博舍

人工智能三个发展阶段的驱动力 – 纵横云资讯 人工智能发展阶段中数据驱动阶段

人工智能三个发展阶段的驱动力 – 纵横云资讯

大数据与人工智能将会是未来发展的两大趋势,这容易让人误解为这是两个平行、独立发展的领域。但实际上,大数据是人工智能发展的基础,人工智能的发展往往是紧随大数据的发展。

2016年,AlphaGo战胜李世石引爆了新的舆论点,人工智能(AI)以及其背后的机器学习(machinelearning)、深度学习(deeplearning)进入了更多人的讨论视野。HBO最近推出的人工智能题材连续剧《西部世界》又再次激发了人们对人工智能的关注,人们开始思考,未来的世界会不会真的有人工智能意识觉醒的那天。不过,在担心人工智能是否会打败人类之前,不妨先仔细思考一下人工智能是怎么产生的。

人工智能的驱动力是什么

就目前而言,人工智能的产生需要足够的硬件能力支撑、匹配的机器学习算法和充足的数据资源。人们常提到,大数据与人工智能将会是未来发展的两大趋势,这容易让人误解为这是两个平行、独立发展的领域。但实际上,大数据是人工智能发展的基础,人工智能的发展往往是紧随大数据的发展。按照华裔人工智能专家吴恩达(AndrewNg)的说法是,数据是人工智能的燃料,如果只有很大的引擎(算法)而没有充足的数据作为燃料,人工智能这艘火箭是无法实现腾飞的。

按照各个时期不同的驱动力,我们可以将AI的发展分为三个阶段:数据技术驱动阶段、数据驱动阶段和情景驱动阶段。三个阶段的AI发展对数据的要求各不相同,但从总体上看,人工智能与大数据之间是同生同涨的有机关系。每一次人工智能的增长,大数据行业都起着重要的推动作用。数据量级的增长、计算能力的提升、存储效率的优化、数据可分析程度的提高……都在加快人工智能的发展。其中,数据是人工智能发展的一个重要的竞争优势来源。

人工智能1.0:技术驱动

人工智能发展的第一个阶段,是集中诞生基础理论的阶段。这个阶段奠定了人工智能发展的基本规则,并诞生了基本的开发工具,为日后人工智能的研发工具的升级开辟了先河。在这个阶段,技术的发展,尤其是算法的发展,成了推动人工智能进步的最大动力。达特茅斯会议之后,人们对于算法程序和语言开发投入了极大热情,掀起了人工智能发展的第一波高潮。

公认的人工智能发展起点是1956年于美国达特茅斯学院举办的第一节人工智能会议。尽管这次会议并未达成普遍的共识,但是却为会议确定了主题:人工智能。第一批的人工智能研究从此开始。

1946年,人类历史上第一台电子计算机ENIAC诞生,尽管它有点笨重,但是毫无疑问广泛应用于人工智能和计算机领域。计算机与编程算法的相继出现,从技术层面推动了人工智能的发展。研究者们乐此不疲地运用新的算法和计算工具去解决应用题、证明几何定理、学习和使用英语……每一次的成功都进一步增强了人们对人工智能的信心。他们甚至认为“在二十年内,机器将能完成人能做到的一切工作”。这一目标显然是高估了人工智能发展速度。

计算机性能的瓶颈、计算复杂性的指数级增长、数据量的缺失,使得人工智能的研究停滞不前,人们逐渐对人工智能的发展逐渐丧失信心,人工智能研究进入了第一个低谷期。

人工智能2.0:数据驱动

人工智能发展的第二个阶段,是数据推动人工智能更新迭代的阶段。这个阶段,可获得和分析的数据飞速增长,不仅磨练和提高了计算的能力,使人工智能的大规模运算成为可能,并且也反过来倒逼了数据的采集、清洗和积累,以及相应的软硬件基础设施的发展——这些都带动了大数据行业的腾飞。大企业在这个阶段发挥出了规模优势,成为了推动人工智能发展第二波高潮的主要动力。

从1981年IBM推出第一台个人电脑起,到1993年美国政府宣布实施“国家信息基础设施”计划,也就是我们常说的信息高速公路,电子计算机与信息数据从实验室走进普通人的生活,人工智能的研究不再只是局限于实验室的理论,针对日常生活的具体应用也在不断增多。在这一阶段,数据主要从两方面来影响人工智能的发展:

一方面,大量的数据要求人工智能不断提高其计算能力。信息时代数据量的快速增长,对整个人工智能的处理水平提出了更高的要求。人类大脑对数据的处理是十分强悍的,人的大脑拥有几百亿个脑细胞,每个脑细胞大约有几百条脑神经,每条脑神经上又有几百个突触,每个突触的作用又相当于一块计算机芯片。

计算机人工智能如果想要实现与人类相似的智能水平,就必须要具备相应的计算能力。1997年,IBM“深蓝”在世界象棋中战胜世界棋王卡斯帕罗夫,最重要原因就是其强悍的数据处理能力。在研发过程中,IBM研制小组向”深蓝“输入100年来所有国际特级大师开局和残局的下法。“深蓝”每秒能够进行2亿次的运算,能够通过计算预判之后的12步,对比做出最优的决策。

另一方面,大量的数据也在不断地训练着人工智能。数据量的增加对人工智能而言,不是负担,而是财富,因为数据能帮助训练人工智能,使结果更加精准。回顾“深蓝”,令人惊叹的计算能力并不意味着它就是坚不可摧的。深蓝在1996年第一次挑战时,就以2:4败给卡斯帕罗夫。在之后的一年,研发团队引入美国特级大师本杰明,将他对象棋的理解变成程序教给“深蓝”。此外,在与卡斯帕罗夫每一场对战后,都不断挑战系统参数,强迫“深蓝”进行学习。

如果说主要作为实验室研究成果的“深蓝”并不足以说明数据对于人工智能的重要性,那不妨看看目前占据位居全球市值TOP5中的谷歌与亚马逊。谷歌的搜索引擎与亚马逊的智能推荐系统都是人工智能的具体应用领域,在大量数据的训练下,无论是谷歌的搜索结果,还是亚马逊的推荐结果,都越来越精准——这构成了两家数据公司的核心竞争力。

人工智能3.0:情景驱动

人工智能发展的第三个阶段,是情境推动人工智能更深入到具体应用的阶段。随着人工智能的技术发展和数据积累,行业逐渐发现短期内通用智能和强人工智能是难以实现的,数据分布的情境化特性使得人工智能在特定情境下的垂直发展成为了可能。

这个阶段,新的实用情境的识别与发现,以及对该情境的人工智能解决方案的研究,极大的推动了人工智能行业的前进。移动互联网时代,各种移动终端设备的出现,使得数据呈现指数级的增长。相对于之前,现阶段的“数据”包含的信息量越来越大、维度越来越多,从图像、声音等富媒体数据,到动作、姿态、轨迹等人类行为数据,再到地理位置、天气等环境数据……按照以往数据处理的思路已经难以适应“数据”本身的发展。这对于人工智能应用者来说,既是惊喜,又是挑战,因为一个融合人类智慧、人工智能以及海量数据的智能数据时代已经来临。

在围棋领域战胜人类的AlphaGo已是人工智能的典型代表,但除了AlphaGo,人工智能研究中更多的是各种具体应用。2011年,苹果推出语音虚拟助手Siri,让人们开始体验“人机对话”,当用户懒得输入时,便可以直接询问Siri。尽管Siri刚推出时的回答经常让人啼笑皆非,但是大量的数据训练使Siri的语音识别越来越精准,反馈的答案也让用户越来越满意。2014年,亚马逊推出语音智能家庭管家Echo,人们无需触碰手机,就能直接唤醒Echo,让其完成指令,享受智能家居。

人们更能感受到的是生活中的各类推荐系统(比如图书、音乐、新闻相关的手机App),在搜集用户的个性化数据之后,利用机器学习,为用户反馈出独一无二的结果。一直将自己定义为科技公司而非媒体公司的“今日头条”便是利用数据获取成功的典型案例。大量场景化的数据为人工智能应用于各种情景提供了发展的土壤,没有数据就不会有智能。李开复也曾提到,人工智能更适合于拥有大数据、且数据量可以实现自我推动的公司,没有数据的人工智能是无法前行的。

情景驱动对应用型人工智能企业的数据处理能力提出了要求。企业不仅需要采集数据,还需要利用深度学习将这些数据转化为人工智能的“知识”,最后根据企业的需求,转化为相应的应用决策。

也就是说,应用型的企业至少要形成纵向的生态链,才能实现完成整个场景闭环。令人庆幸的是,有些公司提供的智能数据平台能够协助企业完成整个数据流程的服务,让企业无需重新开发一套自己的平台系统。以TalkingData的智能数据平台(SmartDP)为例,SmartDP能够提供数据管理、数据科学、数据工程的能力,企业能够利用这一平台与自己的具体产业行业相结合,全面利用数据创造更多商业价值。

结语

互联网的发展将大家带入了大数据的时代,而智能数据时代是大数据时代的新的阶段。人工智能与大数据一样,对社会经济起到赋能的作用,帮助人类感知、认知、分析和预测这个世界。

对于人工智能这艘火箭,算法是引擎,数据是燃料。当行业日渐开放,越来越多的算法选择了开源,此时数据便成为了影响人工智能成败的关键点。丰富、多维度的情景化数据使人工智能更多更深的被应用起来,而人工智能的深度应用,又产生了更加海量、精准、高质量的面向情景的数据,为模型的进一步优化提供了条件。

对于未来,我们相信,人工智能和大数据将会共同发展,给人类带来更加智能的生活。

纵横数据面向全国提供域名注册、虚拟主机、云服务器、服务器托管与租用,如需了解,请联系QQ: 171356849 微信:zh18159893430咨询,谢谢!

人工智能发展的三个阶段

2014年12月,霍金在接受bbc采访时,称全面发展的人工智能(ai)可能会成为人类的终结者,他主要担心的是那些达到或者超越人类的人工智能—它们会快速地发展和更新换代,但人类受制于缓慢的生物进化,无法与之抗衡,终将被取代。特斯拉创始人埃隆.马斯克也有过“发展人工智能就像是召唤魔鬼”的言论,他说:“就像所有神话中画着法阵、捧着圣水的邪恶巫师一样,每个巫师都声称自己可以控制恶魔,但是没有一个成功的。”这些听上去有些悲观主义的言论,恰恰是人工智能在近年来快速发展的佐证。

人工智能被认为是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能不仅仅是机器人,机器人只是其容器,机器人有时候是人形,有时候不是,但是人工智能自身只是机器人体内的电脑。人工智能是大脑的话,机器人就是身体,人工智能的概念很宽,我们可以按照实力将人工智能分为以下三大类(指三个层次更妥当)。

弱人工智能:擅长于单个方面的人工智能。比如有能战胜棋类世界冠军的人工智能,但它不会打麻将,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了……,我们已经进入人工智能时代,只是现在水平还比较低。甚至在弱人工智能中比较低级的阶段。

强人工智能:是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干,比创造弱人工智能难得多,我们现在还做不到。lindagottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作,”强人工智能在进行这些操作时应该和人类一样得心应手。

超人工智能:牛津哲学家,知名人工智能思想家nickbostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。

目前ai的发展毫无疑问处于弱人工智能发展阶段。在弱人工智能阶段,ai的发展也要被划分为三个阶段:技术驱动阶段、数据驱动阶段和场景驱动阶段。我们现在处于弱人工智能的早期阶段——技术驱动阶段。因此,从弱人工智能到强人工智能的发展之路任重而道远,一些学者指出,这段发展将经历三个阶段:第一个阶段是计算智能,能存会算,比如我们现在使用的个人计算机(比喻不妥);第二个阶段是认知智能,能说会听、能看会认,比如苹果开发的siri;第三个阶段也是最高阶段,是感知智能,它要求机器或系统能理解会思考,这是人工智能领域努力的目标。虽然,目前人工智能的发展进度可能看起还比较缓慢,但是一次顿悟,也许就能永远改变进步的速度。就好像在人类还信奉地心说的时候,科学家没法计算宇宙的运作方式,但是日心说的发现让一切变得容易很多。

trendforce旗下的拓墣产业研究所发布报告预测,2015年以企业为主的人工智能系统市场价值接近2亿美元,到2020年将达20亿美元以上,5年之间成长倍数高达10倍。因此,人工智能导入企业将于未来5年成为重心,制造业、软件业、资讯工程业、生物医疗科技、零售业、汽车产业等领域都将陆续导入人工智能技术。例如,由美国加州大学伯克利分校的joshuabloom教授创办的wise.io公司,就是人工智能“进驻”工业领域的尝试。wise.io的数据框架可以接受来自hadoop、mongodb等各种数据源的数据,注入、创建多维度视图,机器学习算法调整视图中每个像素和其他像素的关系。举例来说,大部分企业都需要做大规模数据分析获得工业安全报告,目前如果靠人力完成,可能需要一个上百人的团队花接近半年的时间,而wise.io的算法仅仅需要20分钟。在农业领域,美国的bluerivertechnology是一家农业科技和农业自动化技术服务商,主打智能机器人系统优化农业经营方式,减少化学农药在粮食生产中的使用。其智能机器人系统能够根据机器学习功能自动识别农作物,比如确定幼苗间距是否过小,或是确认哪些杂草应该清除,这极大地帮助农民减少了在购买农药上的支出和人力的投入。

此外,有观点认为,随着人工智能越来越聪明,看起来越来越接近人类,拟人化会变得更加容易。美国未来学家雷.库兹韦尔说:“2045年左右,人工智能将来到一个‘奇点’,跨越这个临界点,人工智能将超越人类智慧,人们需要重新审视自己和机器的关系。”现在,在中国的大城市里,大量基于人工智能技术和大数据的应用软件的出现,正在塑造一个全新的工作形态,全职工作越来越少,短期工作和即时就业越来越多,我们面临着一个“更少工作的未来”。所以,人类在享受人工智能带来的经济增长和生活质量改善的同时,也应该关注自身机能的发展问题,机器将“进化”得越来越聪明,而一部分人将“退化”。

人工智能的六个发展阶段,一起来看看吧

原标题:人工智能的六个发展阶段,一起来看看吧

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能充满未知的探索道路曲折起伏,人工智能的发展历程基本划分为以下6个阶段:

1、起步发展期:1956年—20世纪60年代初人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

2、反思发展期:20世纪60年代—70年代初人工智能发展初期的突破性进展大大提升了人们对人工智能期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标落空使人工智能发展走入低谷。

3、应用发展期:20世纪70年代初—80年代中20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

4、低迷发展期:20世纪80年代中—90年代中随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

5、稳步发展期:20世纪90年代中—2010年由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。

6、蓬勃发展期:2011年至今随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长新高潮。

展开全文

想学习云计算、大数据、新媒体的同学注意啦,博雅环球教育针对此次疫情特推出线上免费直播课程,同学们可以趁这个时期,好好充实一下自己,待到春暖花开时,学以致用,大展身手。想报名的同学快来联系我们吧!

北京|内蒙古|呼和浩特|IT计算机培训|云计算|大数据|新媒体|线上培训|免费课程|高薪就业

返回搜狐,查看更多

责任编辑:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇