【人工智能】人工智能与人类智能的关系
1.基本概念界定
1.1人工智能
人工智能是在20世纪中期以后产生的学科,人工智能就是用机器模拟人类的智能活动,从而用机器代替人类行使某些方面的职能。人工智能是通过探索人的感觉和思维的规律来模拟人的智能活动,电子计算机是人工智能的媒介和基础。阿伦·图灵说:“如果一台计算机能骗过人,使人相信它是人而不是机器,那么它就应当被称作有智能。”如果以此为标准来界定机器的智能,那么人工智能的发展之路仍然任重道远。
1.2人类智能
智能简单地说就是智慧与能力,是综合、复杂的精神活动功能,是人运用自己已有的知识和经验来学习新知识、新概念并且把知识和概念转化为解决问题的能力。智能活动往往和记忆力、感知力、思维、判断、联想、意志等有密切的联系,人类的智能表现在能够进行归纳总结和逻辑演绎,人类对视觉和听觉的感知以及处理都是条件反射式的,大脑皮层的神经网络对各种情况的处理是下意识的反应。
1.3什么是思维
思维是事物的一般属性和内在联系在人脑中的间接的、概括的反映。思维的形式包括概念、理解、判断、推理等。思维往往借助于语言来表达,由直接的感受即感性思维转化为理性,透过现象看到事物的本质,发现普适性的规律。芒福德说人类是“精神的制造者”而不仅仅是“工具的制造者”,因为人类具备思维能力。
2.基于“技术元素”视角下的人工智能
“技术元素”这一说法是凯文·凯利提出的,技术元素就是从人类意识中涌现出的一切东西,包括技术具象的工具,也包括文化、法律、社会机构和一切智能创造物。凯文·凯利说:“科技是人类的发明,也是生命的产物。”居所是动物的技术,是动物的延伸部分,人类的延伸部分是技术元素,科技发明是我们基因创造的躯体的外延。
2.1人工智能是技术进化的成果
凯文·凯利认为人类的延伸由思维产生,因为思维具有创造力,才促使了技术的进步,才创造出了以往没有创造出的东西,所以,“如果说科技是人类的延伸,那也与基因无关,而是思维的延伸。因此科技是观念的延伸躯体”。技术元素伴随着语言、工具的诞生成为人类不可或缺的伙伴,从古至今,除了极少的例外,各种技术都没有消失,而是进化成不同形态的技术。人工智能作为一种科技物种,随着技术的进步而产生发展,是技术进化的成果。
2.2人类与技术共同进步
一切生物都有天然的借助外力的本领,从钻木取火到航空航天,人类经历了漫长的发展,或者说是进化,技术作为一种手段、一种工具从来都与人类相伴相生。“技术元素”赋予技术以生命,人是技术进化的动力,而技术的进化也促进了人类社会的发展,二者是密不可分的。科技与人类正在逐渐融合,或者说人类已经成为科技最适合的载体;“技术元素”的发展虽然具有一定程度的自主性,但是它的发展轨迹从某种意义上来说也是人类意志的体现。人作为技术发展的动力之一与“技术元素”同步运动。
3.人工智能能否超越人类
对于这个问题人们有两种极端的看法:一是认为人工智能必将取代人类,不久的将来人类会沦为机器的奴隶;二是对人类的主体地位有着极度的自信,认为机器始终都是被人控制。前者的依据是人工智能的发展极其快速,超越了人类智能的进化速度,人工智能取代人类只是时间问题。后者的依据是人工智能不具有生命特征,无法融入生物圈从而和自然发生联系,只能作为人类活动的工具而存在。我更偏向于第二种观点,是基于以下几个原因:
3.1缺乏创造性的“特长生”
人工智能开发出的机器可能是某一个领域的“特长生”却不是全才。比如AlphaGO是围棋特长生却不能唱歌,计算器是数字计算的天才却不能陪人聊天,情感机器人负责陪伴和情感安慰却不能真正懂得人类的喜怒哀乐,如此等等,它们按照既定的程序运行,各司其职、各得其所,不会偏离轨道也不懂得创造。塞缪尔说:“机器不能输出任何未经输入的东西。”目前最先进的机器人也是依赖于软件运行,软件是通过人来完成更新升级,人工智能实际上是人类智能的外在表现。人体是一个复杂而庞大的系统,人有特定的背景和生活习惯,人脑的发育会受到所经历的事件和社会环境的影响,能够灵活运用,组合所接受的信息,具备综合分析问题的能力。人脑的控制系统复杂和精密程度远远超过智能机器人,因此,人工智能在技术上不及人类智能,它依赖人类智能而进化,能够胜任人类制定的任务,却缺乏人类智能的创造性。
3.2不能思维的人工智能
在回答“机器能否思维”的时候,我们首先应该对思维进行界定,思维是人脑特有的功能。人脑是一个高度发达的系统,是人类意识活动的物质载体。“电脑思维”在功能上会向人脑思维不断接近,但是两者之间存在不可消除的界限,“电脑思维”是一个简单的逻辑过程,模拟人脑思维功能和思维信息过程,它在本质上区别于人类思维。人脑思维除了能够接受外部信息以外,还能对信息进行主观的加工。人们已经能制造出类人机器人,可是它不能和人一样思维吗,因为思维不仅仅是人脑的生理机能,离开社会实践和人际交往是不能产生思维的。
3.3是辅助而非替代
人工智能简单明了地说就是人类用来改造世界的技术手段,是辅助性的工具,而不是对人类的替代。人工智能出现的历史并不久远,前文说到了技术和人类的共同进化,当人类有能力利用工具来处理复杂繁琐的工作时,这是人类的进化,也是工具的进化。人工智能被用于帮助人类进行某项工作,才能解放人力,人类智能才可以更好发挥主动性和创造性。人工智能承担了人类活动中基础的、不可或缺的、复杂的工作,从而使人类智能转向更核心的科研创造以及思维和判断上来。在人与人工智能的关系上,二者是相辅相成、相互补充的,而不是互相排斥、完全替代。
4.总结
人工智能与人类智能的关系是互为补充、相互制约的,人与技术的融合是必然的。目前人工智能的更新升级必须依赖与人类智能,人类智能的进化程度关系到人工智能的先进程度“技术元素”的进化也要受到社会条件的制约。人工智能可能在某一方面出强大的功能,但是它缺乏思维和创造性,这一点是致命的缺陷,工具作为人类器官的延长,是人类智能的外化之物,被人类智能的发展程度所局限。
人工智能/机器学习的7大积极与消极影响
人工智能/机器学习的7大积极与消极影响如今,人工智能(AI)/机器学习(ML)技术已成为人们日常生活的一部分,其中包括网络安全。在网络安全人员的手中,人工智能/机器学习(ML)可以识别漏洞并缩短事件响应时间。但在网络罪犯手中,人工智能/机器学习(ML)则可能会造成重大伤害。下面是人工智能/机器学习影响网络安全的七种积极方式与七种消极方式。人工智能/机器学习对网络安全的7个积极影响(1)欺诈和异常检测:这是人工智能工具在网络安全领域进行救援的最常见方式。复合人工智能欺诈检测引擎在识别复杂的骗局模式方面表现出色。欺诈检测系统的高级分析仪表板提供有关攻击事件的全面详细信息。这是异常检测的一般领域中极其重要的领域。(2)电子邮件垃圾邮件过滤器:防御性规则过滤掉带有可疑词语的邮件,以识别危险的电子邮件。此外,垃圾邮件过滤器可以保护电子邮件用户,并减少处理不需要的通信所需的时间。
(3)僵尸网络检测:有监督和无监督的机器学习算法不仅有助于检测,还能防止复杂的机器人攻击。它们还有助于识别用户行为模式,以极低的误报率识别未检测到的网络攻击。
(4)漏洞管理:管理漏洞(人工管理或使用工具)可能很困难,但人工智能系统使其变得更容易。人工智能工具通过分析用户行为、端点、服务器甚至暗网上的讨论来寻找潜在漏洞,以识别代码漏洞并预测攻击。
(5)防恶意软件:人工智能技术帮助防病毒软件检测正常文件和不良文件,从而可以识别新形式的恶意软件,即使以前从未见过。虽然用基于人工智能的技术完全替代传统技术可以加快检测速度,但也会增加误报率。结合传统方法和人工智能可以检测100%的恶意软件。
(6)数据泄漏预防:人工智能帮助识别文本和非文本文档中的特定数据类型。可以训练可训练的分类器来检测不同的敏感信息类型。这些人工智能方法可以使用适当的识别算法搜索图像、语音记录或视频中的数据。
(7)SIEM和SOAR:机器学习可以使用安全信息和事件管理(SIEM)以及安全编排、自动化和响应(SOAR)工具来改进数据自动化和情报收集、检测可疑行为模式,以及根据输入自动响应。
人工智能/机器学习用于网络流量分析、入侵检测系统、入侵防御系统、安全访问服务边缘、用户和实体行为分析以及Gartner公司所描述的大多数技术领域。事实上,很难想象现代安全工具没有采用某种人工智能/机器学习技术。
人工智能/机器学习对网络安全的7个消极影响(1)数据收集:通过社会工程和其他技术,采用机器学习技术用于更好地分析受害者,网络犯罪分子利用这些信息加速攻击。例如,在2018年,WordPress网站经历了大规模的基于机器学习的僵尸网络感染,黑客可以访问用户的个人信息。(2)勒索软件:勒索软件正在快速增长。犯罪成功案例很多;最严重的事件之一导致Colonial输油管道中断6天,并不得不支付了440万美元的勒索赎金。
(3)垃圾邮件、网络钓鱼和鱼叉式网络钓鱼:机器学习算法可以创建看起来像真实消息的虚假消息,旨在窃取用户凭据。在BlackHat会议的一次演讲中,JohnSeymour和PhilipTully详细介绍了机器学习算法如何生成带有虚假网络钓鱼链接的病毒式推文,其攻击效果是人工创建的网络钓鱼消息的四倍。
(4)Deepfakes:在语音网络钓鱼中,诈骗者使用机器学习生成的Deepfake音频技术来制造更成功的网络攻击。例如深度语音等现代算法只需要几秒钟的语音就可以模仿受害者的语音、口音和语调。
(5)恶意软件:机器学习可以隐藏跟踪节点和端点行为的恶意软件,并构建模仿受害者网络上合法网络流量的模式。它还可以在恶意软件中加入一种自毁机制,以放大网络攻击速度。人工智能算法经过训练可以比人类更快地提取数据,这使得它更难预防。
(6)密码和验证码:采用神经网络驱动的软件声称可以轻松破解人类识别系统。机器学习技术使网络犯罪分子能够分析大量密码数据集,以更好地定位密码猜测。例如,PassGAN使用机器学习算法比使用传统技术的流行密码破解工具更准确地猜测密码。
(7)攻击人工智能/机器学习本身:滥用在医疗保健、军事和其他高价值部门核心工作的算法可能会导致灾难。Berryville机器学习研究所的机器学习系统架构风险分析有助于分析已知的机器学习攻击分类法,并对机器学习算法进行架构风险分析。安全工程师必须学习如何在其生命周期的每个阶段保护机器学习算法。
人们很容易理解为什么人工智能/机器学习受到如此多的关注。而对抗复杂的网络攻击的唯一方法是利用人工智能的防御潜力。业界人士必须注意到机器学习在检测异常(例如,流量模式或人为错误)方面的强大功能。通过采用适当的对策和措施,可以防止或显著减少可能的损害。
综上,人工智能/机器学习用于网络流量分析、入侵检测系统、入侵防御系统、安全访问服务边缘、用户和实体行为分析…… 尤其在防范网络威胁方面,具有巨大价值。一些政府和企业正在使用或讨论使用人工智能/机器学习来打击网络犯罪分子。(本文来源于网络,由千家智客进行整理编辑,如有侵权,请联系删除。)
找方案,方案难?
上 方快3 ,三步搞定!
方快3 ——智能化方案共享平台!