展的,这导致了人工智能教育内容分量难以确定,目标难以明晰。横向来看,教学内容过于碎片化,学生难以构建相关知识体系;纵向来看,学段间的人工智能教育内容联系不够紧密,这既不利于学生循序渐进的知识与技能学习,也使得教师难以把握学情从而导致教学目标与教学效果之间的落差。此外,现阶段中小学人工智能教育的教材大多属于产品说明书或用户指南[4]。
二、中小学人工智能课程设计
表1中小学人工智能课程目标及内容架构
人工智能技术虽然复杂深奥,但是其应用广泛且贴近生活,知识内容间紧密联系,对学生而言并非是不可感知、无法构建的。以人工智能为依托培养学生的计算思维、智能素养也并非是难以实现的。教师如何设计人工智能课程内容以及课程间以何种方式组织就显得尤为重要。
(一)中小学人工智能课程内容设计案例
下面,以初中年级人工智能课程中的“智能灯”为例对中小学人工智能的课程内容设计做详细阐述。“智能灯”一课意在通过学生对于生活中常见情境下智能灯的设计了解其背后设计原理,能够通过模块化程序设计和python代码编写出智能灯的程序,激发学生对于人工智能在生活中应用的兴趣。“智能灯”课的具体课程内容设计如图1所示:
图1以“智能灯”为例的人工智能课程内容设计
1.问题提出,明确任务
问题提出:绿色、环保、节能、和谐是当今生活的主旋律,智能灯的出现深化了人类与灯光之间的关系。请同学们结合生活实际谈一谈你所了解的智能灯!
明确任务:明确智能灯的设计要求——内置监测外界光线强度传感器,当光敏值大于700时,灯自动打开,当光敏值小于700时,灯自动熄灭。
2.深入探究,设计展示
深入探究:请学生利用可视化工具,例如思维导图,深入理解智能灯的设计要求,分析其所需要的元器件并搭建其真实应用的简易场景。
设计展示:小组通过分工利用模块化程序语言和python语言对智能灯进行设计,调试形成小组作品,并对本组作品进行演示和分享,讨论这两种不同的计算机语言在应用时的异同之处。
3.总结反思,拓展提高
以思维导图的形式回顾智能灯设计的全过程。在实际生活中往往面临着更为复杂的情境,当外界光线昏暗,智能灯会自动给打开且不能自动关闭,这也造成了一种资源浪费。进而引发学生对智能灯更深入的思考,完善、改进作品设计,为之后的课程内容做好准备。
本案例从生活实际出发引发学生的学习兴趣,在内容设计过程中通过对可视化工具的利用帮助学生理清思维脉络,不仅重视学生对模块程序和计算机语言的学习利用,更是通过比较二者的语言风格加强学生对编程的深入理解,进而培养学生的计算思维。
(二)中小学人工智能课程组织案例
人工智能虽然是一个知识体系丰富的新兴技术领域,其内容架构设计包含人工智能基础、算法与编程、机器人与智能系统等多个模块。表面看起来是彼此独立、互不关联的内容,但实际上,无论是技术特点还是知识内容都是可联系、可互通的。忽视了课程内容间的联系、放弃将内容整合成为模块是无法将人工智能的原理与技术讲解透彻的,也无法将计算思维和智能的培养渗入课堂。因而,以综合任务为导向的模块化组织中小学人工智能课程不仅能够有效帮助学生构建人工智能知识体系,更有助于教师组织形式丰富、内容多样的系统课程,增加课堂趣味性、有效性。
以“模拟城市交通系统”为例组织相关课程内容。如图2所示,智能路灯、自动道闸、智能信号灯、环线巴士、无人加油站原本都是独立的课程内容,根据课程与生活实际的联系整合成模拟城市交通系统为主题的模块。教师利用5-10个课时实践此模块,引导学生设计完成模拟城市交通系统这个综合任务实践每课内容,帮助学生在体验人工智能的同时,创造性地应用人工智能解决实际问题。
图2“模拟城市交通系统”课程模块
三、中小学人工智能课程实施策略
(一)跨学科整合式教学
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它的涉及领域除了计算机科学外,更包括了生物学、心理学等。跨学科的整合能够将数学、生物、神经科学等多学科知识与人工智能知识相融合、渗透。在这个过程中,教师不仅能够利用其他学科知识帮助学生理解人工智能知识内容,更利用其他学科思维帮助学生培养计算思维的核心素养。跨学科整合式的教学是将人工智能学科与其他相关学科进行融合,以项目形式实践课程内容,利用人工智能技术创造性地解决实际生活问题。以“机器视觉”一课为例设计如下,这一课中,教师将人工智能中机器视觉的知识与神经科学相结合(如图3),以人是如何看到事物的为导入,进而类比解释机器是如何“看到”事物的。该教学设计在渗透了脑科学知识的基础上,帮助学生联系生活实际体验人工智能的应用与价值。
图3“机器视觉”与神经科学知识融合
(二)情境游戏化教学
由于中小学学生的认知水平存在局限性和差异性,以及人工智能领域知识特性,学生难以通过讲授和演示直接理解课程内容。人工智能技术的发展也为创设情境提供了条件,教师完全可以利用人工智能技术的应用反哺课堂教学,帮助学生增强学习的体验感,对人工智能技术形成直观、形象的理解。借助游戏化的角色、模式以及元素,为学生提供丰富、有趣的学习内容;通过机制、增益等策略,能够丰富学习者的经历和体验,同时提高学习者在活动中的参与率和巩固率[9]。因而,将情境的创设与游戏化学习相结合,有利于增强人工智能教学课堂的趣味性、个性化。例如东南大学举办的人工智能为主题的夏令活动中实施的“火灾演练”,要求学生扮演消防员在模拟灭火行动中完成救援。创设的火灾情境融合机器人小车巡线、FPV第一视角等教学内容。氛围营造、综合竞赛及消防员的角色扮演都极大激发了学生的课堂兴趣及参与感。该项目在实践中得到了学生与教师的一致肯定。该设计能够帮助学生将人工智能知识与生活实际相联系,建构开源硬件的知识体系。鼓励学生在游戏化式轻松的教学环境中大胆创新。从而达到培养学生核心素养与创新能力的目标。
表2“火灾演练”项目内容
面向中小学开展人工智能课程有利于学生了解现代科技发展、适应未来生活有着重要的意义。目前,我国中小学人工智能教育尚在探索发展阶段,无论是课程内容的设计还是其组织方式、或是教学策略均未成型,本研究希望借以案例的分析,促进研究者对中小学人工智能课程设计广泛、深入的思考。
参考文献
[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL].
[2]教育部关于印发《教育信息化2.0行动计划》的通知
[3][7]谢忠新,曹杨璐,李盈.中小学人工智能课程内容设计探究[J].中国电化教育,2019(4):17-22.
[4]徐多,胡卫星,赵苗苗.困境与破局:我国机器人教育的研究与发展[J].现代教育技术,2017,27(10):94-99.
[5]周邵锦,王帆.K-12人工智能教育的逻辑思考:学生智慧生成之路——兼论K-12人工智能教材[J].现代教育技
术,2019,29(4):12-18.
[6]解月光,杨鑫,付海东.高中学生信息技术学科核心素养的描述与分级[J].中国电化教育,2017(5):8-14.
[8]李德毅.AI——人类社会发展的加速器[J].智能系统学报,2017,(5):583-589.
[9]祝智庭,魏非.教育信息化2.0:智能教育启程,智慧教育领航[J].电化教育研究,2018,39(9):5-16.
东南大学百研工坊:21世纪是我国创新型人才培养的关键期。东南大学百研工坊(儿童发展与教育研究所)结合信息技术、生物医学工程、脑科学技术,进行青少年科学素养的国际比较研究和学生核心概念掌握水平的评测系统的研究与开发,我们的目标是:(1)面向中小学学生综合能力发展的steam研究;(2)通过实证教育研究,探究科学素养的本质及有效的培养途径;(3)将科学素养的传统评测方法与现代信息技术相结合,探究基于ECD模型的学生科学素养评测方法研究;(4)运用ERP、EEG和眼动等脑科学技术,开展对学生核心概念熟练掌握程度的评测研究。
责编:罗培
推荐关注:韦钰院士公众号
可鑫的科学漫步
介绍有关神经教育学、神经信息工程和科学教育的相关信息
推荐书籍
滑动查看更多>>>返回搜狐,查看更多