博舍

人工智能的几个概念 人工智能的概念和基本特征

人工智能的几个概念

人工智能

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

简介

“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

实际应用机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。

学科范畴人工智能是一门边沿学科,属于自然科学和社会科学的交叉。

涉及学科哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,

研究范畴自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式

应用领域智能控制,机器人学,语言和图像理解,遗传编程机器人工厂

安全问题

目前人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过。

机器学习

机器学习(MachineLearning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

学习能力是智能行为的一个非常重要的特征,但至今对学习的机理尚不清楚。人们曾对机器学习给出各种定义。H.A.Simon认为,学习是系统所作的适应性变化,使得系统在下一次完成同样或类似的任务时更为有效。R.s.Michalski认为,学习是构造或修改对于所经历事物的表示。从事专家系统研制的人们则认为学习是知识的获取。这些观点各有侧重,第一种观点强调学习的外部行为效果,第二种则强调学习的内部过程,而第三种主要是从知识工程的实用性角度出发的。

机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。例如,它们遇到错误时不能自我校正;不会通过经验改善自身的性能;不会自动获取和发现所需要的知识。它们的推理仅限于演绎而缺少归纳,因此至多只能够证明已存在事实、定理,而不能发现新的定理、定律和规则等。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。其中尤其典型的是专家系统中的知识获取瓶颈问题,人们一直在努力试图采用机器学习的方法加以克服。

机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。

自从1980年在卡内基-梅隆大学召开第一届机器学术研讨会以来,机器学习的研究工作发展很快,已成为中心课题之一。

模式识别

模式识别(PatternRecognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机

的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。

模式识别(PatternRecognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(SupervisedClassification)和无监督的分类(UnsupervisedClassification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。

模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。

应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。

模式识别所分类的类别数目由特定的识别问题决定。有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。

模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。

人工神经网络

人工神经网络(ArtificialNeuralNetworks,ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)

概念

由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

人工神经网络具有四个基本特征:

(1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。

人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

知识工程(KBE)knowledgebasedengineering

在计算机上建立专家系统的技术。知识工程这个术语最早由美国人工智能专家E.A.费根鲍姆提出。由于在建立专家系统时所要处理的主要是专家的或书本上的知识,正像在数据处理中数据是处理对象一样,所以它又称知识处理学。其研究内容主要包括知识的获取、知识的表示以及知识的运用和处理等三大方面。

费根鲍姆及其研究小组在20世纪70年代中期研究了人类专家们(而不是万能博士们)解决其专门领域问题时的方式和方法,注意到专家解题的4个特点:①为了解决特定领域的一个具体问题,除了需要一些公共的知识,例如哲学思想、思维方法和一般的数学知识等之外,更需要应用大量与所解问题领域密切相关的知识,即所谓领域知识。②采用启发式的解题方法或称试探性的解题方法。为了解一个问题,特别是一些问题本身就很难用严格的数学方法描述的问题,往往不可能借助一种预先设计好的固定程式或算法来解决它们,而必须采用一种不确定的试探性解题方法。③解题中除了运用演绎方法外,必须求助于归纳的方法和抽象的方法。因为只有运用归纳和抽象才能创立新概念,推出新知识,并使知识逐步深化。④必须处理问题的模糊性、不确定性和不完全性。因为现实世界就是充满模糊性、不确定性和不完全性的,所以决定解决这些问题的方式和方法也必须是模糊的和不确定的,并应能处理不完全的知识。总之,人们在解题的过程中,首先运用已有的知识开始进行启发式的解题,并在解题中不断修正旧知识,获取新知识,从而丰富和深化已有的知识,然后再在一个更高的层次上运用这些知识求解问题,如此循环往复,螺旋式上升,直到把问题解决为止。由上面的分析可见,在这种解题的过程中,人们所运用和操作的对象主要是各种知识(当然也包括各种有关的数据),因此也就是一个知识处理的过程。

专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。

专家系统

专家系统(expertsystem)是人工智能应用研究最活跃和最广泛的课题之一。

运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。

发展简况专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。1965年,f.a.费根鲍姆等人在总结通用问题求解系统的成功与失败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral,可以推断化学分子结构。20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,包括化学、数学、物理、生物、医学、农业、气象、地质勘探、军事、工程技术、法律、商业、空间技术、自动控制、计算机设计和制造等众多领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。

专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。

类型对专家系统可以按不同的方法分类。通常,可以按应用领域、知识表示方法、控制策略、任务类型等分类。如按任务类型来划分,常见的有解释型、预测型、诊断型、调试型、维护型、规划型、设计型、监督型、控制型、教育型等。

体系结构专家系统与传统的计算机程序系统有着完全不同的体系结构,通常它由知识库、推理机、综合数据库、知识获取机制、解释机制和人机接口等几个基本的、独立的部分所组成,其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。

为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解问题的世界范围内的事实和断言。知识库包含所有用“如果:〈前提〉,于是:〈结果〉”形式表达的知识规则。推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。正向链的策略是寻找出前提可以同数据库中的事实或断言相匹配的那些规则,并运用冲突的消除策略,从这些都可满足的规则中挑选出一个执行,从而改变原来数据库的内容。这样反复地进行寻找,直到数据库的事实与目标一致即找到解答,或者到没有规则可以与之匹配时才停止。逆向链的策略是从选定的目标出发,寻找执行后果可以达到目标的规则;如果这条规则的前提与数据库中的事实相匹配,问题就得到解决;否则把这条规则的前提作为新的子目标,并对新的子目标寻找可以运用的规则,执行逆向序列的前提,直到最后运用的规则的前提可以与数据库中的事实相匹配,或者直到没有规则再可以应用时,系统便以对话形式请求用户回答并输入必需的事实。

早期的专家系统采用通用的程序设计语言(如fortran、pascal、basic等)和人工智能语言(如lisp、prolog、smalltalk等),通过人工智能专家与领域专家的合作,直接编程来实现的。其研制周期长,难度大,但灵活实用,至今尚为人工智能专家所使用。大部分专家系统研制工作已采用专家系统开发环境或专家系统开发工具来实现,领域专家可以选用合适的工具开发自己的专家系统,大大缩短了专家系统的研制周期,从而为专家系统在各领域的广泛应用提供条件。

图灵测试

【简介】

图灵测试(又称“图灵判断”)是图灵提出的一个关于机器人的著名判断原则。一种测试机器是不是具备人类智能的方法。如果说现在有一台电脑,其运算速度非常快、记亿容量和逻揖单元的数目也超过了人脑,而且还为这台电脑编写了许多智能化的程序,并提供了合适种类的大量数据,使这台电脑能够做一些人性化的事情,如简单地听或说。回答某些问题等。那么,我们是否就能说这台机器具有思维能力了呢?或者说,我们怎样才能判断一台机器是否具存了思维能力呢?

为了检验一台机器是否能合情理地被说成在思想,人工智能的始祖艾伦•图灵提出了一种称作图灵试验的方法。此原则说:被测试的有一个人,另一个是声称自己有人类智力的机器。测试时,测试人与被测试人是分开的,测试人只有通过一些装置(如键盘)向被测试人问一些问题,这些问题随便是什么问题都可以。问过一些问题后,如果测试人能够正确地分出谁是人谁是机器,那机器就没有通过图灵测试,如果测试人没有分出谁是机器谁是人,那这个机器就是有人类智能的。目前还没有一台机器能够通过图灵测试,也就是说,计算机的智力与人类相比还差得远呢。比如自动聊天机器人。同时图灵试验还存在一个问题,如果一个机器具备了“类智能”运算能力,那么通过图灵试验的时间会延长,那么多长时间合适呢,这也是后继科研人员正在研究的问题。

【图灵测试的提出】

1950年,图灵来到曼彻斯特大学任教,同时还担任该大学自动计算机项目的负责人。就在这一年的十月,他又发表了另一篇题为《机器能思考吗?》的论文,成为划时代之作。也正是这篇文章,为图灵赢得了一顶桂冠——“人工智能之父”。在这篇论文里,图灵第一次提出“机器思维”的概念。他逐条反驳了机器不能思维的论调,做出了肯定的回答。他还对智能问题从行为主义的角度给出了定义,由此提出一假想:即一个人在不接触对方的情况下,通过一种特殊的方式,和对方进行一系列的问答,如果在相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么,就可以认为这个计算机具有同人相当的智力,即这台计算机是能思维的。这就是著名的“图灵测试”(TuringTesting)。当时全世界只有几台电脑,其他几乎所有计算机根本无法通过这一测试。但图灵预言,在20世纪末,一定会有电脑通过“图灵测试”。目前为止还没有电脑通过图灵测试。美国科学家兼慈善家休·勒布纳20世纪90年代初设立人工智能年度比赛,把图灵的设想付诸实践.比赛分为金、银、铜三等奖.

【示范性问题】

图灵采用“问”与“答”模式,即观察者通过控制打字机向两个测试对象通话,其中一个是人,另一个是机器。要求观察者不断提出各种问题,从而辨别回答者是人还是机器。图灵还为这项测试亲自拟定了几个示范性问题:

问:请给我写出有关“第四号桥”主题的十四行诗。

答:不要问我这道题,我从来不会写诗。

问:34957加70764等于多少?

答:(停30秒后)105721

问:你会下国际象棋吗?

答:是的。

问:我在我的K1处有棋子K;你仅在K6处有棋子K,在R1处有棋子R。现在轮到你走,你应该下那步棋?

答:(停15秒钟后)棋子R走到R8处,将军!

图灵指出:“如果机器在某些现实的条件下,能够非常好地模仿人回答问题,以至提问者在相当长时间里误认它不是机器,那么机器就可以被认为是能够思维的。”

从表面上看,要使机器回答按一定范围提出的问题似乎没有什么困难,可以通过编制特殊的程序来实现。然而,如果提问者并不遵循常规标准,编制回答的程序是极其困难的事情。例如,提问与回答呈现出下列状况:

问:你会下国际象棋吗?

答:是的。

问:你会下国际象棋吗?

答:是的。

问:请再次回答,你会下国际象棋吗?

答:是的。

你多半会想到,面前的这位是一部笨机器。如果提问与回答呈现出另一种状态:

问:你会下国际象棋吗?

答:是的。

问:你会下国际象棋吗?

答:是的,我不是已经说过了吗?

问:请再次回答,你会下国际象棋吗?

答:你烦不烦,干嘛老提同样的问题。

那么,你面前的这位,大概是人而不是机器。上述两种对话的区别在于,第一种可明显地感到回答者是从知识库里提取简单的答案,第二种则具有分析综合的能力,回答者知道观察者在反复提出同样的问题。“图灵测试”没有规定问题的范围和提问的标准,如果想要制造出能通过试验的机器,以我们现在的技术水平,必须在电脑中储存人类所有可以想到的问题,储存对这些问题的所有合乎常理的回答,并且还需要理智地作出选择。

科多大数据感谢您的阅读

人工智能基础——知识的概念

知识的概念:事实与规则。知识反映了客观世界中事物之间的关系,不同事物或者相同事物之间的不同关系形成了不同的知识。例如,”雪是白色的“是一条只是,它反映了”雪“与”白色"之间的一种关系,又如“如果头疼且流鼻涕,那么有可能患了感冒”是一条知识,它反映了“头疼且流鼻涕”与“可能患了感冒”之间的一种因果关系。在人工智能中,把前者叫做事实,把后者,即用”如果。。。那么。。。“关联起来形成的知识叫做规则。

知识的特性:1.相对正确性:在一定的条件下,知识一般是正确的。比如:在十进制的条件下,1+1=2,但是如果换个条件,换成二进制的条件下,那么1+1=10,不等于2了。

2.不确定性3.可表示性和可利用性

知识的分类:按作用范围分:常识性知识,和领域性知识。按作用及表示分:事实性知识,过程性知识和控制性知识。

事实性知识:概念。例如北京,上海,飞机,火车。过程性知识:乘飞机,乘火车控制性知识:乘飞机较快,较贵,乘火车较慢,较便宜。

按知识的结构及表现形式分:逻辑性知识和形象性知识。

形象性知识:通过事物的形象建立起来的知识。(神经网络)

按知识的确定性分:确定性知识和不确定性知识。

人工智能的基本概念

智能的概念

自然界四大奥秘:物质的本质、宇宙的起源、生命的本质、智能的发生。对智能还没有确切的定义,主要流派有:(1)思维理论:智能的核心是思维(2)知识阈值理论:智能取决于知识的数量及一般化程度(3)进化理论:用控制取代知识的表示智能是知识与智力的总和知识是一切智能行为的基础智力是获取知识并应用知识求解问题的能力

智能的特征

感知能力:通过视觉、听觉、触觉、嗅觉等感觉器官感知外部世界的能力。80%以上信息通过视觉得到,10%信息通过听觉得到。

记忆与思维能力

记忆是存储由感知器官感知到的外部信息以及由思维所产生的知识思维能力对记忆的信息进行处理(1)逻辑思维(抽象思维)依靠逻辑进行思维。思维过程是串行的。容易形式化。思维过程具有严密性、可靠性。(2)形象思维(直感思维)依据直觉。思维过程是并行协同式的。形式化困难。在信息变形或缺少的情况下仍有可能得到比较满意的结果。(3)顿悟思维(灵感思维)不定期的突发性。非线性的独创性及模糊性。穿插于形象思维与逻辑思维之中。

学习能力

学习既可能是自觉的、有意识的,也可能是不自觉的、无意识的;既可以是有教师指导的,也可以是通过自己实践的。

行为能力(表达能力)

人们的感知能力:用于信息的输入。行为能力:信息的输出。

人工智能

人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。人工智能学科:一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。图灵测试:1950年图灵发表的《计算机与智能》中设计了一个测试,用以说明人工智能的概念。

中国屋思考实验

语言哲学家约翰.R.塞尔(JohnR.Searle,1980)锁在屋里的看不懂卡片上汉字的人,根据英文说明书把从门缝中得到的汉字与屋内的汉字进行匹配然后扔出去,从外观上看好像这个人懂中文,而且正确匹配的速度会越来越快,实际上他不懂中文。证明:即使通过图灵测试也不能说明计算机能思维。欢迎大家加我微信交流讨论(请备注csdn上添加)

物联网的概念与特征

目录

 

物联网的概念

物联网的技术特征

物联网的模型于架构

物联网的关键技术

物联网的概念

物联网是一个将所有物体连接起来组成的物-物相连的互联网络

物联网是通过使用射频识别,传感器,红外感应器,全球定位系统,激光扫描器等信息采集设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别,定位,跟踪,监控和管理的一种网络。

(1)多样化感知

(2)电子化身份

(3)多模式的通信

(4)智能化管理

 

物联网的技术特征

1.全面感知

感知是指对客观事物的信息直接获取并进行认知和理解的过程(传感器,RFID,定位技术)

2.可靠传递

数据传递的稳定性和可靠性是保证物-物相连的关键。为了实现物与物之间信息交互,就必须约定一定的通信协议

由于物联网是一个异构的网络,不同的实物之间协议的规范可能存在差异,需要通过相应的软,硬件进行交换,保证物品之间信息实时,准确的传递

 

物联网的主要通信技术包括:近距离无线通信技术,移动通信技术,卫星通信技术和以太网技术等

近距离无线通信技术:WIFI,蓝牙,ZigBee,红外线感应

远距离无线通信技术:卫星通信技术,微波通信技术,移动通信技术

有线通信技术:局域网,城域网,广域网

 

 

3.智能处理

物联网的目的是实现对各个物品进行智能化识别,定位,跟踪,监控和管理等功能。需要通过云计算,人工智能等智能计算技术,对海量数据进行存储,分析和处理,针对不同的应用需求,对物品实施智能化的控制

物联网的模型于架构

1.物联网体系架构是用来描述物联网部件组成和部件之间的相互关系的框架和方法

2.物联网需要一个开放的,分层的,课扩展的体系架构

物联网的基本模型

物联网的C3SD技术模型

 

感知系统负责感知世界的信息

通信系统负责收集和传输感知世界和反馈的结果

数据海负责分布存储不同传感器产生的数据

计算系统负责对感知数据分析和处理

控制系统负责反馈数据分析和深度处理的结果

物联网的六域模型

从系统组成角度看,物联网是由用户域、目标对象域、感知控制域、服务提供域、运维管控域和资源交换域等六个域组成,即简称“物联网六域

① 物联网用户域(定义用户和需求);

② 目标对象域(明确“物”及关联属性);

③ 感知控制域(设定所需感知和控制的方案,即“物”的关联方式);

④ 服务提供域(将原始或半成品数据加工成对应的用户服务);

⑤ 运维管控域(在技术和制度两个层面保障系统的安全、可靠、稳定和精确的运行);

⑥ 资源交换域(实现单个物联网应用系统与外部系统之间的信息和市场等资源的共享与交换,建立物联网闭环商业模式)。

.

 

 

EPC/UID系统结构

 

物联网的分层体系结构

物联网四层体系结构,由感知控制层,数据传输层,数据处理层,应用决策层组成。

 

物联网的关键技术

(1)感知技术

完成物品标识和信息的智能采集工作

    传感技术:包括无线传感技术,光纤传感器技术,成像传感技术,现场总线控制技术(FSC)等

    标识技术:包括电子射频技术,条码技术等

    定位技术:包括室外定位技术(GNSS定位,蜂窝网基定位)和室内定位技术(蓝牙定位,WSN定位,WIFI定位,UWB定位等)

(2)通信技术

完成数据传输,包括各类无线通信技术,互联网技术,传感网技术等

     无线通信技术:包括中远距离窄带无线通信技术,近距离宽带无线通信技术,近距离射频与微波通信技术等能满足各种物品接入与数据传输的技术

     互联网技术:包括骨干网技术,无线网络组网技术,泛在接入技术

     传感网技术:包括传感网组网技术,能效技术,节点容错技术,感知数据汇聚技术,QoS技术,光纤传感网技术

     通信和接口的标准化:包括网络协议与接口标准化

(3)计算技术

实现数据的快速处理

(4)数据技术

实现数据存储,处理,分析,决策与高效利用

(5)控制技术

实现对客观世界的控制

(6)安全技术

实现安全与隐私保护

 

 

 

 

 

 

人工智能产业专题:现状、特征与趋势

一、人工智能发展及现状

(一)人工智能定义

目前,人工智能并没有一个统一的定义,学术界有几个重要的观点:

达特茅斯会议:1956年的达特茅斯会议首次提出人工智能的定义:使一部机器的反应方式像一个人在行动时所依据的智能。

NilsJ.Nilsson(Stanford):人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的学科。

PatrickWinston(MIT):人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。

经过超过半个世纪的发展,人工智能已经渡过了简单地模拟人类智能的阶段,发展为研究人类智能活动的规律,构建具有一定智能的人工系统或硬件,以使其能够进行需要人的智力才能进行的工作,并对人类智能进行拓展的边缘学科。涉及到信息论、控制论、计算机科学、自动化、仿生学、生物学、心理学、数理逻辑和哲学等自然和社会科学。

(二)人工智能发展历程

萌芽期:1943年,人工神经网络和数学模型建立,人工神经网络研究时代开启;1950年,计算机与人工智能之父图灵发表《机器能思考吗?》,提出“图灵测试”;

启动期:1956年,达特茅斯会议召开,标志着人工智能的诞生;期间,国际学术界人工智能研究潮流兴起,罗素《数学原理》被算法全部证明,学术交流频繁;

消沉期:1969年,作为主要流派的连接主义与符合主义进入消沉,四大预言遥遥无期,在计算能力的限制下,国家及公众信心持续减弱;

突破期:1975年,BP算法开始研究,第五代计算机开始研制,专家系统的研究和应用艰难前行,半导体技术发展,计算机成本和计算能力逐步提高,人工智能逐渐开始突破;

发展期:1986年,BP网络实现,神经网络得到广泛认知,基于人工神经网络的算法研究突飞猛进;计算机硬件能力快速提升;互联网构建,分布式网络降低了人工智能的计算成本;

高速发展期:2006年,深度学习被提出,人工智能再次突破性发展;2010年,移动互联网发展,人工智能应用场景开始增多;2012年,深度学习算法在语音和视觉识别上实现突破,同时,融资规模开始快速增长,人工智能商业化高速发展。

(三)人工智能发展阶段特征

当前的人工智能发展浪潮,主要是源于2006年深度学习算法的提出,在数据量和计算能力的基础上实现大规模计算,属于技术性突破。属于超级人工智能的,关于意识起源、人脑机理等方面的基础理论研究仍有待突破。

根据应用范围的不同,人工智能可以分为专用人工智能、通用人工智能、超级人工智能三类,同时,这三个类别也代表着人工智能的不同的发展层次。而我们仍处于专用人工智能阶段。

专用人工智能:目前的人工智能属于专用人工智能,如计算机视觉、语音识别等,以一个或多个专门的领域和功能为主,目前正处于高速发展阶段,已取得较为丰富的成果。

通用人工智能:通用人工智能即机器与人类一样拥有进行所有工作的可能,关键在于自动地认知和拓展。目前正在研究人为地设计尽可能多的功能,通用人工智能目前研究水平仍远远未达到。

超级人工智能:超级人工智能是指具有自我意识,包括独立自主的价值观、世界观等,与技术的发展不同,超级人工智能的基础是人类对生命科学的全面深入的理解,目前仅存在于文化作品中。

(四)2016年全球人工智能产业大事记

(五)人工智能产业规模

中国人工智能产业规模2016年已突破100亿,以43.3%的增长率达到了100.60亿元,预计2017年增长率将提高至51.2%,产业规模达到152.10亿元,并于2019年增长至344.30亿元。

中国人工智能产业起步相对较晚,但产业布局、技术研究等基础设施正处于进步期,随着科技、制造等业界巨头公司的布局深入,人工智能产业的规模将进一步扩大。而随着众多垂直领域的创业公司的诞生和成长,人工智能将出现更多的产业级和消费级应用产品。

图表1:2014-2019年中国人工智能产业规模及预测

(六)中国人工智能研究正处于爆发期

根据统计数据,中国人工智能相关专利申请数从2010年开始出现持续增长,于2014年达到19197项,并于2015年开始大幅增长,达到28022项,2016年,中国人工智能相关专利年申请数为29023项。

2010年移动互联网开始发展,技术和数据积累给人工智能研究带来了较大的增长动能。进入2015年,在国内外人工智能研究和应用场景不断进步的基础上,中国人工智能相关研究开始进入高速发展阶段。这说明,中国人工智能研究水平正在处于不断提高的阶段,目前已取得一定阶段性成果,有望持续发展,预计2017年专利申请数将持续增长。

图表2:2007-2016年中国人工智能相关专利申请数统计

二、人工智能产业链梳理

人工智能产业是指以人工智能关键技术为核心的,由基础支撑和应用场景组成的,一个覆盖领域非常广阔的产业,与人工智能的学术定义不同,人工智能产业更多的是经济和产业上一种概括。

基础支撑:基础支撑主要由数据提供和计算能力支撑两部分组成,为人工智能的技术和产业发展提供支撑,是人工智能产业的基础设施;

核心技术:核心技术主要有机器学习、计算机视觉、语音及自然语言处理三大部分,主要进行人工智能的关键技术研究,并基于成果实现商业化构建;

应用场景:应用场景包括机器人、智能医疗、智能驾驶、智能家居等细分行业,基于人工智能的技术及成果,各应用场景的人工智能相关度存在一定差异;

图表3:人工智能产业链结构图

三、中国人工智能产业特征和趋势预测

(一)中国人工智能产业特征

大公司产业链布局广,创业公司专业性强。产业链特征方面,中国人工智能产业生态中,基于资源能力,大公司的参与布局较广,在基础层、技术层及应用层皆有所布局。中国不乏优秀的人工智能公司,大部分专业性较强,专注于某一细分领域的技术和应用研究,其中,计算机视觉领域集中了大批的优秀创业公司。但是,各应用场景之间的人工智能技术相关度存在一定的差异。

以B端业务为主。商业模式方面,大部分公司的业务主要以B端解决方案和服务为主。一方面,B端业务注重与行业客户的互动合作,更有利于人工智能技术和产品的落地;另一方面,行业客户对于生产效率的提高有强烈的需求,而C端产品需求仍需挖掘。不过,大公司的C端产品布局依然是相对活跃的。

人才成本较大,存在较大的需求缺口。技术方面,以深度学习为代表的机器学习算法研究是广泛的基础能力,但目前国内在此领域的人才供应相对紧缺,流通性较弱,因此也导致了高端研究人才的超高成本,同时有部分公司选择在美国建立研究院或实验室。这说明,作为知识密集型产业的典型代表,人工智能产业存在较大的需求缺口。

传统行业和技术给予充分的支持。产品方面,目前仍缺乏一定的革命性产品,更多的是利用人工智能技术对传统行业产品的改良。在这个过程中,医疗健康、装备制造、汽车、金融等行业给予了人工智能产业充分的支持,通过合作开发等方式,助力人工智能技术的应用落地和商业化。

(二)中国人工智能产业趋势预测

“人工智能+”有望成为新业态。在移动互联网时代,“互联网+”的出现给经济发展带来了重大影响,艾媒咨询分析师认为,随着专用人工智能的发展,作为一个庞大的高新技术合集,“人工智能+”作为一直新经济业态已经开始萌芽,越来越多的行业开始拥抱人工智能,用“人工智能+”助力技术和产业的进一步发展。

人工智能产业将成为独角兽集中地。在大公司和传统大型企业之外,人工智能产业集中着非常多的优秀创业公司。优秀的人工智能创业公司有着成熟的团队配置、先进的技术能力、健康的现金流等,同时受资本方的认可度较高。艾媒咨询分析师认为,人工智能作为最具前景的产业,将成为新的独角兽集中地。

人才储备将成为制约中国人工智能发展的重要因素。从目前来看,虽然相关机构的研究表明华人的人工智能学术成果占全球一半以上,但中国人工智能技术和产业在大部分领域仍落后于全球一流水平。虽然中国在数据积累和传统产业基础上有一定的优势,部分细分领域有领先成果,相关研究投入不断加大,但整体上的人才储备落后于美国,在基础研究、产业链等方面存在较大挑战,将成为制约人工智能发展的重要因素。

人工智能全面发展需要更多的积累。真正的强人工智能缺乏基础,人工智能技术更多的是依靠机器学习和计算能力促进生产力的发展。理性地看,“机器统治人类”的奇点恐惧缺乏一定的基础,虽然人工智能已经在机器学习等关键领域得到了一定的突破,但更多的是属于专用人工智能,往通用人工智能等更高层次的发展仍需积累。

文章来源:艾媒咨询

内容整理:中经汇成

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇