2023年人工智能领域发展七大趋势
2022年人工智能领域发展七大趋势
有望在网络安全和智能驾驶等领域“大显身手”
人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。
美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。
增强人类的劳动技能
人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。
比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。
总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
更大更好的语言建模
语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。
2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。
众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。
网络安全领域的人工智能
今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。
随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。
人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。
人工智能与元宇宙
元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。
人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。
低代码和无代码人工智能
2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。
美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。
自动驾驶交通工具
数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。
特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。
此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。
创造性人工智能
在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。
2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)
【纠错】【责任编辑:吴咏玲】新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
人工智能的三次浪潮与三种模式
■史爱武
谈到人工智能,人工智能的定义到底是什么?
达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。
百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。
2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。
人工智能的三次浪潮
自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
第一次浪潮(1956-1976年,20年),最核心的是逻辑主义
逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。
早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。
在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。
虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。
第二次浪潮(1976—2006年,30年),联结主义盛行
在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。
在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。
这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。
第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破
如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。
若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。
经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。
为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。
伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。
深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。
深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。
人工智能的3种模式
人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。
(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。
(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。
(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。
我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!
中国人工智能创新处于什么发展水平
◎编辑|数字经济先锋号
◎来源|北京工业大学学报
◎作者|王山陈昌兵
人工智能作为新技术创新的代表与引领未来、重塑传统行业结构的前沿性与战略性技术,逐渐成为全球新一轮科技革命和产业变革的重要驱动力量。世界各国在以创新为主的人工智能新技术方面展开了激烈的角逐与残酷的竞争。
目前,我国人工智能技术创新水平如何?技术处于何种发展阶段?我国发展人工智能的优势在哪?未来我国人工智能发展趋势如何?本文即将告诉你答案。
指标体系的构建
基于技术创新大数据,本文创新性地构建多指标测度体系与技术创新综合发展指数;根据综合发展指数模拟各国人工智能技术创新S演化曲线,描绘动态演变轨迹并定位中美技术创新发展位置。重点结合五维度在不同阶段的权重分布,比较中美新技术创新发展差距,探讨影响我国人工智能新技术创新发展的主要因素。提出提高新技术创新水平的具体措施与发展建议,助力实现我国人工智能关键核心技术突破、摆脱被先发国家控制的劣势地位。
表1人工智能技术创新发展水平多指标测度体系
根据技术创新周期不同发展阶段可能呈现出的特征与各特征之间的内在逻辑关系,同时结合人工智能新技术创新发展影响因素与技术创新发展测度相关参考文献,我们选择了基础研究、技术创新、科技布局、产业规模与技术进步5个维度来测度人工智能技术创新发展水平(如表一所示)。
根据指标熵权计算式得到的人工智能技术创新水平各测度指标的权重值(Wj)(如表二所示)。从单个指标权重看,首先体现产业规模的人工智能技术融资规模指标权重最高,然后为人工智能新增企业数指标;其次为体现技术创新程度的人工智能技术优先权年专利申请量指标,研发课题数指标权重最低。从分析维度看,首先产业规模维度权重最大;其次为技术创新维度与科技布局维度,基础研究维度权重值最小。综上可知,产业规模与技术创新维度各参数动态变化对人工智能技术创新所处发展阶段的判断具有显著影响。
表2人工智能技术创新水平测度指标权重值
中美等国的对比与分析
根据分析,目前,我国人工智能技术正处于快速发展的技术成长期后期,技术创新十分活跃,未来将涌入更多的企业和科研机构,竞争也将越来越激烈。而美国人工智能技术萌芽于1990年,于2005年步入技术成长期,2020年开始走向成熟,并预计于2034年进入技术衰退期,目前正处于开展商业应用的技术成熟期,创新动力将持续增强。(拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1,越接近1,说明回归直线对观测值的拟合程度越好,表三可见各国人工智能技术创新S演化曲线拟合优度R²均在0.9以上,拟合效果较为理想。——数字经济先锋号注)
表3中美等国人工智能技术创新发展阶段判定
日本、英国、法国与德国作为较早启动人工智能新技术研究开发与科研成果推广应用的主要发达国家,同样具有较大的先发优势,其技术创新发展水平早期均位列世界前沿且技术发展历程与演化轨迹比较相似,均在1990年左右进入技术创新萌芽期,后经技术不断地积累、发展与突破,分别于2005年与2019年左右步入技术创新成长期与成熟期,目前技术已经成熟。
图1中美等国人工智能技术创新周期S曲线
得益于雄厚的科技与经济实力,美国人工智能技术创新累计综合发展指数遥遥领先于其他各国,日英法德4国作为人工智能新技术创新发展早期的追随者与前期领导者,在人工智能技术领域,同样具有较高的发展水平与先发优势,鉴于人工智能技术创新是一个显著的动态累计过程,且发展周期较长,美日等世界主要发达国家并未因前期先发优势而形成技术发展垄断局面,因而为后发国家的技术追赶提供了巨大的机会窗口。
由图1技术创新演变曲线可预测出,在技术经验渐进性积累与自主创新能力不断提升的条件下,我国正逐步缩小与美国在人工智能新技术创新赛道上的发展差距,预计将在人工智能新技术创新发展的成熟期实现技术的追赶与超越。
目前,中国人工智能技术创新累计综合发展指数已超越英法德日4国,但与技术创新水平处于全球领先地位的美国相比仍有较大发展差距。本文从人工智能新技术创新累计综合发展指数增长率探索未来中国是否能反超美国并掌握创新发展的主导权,图2是各国人工智能技术创新累计综合发展指数增长率变化结果。
图2拟合中美等国人工智能技术创新累计综合发展指数增长率
由图2可知,1985-2003年,美国、英国、法国、德国与日本人工智能技术创新累计综合发展指数增长速率基本处于快速上升状态,尤其是美国。而我国的人工智能技术创新起步晚于美国,在基础研究原创性成果的不足或某些前沿领域的投入缺失的情况下错失了先发优势。但在国家大力扶持与自主创新能力不断提升的情况下,我国人工智能技术发展呈现出了非常强劲的增长态势。
因此,可以预见,在当前快速增长态势下,再加上后天技术的积累以及先发的数据优势,我国必将在人工智能新技术这一赛道上领跑全球。
影响因素动态分析
我国人工智能新技术创新发展速度较快,但关键核心技术水平与美国相比仍有差距。技术创新是一个多阶段过程,不同发展阶段因所需资源、条件不同而影响因素权重不同。本节创新性地引入技术创新不同阶段变量,动态分析不同阶段下人工智能技术创新的多指标测度体系中维度权重变化。进一步深入剖析我国人工智能新技术创新发展的影响因素。
由表四可以看出,中美两国在人工智能技术的发展阶段、技术创新和技术进步等方面存在差异。美国在人工智能新技术基础研究投入、技术创新布局、技术产业链上游的占据等方面具有较为显著的优势,而我国在科技布局、产业规模和融资份额等方面具有一定优势。但是,我国与美国相比,技术进步较为缓慢,尤其是在芯片领域存在较大差距,这将对我国的人工智能产业化形成不利影响。
因此,我们应该着眼于加强人工智能领域的基础研究,不断提升自主创新能力,积极推动技术创新和进步,在技术产业链上游抢占制高点,实现由技术跟随到技术引领的转变。同时,也需要加强与市场的有效结合,促进技术产业化的发展,让科技创新更好地服务于经济社会的发展,实现以科技创新驱动高质量发展的目标。
表4人工智能技术不同发展阶段影响因素权重分布
通过与美国的比较不难看出,我国人工智能新技术创新在基础研究、技术创新与技术进步维度,仍有相当发展空间,由于缺乏占据世界产业制高点的核心技术,存在若干被他国“卡脖子”的领域。
图3中美等国人工智能技术创新逐年发展指数
虽然我国人工智能新技术研发起步较晚,基础研究薄弱,技术创新累计综合发展指数与美国存在较大差距,但由技术创新逐年综合发展指数(图3)可知,我国人工智能新技术创新发展指数自2003年开始逐年上升,正不断缩小与美国人工智能技术创新累计综合发展指数的差距。作为后起之秀,在经历长期以技术跟随为主的技术潜伏期与萌芽期,以及二次创新为主的技术成长期后,依靠后发优势,我国于2017年反超自2003年以来技术创新逐年发展指数呈逐步下降态势的美国,跃居全球首位。
结论及建议
本文基于人工智能技术创新科研大数据,提出了人工智能技术创新水平多指标测度体系与技术创新综合发展指数计算模型,并通过绘制技术创新生命周期S演化曲线,对我国与世界主要发达国家在人工智能技术创新方面的发展阶段进行了评估与预测,深度剖析了我国与美国等国之间在技术创新、科技布局、产业规模、技术进步等方面的差距。
基于这些结论,本文提出了几点建议。首先,要强化基础研究,加大对基础研究长期稳定的支持力度,同时引导企业增加基础研究投入,提高我国基础研究水平和源头创新能力。
其次,要推动应用研究与基础研究的融合贯通,坚持问题导向、目标导向,设立重大科技计划项目,支持设立联合攻关团队(校企联合或校校联合等),或以企业为主导并协调高校和有关科研院所的资源,对有关人工智能的应用技术进行研究开发(委托研究、联合研究等形式)。
此外,还建议要产业化市场化发展,中国目前以高校为主、各自为战的人工智能研发体系不利于中国人工智能产业对前沿技术的把握和整体技术创新水平的进一步提升,也不利于技术的快速转化应用。建议培育一批技术先进、世界领先的企业,并带动产业上下游协同发展,形成持续创新能力、技术全球领先的产业集群。
最后,要完善技术创新机制,应鼓励企业培育和引进掌握关键核心技术的科技领军人才和团队,为产业发展提供智力支持;建立综合的关键核心技术突破与创新机制,将短期与中长期科技积累相结合,建立国家基础研究、产业科技等方面的公私结合的综合创新体系,将产业发展创新需求、国家战略创新需求、科研好奇创新需求等三大方面的创新动力综合起来,并重结合,实现“远水”和“近渴”的融合。
综上所述,通过实施这些建议,我国在人工智能技术创新方面可以进一步提升自身的科技水平和创新能力,缩小与美国等发达国家的差距,加速我国在人工智能领域的发展进程。
原文来源:王山,陈昌兵.中美人工智能技术创新的动态比较——基于人工智能技术创新大数据的多S曲线模型分析[J/OL].北京工业大学学报(社会科学版)。(因篇幅原因,本文有部分删减)
关于我们
「数字经济先锋号」是成都数联产服科技有限公司旗下数字经济研究交流平台。围绕数字产业、数字基建、数字治理、数字生态等数字应用领域,揭示与记录数字经济发展点滴与脉络。
数联产服是一家数字经济行业智库、产业大数据服务商,具备全流程大数据治理-分析-决策支撑服务能力,面向各级政府和产业运营机构提供基于大数据的产业经济发展解决方案和综合服务。
人工智能的六个发展阶段,一起来看看吧
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能充满未知的探索道路曲折起伏,人工智能的发展历程基本划分为以下6个阶段:
1、起步发展期:1956年—20世纪60年代初
人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
2、反思发展期:20世纪60年代—70年代初
人工智能发展初期的突破性进展大大提升了人们对人工智能期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标落空使人工智能发展走入低谷。
3、应用发展期:20世纪70年代初—80年代中
20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
4、低迷发展期:20世纪80年代中—90年代中
随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
5、稳步发展期:20世纪90年代中—2010年
由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。
6、蓬勃发展期:2011年至今
随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长新高潮。
想学习云计算、大数据、新媒体的同学注意啦,博雅环球教育针对此次疫情特推出线上免费直播课程,同学们可以趁这个时期,好好充实一下自己,待到春暖花开时,学以致用,大展身手。想报名的同学快来联系我们吧!
北京|内蒙古|呼和浩特|IT计算机培训|云计算|大数据|新媒体|线上培训|免费课程|高薪就业
人工智能的发展历程
目录
一. 政策
二.主要发展阶段
三.60年历程关键事件
一. 政策
为推动我国人工智能规模化应用,全面提升产业发展智能化水平,2017年7月20日,国务院印发了《新一代人工智能发展规划》,并将在制造、金融、农业、物流、商务、家居等重点行业和领域开展人工智能应用试点示范工作。就金融行业而言,《规划》指出,要在智能金融方面,建立金融大数据系统,提升金融多媒体数据处理与理解能力;创新智能金融产品和服务,发展金融新业态;鼓励金融行业应用智能客服、智能监控等技术和装备;建立金融风险智能预警与防控系统。
二.主要发展阶段
人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MITAILAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。 人工智能的第一次高峰:在1956年的这次会议之后,人工智能迎来了属于它的第一段HappyTime。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。” 人工智能第一次低谷: 70年代,人工智能进入了一段痛苦而艰难岁月。由于科研人员在人工智能的研究中对项目难度预估不足,不仅导致与美国国防高级研究计划署的合作计划失败,还让大家对人工智能的前景蒙上了一层阴影。与此同时,社会舆论的压力也开始慢慢压向人工智能这边,导致很多研究经费被转移到了其他项目上。 在当时,人工智能面临的技术瓶颈主要是三个方面,第一,计算机性能不足,导致早期很多程序无法在人工智能领域得到应用;第二,问题的复杂性,早期人工智能程序主要是解决特定的问题,因为特定的问题对象少,复杂性低,可一旦问题上升维度,程序立马就不堪重负了;第三,数据量严重缺失,在当时不可能找到足够大的数据库来支撑程序进行深度学习,这很容易导致机器无法读取足够量的数据进行智能化。 因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。 **人工智能的崛起:**1980年,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。这是一种,采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。这套系统在1986年之前能为公司每年节省下来超过四千美元经费。有了这种商业模式后,衍生出了像Symbolics、LispMachines等和IntelliCorp、Aion等这样的硬件,软件公司。在这个时期,仅专家系统产业的价值就高达5亿美元。 人工智能第二次低谷:可怜的是,命运的车轮再一次碾过人工智能,让其回到原点。仅仅在维持了7年之后,这个曾经轰动一时的人工智能系统就宣告结束历史进程。到1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。 人工智能再次崛起:上世纪九十年代中期开始,随着AI技术尤其是神经网络技术的逐步发展,以及人们对AI开始抱有客观理性的认知,人工智能技术开始进入平稳发展时期。1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个重要里程。 2006年,Hinton在神经网络的深度学习领域取得突破,人类又一次看到机器赶超人类的希望,也是标志性的技术进步。 【注】GeoffreyHinton的论文《Afastlearningalgorithmfordeepbeliefnets》链接地址 在最近三年引爆了一场商业革命。谷歌、微软、百度等互联网巨头,还有众多的初创科技公司,纷纷加入人工智能产品的战场,掀起又一轮的智能化狂潮,而且随着技术的日趋成熟和大众的广泛接受,这一次狂潮也许会架起一座现代文明与未来文明的桥梁。
三.60年历程关键事件
时至今日,人工智能发展日新月异,此刻AI已经走出实验室,离开棋盘,已通过智能客服、智能医生、智能家电等服务场景在诸多行业进行深入而广泛的应用。可以说,AI正在全面进入我们的日常生活,属于未来的力量正席卷而来。让我们来回顾下人工智能走过的曲折发展的60年历程中的一些关键事件:
1946年,全球第一台通用计算机ENIAC诞生。它最初是为美军作战研制,每秒能完成5000次加法,400次乘法等运算。ENIAC为人工智能的研究提供了物质基础。
1950年,艾伦·图灵提出“图灵测试”。如果电脑能在5分钟内回答由人类测试者提出的一些列问题,且其超过30%的回答让测试者误认为是人类所答,则通过测试。这边论文语言了创造出具有真正智能的机器的可能性。
1956年,“人工智能”概念首次提出。在美国达特茅斯大学举行的一场为其两个月的讨论会上,“人工智能”概念首次被提出。
1959年,首台工业机器人诞生。美国发明家乔治·德沃尔与约瑟夫·英格伯格发明了首台工业机器人,该机器人借助计算机读取示教存储程序和信息,发出指令控制一台多自由度的机械。它对外界环境没有感知。
1964年,首台聊天机器人诞生。美国麻省理工学院AI实验室的约瑟夫·魏岑鲍姆教授开发了ELIZA聊天机器人,实现了计算机与人通过文本来交流。这是人工智能研究的一个重要方面。不过,它只是用符合语法的方式将问题复述一遍。
1965年,专家系统首次亮相。美国科学家爱德华·费根鲍姆等研制出化学分析专家系统程序DENDRAL。它能够分析实验数据来判断未知化合物的分子结构。
1968年,首台人工智能机器人诞生。美国斯坦福研究所(SRI)研发的机器人Shakey,能够自主感知、分析环境、规划行为并执行任务,可以柑橘人的指令发现并抓取积木。这种机器人拥有类似人的感觉,如触觉、听觉等。
1970年,能够分析语义、理解语言的系统诞生。美国斯坦福大学计算机教授T·维诺格拉德开发的人机对话系统SHRDLU,能分析指令,比如理解语义、解释不明确的句子、并通过虚拟方块操作来完成任务。由于它能够正确理解语言,被视为人工智能研究的一次巨大成功。
1976年,专家系统广泛使用。美国斯坦福大学肖特里夫等人发布的医疗咨询系统MYCIN,可用于对传染性血液病患诊断。这一时期还陆续研制出了用于生产制造、财务会计、金融等个领域的专家系统。
1980年,专家系统商业化。美国卡耐基·梅隆大学为DEC公司制造出XCON专家系统,帮助DEC公司每年节约4000万美元左右的费用,特别是在决策方面能提供有价值的内容。
1981年,第五代计算机项目研发。日本率先拨款支持,目标是制造出能够与人对话、翻译语言、解释图像,并能像人一样推理的机器。随后,英美等国也开始为AI和信息技术领域的研究提供大量资金。
1984年,大百科全书(Cyc)项目。Cyc项目试图将人类拥有的所有一般性知识都输入计算机,建立一个巨型数据库,并在此基础上实现知识推理,它的目标是让人工智能的应用能够以类似人类推理的方式工作,成为人工智能领域的一个全新研发方向。
1997年,“深蓝”战胜国际象棋世界冠军。IBM公司的国际象棋电脑深蓝DeepBlue战胜了国际象棋世界冠军卡斯帕罗夫。它的运算速度为每秒2亿步棋,并存有70万份大师对战的棋局数据,可搜寻并估计随后的12步棋。
2011年,Watson参加智力问答节目。IBM开发的人工智能程序“沃森”(Watson)参加了一档智力问答节目并战胜了两位人类冠军。沃森存储了2亿页数据,能够将于问题相关的关键词从看似相关的答案中抽取出来。这一人工智能程序已被IBM广泛应用于医疗诊断领域。
2016~2017年,AlphaGo战胜围棋冠军。AlphaGo是由GoogleDeepMind开发的人工智能围棋程序,具有自我学习能力。它能够搜集大量围棋对弈数据和名人棋谱,学习并模仿人类下棋。DeepMind已进军医疗保健等领域。
2017年,深度学习大热。AlphaGoZero(第四代AlphaGo)在无任何数据输入的情况下,开始自学围棋3天后便以100:0横扫了第二版本的“旧狗”,学习40天后又战胜了在人类高手看来不可企及的第三个版本“大师”。