人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
意义深远!盘点2016人工智能爆发元年的九个重大事件
[size=1em]导读[size=1em]2016年已悄然离我们远去,虽然在历史的长河中,一年是极其平常和短暂,但是对人工智能的成长来说2016年可谓是机器人崛起的“黄金年”。继德国工业4.0以后各国都相继提出了智能制造相关的国家级暂略规划,将人工智能的发展提高到了一个前所未有的高度,各种重大成果和突破性的进展不断涌现,下面就请跟着大业智控一起回味一下16年人工智能发展的大事记吧。1谷歌阿尔法狗打败世界围棋冠军李世石
谷歌是人工智能领域的领军者,由该公司研发的深度学习人工智能项目AlphaGo在2016年1月份掌握了围棋技术,3月份即以4:1的比分击败了世界围棋冠军李世石。要知道,围棋是人类发明的最复杂的专业游戏,现在人工智能已然把它掌握,而且还这么厉害,不得不让人赞叹。
2谷歌WaveNet可以合成更逼真的人声
目前常见的电脑合成人声,大致上可以分成两种:一种是利用一个庞大的样本资料库来做组合,另一种是用小的样本资料(各别的音节),但透过电子的方式去修改它的音调和语速。第一种听起来会比较自然,但需要大量的时间和精力来准备资料库,而且也很占空间;第二种则是虽然比较不占空间,但用合成的去修改音调,听起来还是比较不自然。
3微软人工智能设备的语言理解能力击败人类
以前,我们一直诟病很多语音识别设备,因为它们对于人类语言的理解力一直不如人意。而在2016年,微软在这个领域取得了重大突破。微软研发的Echo等虚拟助理受到了很多人的欢迎,这是因为,里面包含的自动识别系统已经可以达到人类的水平,甚至超过了人类。而这套系统也仅仅是接受了2000个小时的数据训练而已。
4人工智能在医疗领域取得重大突破
很多人都在期盼科技的发展能带来医疗水平的进步,而人工智能已经在医疗领域崭露头角了。由IBM研发的人工智能医疗机器人竟然诊断出了一位被医生漏诊的白血病患者。而美国德州某研究所给出的数据是:人工智能程序对于癌症的诊断比人类快30倍,而且准确率高达99%。
5我国人工智能芯片取得重大突破中星微“数字多媒体芯片技术”国家重点实验室,经过五年多的攻坚克难和不懈努力,中国首款嵌入式神经网络处理器(NPU)芯片已于今年3月6日实现量产,这标志着我国在神经网络处理器领域的研究和开发上取得了重大突破,在基于“数据驱动并行计算”架构的人工智能深度学习领域达到国际先进水平。
6谷歌人工智能翻译工具获新突破2016年11月22日,谷歌发布了人工智能翻译工具。此前其可以把英文日文,英文韩文进行互译,但现在机器可以在前两对翻译训练的基础上,“无师自通”地把日文直接翻译成韩文,整个过程不再借助英文的“桥接”。这或许意味着计算机自己内部形成了一套更深层次的概念体系,其更像是一个哲学的进步。
7IBM研制出世界首个人工相变神经元IBM在苏黎世的研究中心已经创造了世界上第一个人工纳米随机相变神经元,确切的说IBM已经创造了500个人工纳米随机相变神经元,并用他们处理了信号,正如我们人类的大脑一样。这是一个引人注目的突破,他们用的是我们熟悉的材料,并且像人类神经元一样,用很低的能量消耗超高速的传递信号,更重要的是他们像生物神经元一样,具备随机性,他们产生的信号总是略有不同。
8新算法让波士顿动力机器人实现类人平衡力通过一种新的控制算法,美国佛罗里达州人机认知研究所(FloridaInstituteforHumanandMachineCognition,IHMC)的机器人实验室实现了拟人的平衡能力。该算法的测试使用了波士顿动力公司(BostonDynamics)的Atlas机器人,在算法的控制下,Atlas现在可以平稳的走过一段崎岖不平的水泥砖路。从动图中我们可以看到,Atlas的行为和人类基本无差:首先把脚轻轻地踩上去,判断地面的承受能力,接着通过调整身体和手臂来实现平衡。
9德开发出了能感知疼痛的人工神经系统据国外媒体报道,德国科学家开发出了一套人工神经系统,可以让机器人感觉到疼痛,使其在面对潜在危险时能迅速做出反应,避免受到伤害,同时,也能保护站在身边的自然人类。研发人员介绍说,让机器人感觉到疼痛,其实并不困难,只需要在机器手臂上安装一个类似手指的传感器,他们就能探测到环境的压力和温度,而且这套系统也能把收到的感觉进行分类:轻度、中度和重度疼痛等等,依照不同程度的疼痛,启动相应的保护机制。
人工智能爆发的元年是什么(2023年最新整理)
人工智能爆发的元年是什么(2023年最新整理)人工智能2023.04.121550导读:很多朋友问到关于人工智能爆发的元年是什么的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
AI缘起——达特茅斯会议1956年,美国汉诺斯小镇宁静的达特茅斯学院,约翰·麦卡锡、马文·闵斯基、克劳德·香农等学者聚在一起,共同讨论着机器模拟智能的一系列问题。他们讨论了很久,始终没有达成共识,却为讨论内容起了一个名字:人工智能。自此,人工智能(AI,ArtificialIntelligence)开始出现在人们的视野,1956年也就成为了人工智能元年。
关于人工智能的缘起,在达特茅斯会议前,我们必须要提到一个人——图灵。
1950年,图灵发表论文《计算机器与智能》(ComputingMachineryandIntelligence),提出并尝试回答“机器能否思考”这一关键问题。
图灵详细介绍了一种名为“模仿游戏”(TheImitationGame)的测试方法,也就是我们后来更为熟悉的图灵测试。根据《艾伦·图灵传》中的介绍,图灵设想了一种游戏:房间中有一男一女,房间外的人向房间内的男女提问,里面的两个人只能以写字的方式回答问题,然后请房间外的人猜测,哪一位回答者是女人。注意,在这一测试中,男人可以欺骗猜测者,让外面的人以为自己是女人,女人则要努力让猜测者相信自己。而将这一男一女换成人与计算机,如果猜测者无法根据回答判断哪个是人,哪个是计算机,那么可以判断计算机具有人类智能。
1952年,图灵在一场BBC广播中,提出一个新的更为具体的想法:让计算机来冒充人,如果判断正确的人不足70%,也就是超过30%的人误认为与自己说话的是人而不是计算机,那么可以判断计算机具有人类智能。
图灵测试自诞生来产生了巨大影响,图灵奖被称为“计算机界的诺贝尔奖”,图灵也被冠以“人工智能之父”的称号。
人工智能的起源公认为是1956年的达特茅斯会议,这次大会标志着“人工智能”这一概念的诞生。先介绍下本次大会的关键学者。
会议的主要发起人——约翰·麦卡锡(JohnMcCarthy),计算科学家、认知科学家,也是他提出了“人工智能”的概念。麦卡锡对于人工智能的兴趣始于1948年参加的一个名为“脑行为机制”的讨论会,会上,冯·诺伊曼(JohnvonNeumann)提出的自复制自动机(可以复制自身的机器)激起麦卡锡的好奇,自此开始尝试在计算机上模拟智能。达特茅斯会议前后,麦卡锡的主要研究方向是计算机下棋。
另一位积极的参与者是当时在哈佛大学的明斯基(MarvinMinsky,1969年图灵奖获得者),他的老师塔克(AlbertTucker)多年来担任普林斯顿大学数学系主任,主要研究非线性规划和博弈论。1951年,明斯基建造了世界上第一个神经网络模拟器Snare。在Snare的基础上,明斯基解决了“使机器能基于对过去行为的知识,预测当前行为的结果”这一问题,并完成了他的博士论文《NeuralNetsandtheBrainModelProblem》。
塞弗里奇(OliverSelfridge),模式识别的奠基人,后来领导了MAC项目,这个项目后被分为计算机科学实验室与人工智能实验室,又合并为麻省理工学院最大的实验室MITCSAIL。
另外两位重量级参与者是纽厄尔(AllenNewell)和西蒙(HerbertSimon),这两位学者后来共享了1975年的图灵奖。
纽厄尔在普林斯顿大学数学系硕士毕业后,加入了美国著名的兰德公司,并结识了西蒙,开始了他们一生的合作。纽厄尔和西蒙提出了物理符号系统假设,简单的说就是:智能是对符号的操作,最原始的符号对应于物理客体。这一假设与西蒙提出的有限合理性原理成为人工智能三大学派之一——符号主义的主要依据。后来,他们与珀里思(AlanPerlis,第一届图灵奖获得者)共创了卡内基梅隆大学的计算机系。
最后,信息论的创始人香农(ClaudeShannon),他比其他几位年长10岁左右,当时已经是贝尔实验室的大佬。1950年,香农发表论文《Programmingacomputerforplayingchess》,为计算机下棋奠定了理论基础。
除上述学者外,IBM的塞缪尔(ArthurSamuel),达特茅斯的摩尔(TrenchardMore)、算法概率论的创始人所罗门诺夫(RaySolomonoff)等学者也参与了这次会议。
1953年夏天,麦卡锡和明斯基都在贝尔实验室为香农打工。香农当时在研究图灵机及是否可以用图灵机作为智能活动的理论基础,但是麦卡锡只对计算机实现智能感兴趣。由于与香农研究方向上的不同加上麦卡锡认为香农在一些时候过于理论,所以麦卡锡与IBM第一代通用机701的主设计师罗切斯特(NathanielRochester)计划搞一次活动,主要讨论机器模拟智能,并说动香农与明斯基共同写了一个项目建议书以寻求活动资助。
麦卡锡给这个活动起了一个名字:人工智能夏季研讨会(SummerResearchProjectonArtificialIntelligence)。
会议的主要议题有以下7个方面:
达特茅斯研讨会进行了两个月,其中,纽厄尔和西蒙公布的程序“逻辑理论家”(LogicTheorist)引起参会者极大的兴趣,这个程序模拟人证明符号逻辑定理的思维活动,并成功证明了《数学原理》第2章52个定理中的38个定理,被认为是用计算机探讨人类智力活动的第一个真正成果,也是图灵关于机器可以具有智能这一论断的第一个实际证明。此外,逻辑理论家开创了机器定理证明这一新的学科领域。
最后补充一下,在达特茅斯会议期间,“人工智能”这一词虽然被提出,但并没有获得大家的完全认可,尤其是纽厄尔和西蒙,他们的研究在某种意义上偏向于功能学派,他们更主张用“复杂信息处理”这个词。"人工智能"一词真正被学界接受要到1965年,德雷弗斯(HubertDreyfus)发表了著名的《炼金术与人工智能》报告,这一报告对当时人工智能的研究提出质疑,意图说明这些研究是没有基础的无用功。由于报告标题与内容过于大胆,最初兰德公司仅以备忘录的方式发布了油印版,直至1967年,兰德公司才正式发布了这一报告的印刷版。该报告后来成为兰德公司销量最高的报告之一,在AI学者中广为流传,关于这一报告的具体影响,我们将在之后的文章中为大家进行更为详细的介绍。
人工智能元年是那一年?人工智能元年
随着人工智能相关技术在多个应用领域取得突破,业界普遍认为,2017年将迎来“人工智能应用元年”。
人工智能收起
基本上,人工智能被定义为一门科学,即让计算机做一些人类能够完成的智能行为工作。然而,人工智能已经发展了50年却进展非常缓慢,这为解决这个问题带来了一个深刻的认识。幸运的是,今年取得了相当大的进展,并且我们在2018年开启了使其进一步发展的可能性。
不同看法收起
现在,一切都能够与我们的设备相连,比如人工智能能够在你的台式电脑上自行启动一个项目,然后在与电脑连接的智能手机或平板电脑上完成你需要的工作。
RayKurzweil相信,最终,人类将能够使用传感器来连接我们的大脑和云端数据库。互联网最初是设计于连接到计算机上的,而现在已经发展到可以连接到我们的移动设备上,然后传感器也已经可以连接到互联网上。在不久的将来,我相信可以将我们的大脑连接到云端。
为什么说2018年才是人工智能元年?而今年不是!
人工智能变得更加先进的另一个因素是计算方式变得更加自由。在此之前的18个月的时间里,要使新芯片的速度是原来芯片速度的两倍,需要花费的成本很高,而MarcAndreessen声称,目前研究的芯片正在以同样的速度进行处理,但成本只有原来的一半。基于MarcAndreessen的观点,未来我们将会看到更为廉价的处理器以便宜的价格出售并使处理器能在所有的系统里运行,而且它的计算能力将能够处理5年前没有解决掉的问题。
人工智能发展的另一个组成部分是数据,数据正在成为新的动力,并且在过去的十年里,这种新的动力已经能够支持数字化处理模式。当时数据可以通过我们的移动设备进行检索,发展到可以通过传感器进行追踪,而新的数据来源已经可以通过视频、社交媒体和数字图像等更为广泛的方式出现。相比过去只能在一定水平上建立模型,我们现在对数据进行更准确地描述。这意味着未来基于数据处理的准确度将会提高得更多。
人工智能元年普遍认为是哪一年-简短介绍1956年
人工智能元年普遍认为是1956年。人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能元年普遍认为是1956年。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(ARTIFICIALINTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现至今,已经出现了许多AI程序,并且它们也影响到了其它技术的发展。
人工智能元年普遍认为是哪一年人工智能元年普遍认为是1956年。
人工智能研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统;人工智能企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
扩展资料:
人工智能发展的另一个组成部分是数据,数据正在成为新的动力,并且在过去的十年里,这种新的动力已经能够支持数字化处理模式。当时数据可以通过我们的移动设备进行检索,发展到可以通过传感器进行追踪,而新的数据来源已经可以通过视频、社交媒体和数字图像等更为广泛的方式出现。相比过去只能在一定水平上建立模型,我们现在对数据进行更准确地描述。这意味着未来基于数据处理的准确度将会提高得更多。
最后,推动人工智能发展的第四个因素是,机器学习正在转化为新的内燃机,它甚至可以通过结合数学模型和算法来发现数据里面存在的信息。这些复杂的信息图案被机器拿来处理它们需要解决的问题——例如新数据是否与它们所要的相似,是否适合拿来预测未来的结果等等。
参考资料来源:
百度百科-人工智能+时代
结语:以上就是首席CTO笔记为大家介绍的关于人工智能爆发的元年是什么的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。
打赏海报本文转载自互联网,旨在分享有价值的内容,文章如有侵权请联系删除,部分文章如未署名作者来源请联系我们及时备注,感谢您的支持。
转载请注明本文地址:https://www.shouxicto.com/article/94048.html
上一篇:人工智能怎么学院(2023年最新分享)下一篇:人工智能系统怎么使用