博舍

人工智能在国防领域的七大应用 人工智能在哪些方面得到应用

人工智能在国防领域的七大应用

-1-人工智能在国防领域的应用

人工智能在国防领域的应用主要用于7个方面:情报、监视和侦察,后勤,网络空间行动,信息操纵和深度伪造,指挥和控制,半自动和自动驾驶车辆,致命自主武器系统。

(1)情报、监视和侦察。由于有大量可用数据集,因此人工智能在情报领域有很大的用处。情报界以及有大量相关的正在进行中的人工智能项目了。就CIA(中央情报局)就有140个使用AI来完成图像识别和预测分析任务的项目。

(2)后勤。人工智能在军事后勤领域也有很大的应用潜力。空军已经开始使用人工智能来进行飞机维护预测。

(3)网络空间行动。人工智能也有望成为促进军事网络空间行动的关键技术。参议院军事委员会、美国网络司令部司令上将MichaelRogers早在2016年就认为,在网络空间领域只以来人类情报是一个失败的战略。随后他澄清说,应当应用一定程度的人工智能或机器学习技术。DARPA2016网络挑战赛也证明了AI赋能的网络工具的潜在能力,比赛参与者开发了能够自动检测、评估和分发补丁的AI算法。这些能力都可以在未来的网络活动中提供不同的优势。

(4)信息操纵和深度伪造。人工智能技术可以用来制造逼真的伪造图片、音频和视频,这也就是今年大火的“deepfakes”(深度伪造)技术。恶意攻击者可以用深度伪造技术来发起信息操纵活动,攻击每个,如生成虚假新闻报道、影响公共信息、侵蚀公共信任、损害名人名声。为了应对深度伪造技术,DARPA发起了媒体取证项目,以寻求自动检测修改、提供关于视觉媒体真实性信息的理由。

(5)指挥和控制。美国军方正在利用AI在分析方面的能力应用于指挥和控制。空军就开发了一个用于多域指挥和控制的系统,未来人工智能还可能用于融合来自不同域的传感器的数据来创建一个信息的单独源。

(6)半自动和自动驾驶车辆。所有的美国军事服务都在努力将人工智能融入到半自动和自动驾驶车辆中,包括战斗机、无人机、地面车辆和海军舰艇等。人工智能在这些领域的应用与商业半自动驾驶车辆类似,即使用人工智能技术来感知环境、识别物体、融合传感器数据、规划路径、以及与其他车辆之间进行通信。

(7)致命自主武器系统(LAWS)。LAWS是一种特殊的武器系统,使用传感器和计算机算法来独立地识别目标和指挥武器系统在没有人为干预的情况下打击目标。虽然这样的系统目前还不存在,但军事专家相信在未来通信降级或拒绝的特殊环境下,传统武器系统无法工作的情况下LAWS会启到很重要的作用。

-2-军事AI融合的挑战

从冷战开始,主要的国防相关技术在商用之前都是由政府主导的项目首先开发的,包括原子核技术、GPS和互联网技术。DARPA的战略计算计划(StrategicComputingInitiative)从1983到1993年10年间共投入10亿美元来开发人工智能在军事应用领域的探索,但进展缓慢。目前,商业公司正在引领人工智能的发展,随后国防部才采纳这些工具并应用于军事领域。对如此具有战略重要性的技术来说,只有一小部分商业公司在开发是非常不同寻常的。除了投资领域的快速变化外,人工智能技术在军事领域的应用存在来自技术、过程、人员和文化方面的挑战。

2.1国际竞争

随着人工智能军事应用的规模和复杂程度不断变大,国会和国防部许多官员都非常关注该领域的国际竞争。参议员TedCruz在thedawnofAI听证会的评论中表示,对美国来说,放弃发展人工智能的领导地位(相当于中国、俄罗斯等国家)不仅会使美国处于技术劣势,还可能对国家安全产生严重影响。

2.2人工智能的机遇和挑战

(1)自治。许多自主系统都多少使用了人工智能技术。相关专家认为军事系统在一些特殊任务中替换人类会获有很大的优势,如:长时间的情报收集和分析,清除化学武器对环境污染带来的破坏等。在这些任务中,自主系统可以减少相关风险,降低成本,为国防部使命提供一系列的价值,如下图所示。

(2)速度和耐力。人工智能引入了在极限时间范围内作战的方法,提供给系统在GHZ速度反应的能力,具有动态加速对抗速度的潜力。现在一般公认的是,时间在战争中具有非常重要的优势,并且反过来会促进军事人工智能应用的广泛应用。

(3)规模化。人工智能可以通过增强人类能力和使用更加廉价但性能更佳的军事系统来形成群聚效应。并且,人工智能系统可以增加单个服务单元的效率。有分析师称,人工智能系统的使用可能使得军事力量与人力规模和经济实力无关。

(4)信息优势。人工智能为数据量指数级增长提供了一种有效的分析方法。据国防部数据,军队共拥有11000架无人机,每个无人机每天都记录了相当于三个NFL赛季的高清录像。但国防部没有足够的人员或系统来处理这些数据以提取出有价值的情报。未来人工智能算法会生成自己的数据来进一步分析,以完成类似提取非结构化数据、金融数据、选举结果到报告中的任务。

(5)预测性。人工智能算法可以产生一些出乎意外的结果。并确实有很多失败的案例,前DARPA主任AratiPrabhakar表示,我们发现人工智能是一项非常有能力的技术,但同时也是非常有限的,而且出错的一些方式可能人类从来不会发生。如果人工智能系统发规模部署,那么系统失败可能会引发明显的风险。分析师称人工智能系统识别的方式可能是相同的,可能会引发大规模的破坏效应。

(6)可解释性。目前,性能最好的人工智能算法都无法解释其工作过程。DARPA和其他组织都在努力来对人工智能算法有更好的理解。可解释性对军事应用来说具有特殊的意义,因为人工智能系统推理的透明度会影响操作人员对系统和系统结果的信任度。可解释性还会对军事AI系统可验证和确认的性能带来影响。由于缺乏可解释的输出,AI系统在军事测试时无法通过审计来确认系统满足了性能的标准。

(7)漏洞利用。人工智能系统可能会增加系统被利用的可能性。首先,AI系统的普及增加了可被黑的系统的数量。其次,AI系统存在被窃取的漏洞,而且几乎都是基于软件的方式。最后,对手还可以精心引入图像分类器和其他类型的错误引发的漏洞。这些漏洞引发了我们对鲁棒性数据安全、网络安全、测试和评估过程的需求。

-3-人工智能对战场的影响

尽管人工智能还没有以一种正式的形式进入战场,但专家们预测了人工智能会对未来战争带来潜在影响。这种影响将是多方面的,包括商业投资率、国际竞争力、促进人工智能的能力、对AI应用的军事态度、AI特定战争概念的开发。

许多专家断言人工智能军事应用是一种“必然”,认为它必然会带来重大影响。然而,2016年1月,时任联席会议副主席保罗·塞尔瓦将军指出国防部仍在评估人工智能的潜力。企业开发的人工智能技术提供了军事作战的乘数效应吗?如果是,那么可能需要改变我们的战斗方式。如果不是,那么军队需要提高现有的能力以在对手面前取得一定的优势。目前国会也在考虑影响军事AI应用的一些场景并对其进行分析和监管。返回搜狐,查看更多

人工智能的十大应用

导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。

作者:王健宗何安珣李泽远

来源:大数据DT(ID:hzdashuju)

01 无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

02 人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

03机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

04声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

05智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

06智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

07智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

08个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

09医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10 图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。

何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。

李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。

本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。

延伸阅读《金融智能》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。

划重点????

干货直达????

有了中台,那后台还剩下什么?(图解中台架构)

关于读书,我发现每一个技术大牛都有这个怪癖

2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?

34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?

更多精彩????

在公众号对话框输入以下关键词

查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作

大数据 | 云计算 | 数据库 | Python | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生

据统计,99%的大咖都完成了这个神操作

????

认识人工智能的九个方面

3、本次人工智能浪潮的驱动因素

驱动认知程度提高的一方面因素是技术本身的提高,包括数据、算法、算力,使得人工智能技术真正为商业应用创造了价值;另一方面,大数据、物联网、云计算等技术为人工智能的发展打下了良好基础。

4、人工智能产业发展技术方向

人工智能方向的企业目前主要分为两类:专注于技术研发的通用型人工智能企业,如DeepMind、FacebookAIResearch、GoogleBrain与BaiduAI等,以及专注于人工智能技术应用的专用型人工智能企业。通用型人工智能由于研发技术难度大,目前多由巨头互联网公司在进行布局,短期内没有明确的技术突破前景。专用型人工智能企业数量众多,但其发展仍然受制于需要人工标注的数据限制。

5、人工智能产业发展的地域分布

纵观全球人工智能产业的发展,我们可以发现,全球领先的创新高点散落在各个国家,如美国纽约与硅谷、英国伦敦、以色列,以及中国的北京、上海与深圳。人工智能技术本身具有高流通、易传导的性质,在全球信息流通开放的大环境下,人工智能的发展不再受限于国家或地域。借助于良好的人才基础、巨大的应用市场、强有力的风投基金支持,中国人工智能企业的发展势头良好,在全球处在优势领先地位。中国的人工智能企业数量、专利申请数量以及融资规模均仅次于美国,位列全球第二。在国内,计算机视觉、服务机器人、自然语言处理方向的人工智能企业占据了人工智能企业个数的一半以上。北京、上海、深圳作为国内人工智能创新的高地,其相关企业数量占据了国内企业总数的近80%。

6、人工智能未来发展的预测

短期内构建大型的数据集将会是各企业与研究机构发展的重要方向。同时,机器学习技术会更注重迁移学习与小样本学习等方向,近期AlphaGoZero在无监督模式下取得的惊人进步充分体现了此方向的热度。长期来看,通用型人工智能的发展将依赖于对人脑认知机制的科学研究,其发展前景目前尚处于无法预测的状态。

在商业应用方面,短期内,专用型人工智能将会在数据丰富的行业、应用场景成熟的业务前端(如营销、服务等)取得广泛的应用。长期来看,正如国际人工智能领域著名学者MichaelI.Jordan所说,人工智能技术将能在边际成本不递增的情况下将个性化服务普及到更多的消费者与企业,从细分行业的特定应用场景应用到更加普世化的情景。

7、本次人工智能可以带来的商业价值分析

随着人工智能在各个行业的应用场景逐渐明朗,应用的行业与业务范围逐渐增加,在自动驾驶、医疗辅助诊断、金融交易风险防控等领域已有众多企业进行了布局。

从定量的角度,至2030年,人工智能将在中国产生10万亿元的产业带动效益。根据我们的估算,人工智能带来最大影响的传统产业将会是金融、汽车、零售和医疗。在金融行业,通过人工智能技术在风险控制、资产配置、智能投顾等方向的应用,预计人工智能将带来约6000亿元人民币的降本增益效益。在汽车行业,人工智能在自动驾驶上的技术突破将带来约5000亿元人民币的价值增益。在医疗行业,通过人工智能技术在药物研发领域提高成功率、在医疗服务机构内提供疾病诊断辅助、疾病监护辅助等提高服务效率的应用,预计人工智能可以带来约4000亿元人民币的降本价值。在零售行业,人工智能在推荐系统上的运用将提高在线销售的销量表现,同时更加精准的市场预测将降低库存成本,预计人工智能技术将带来约4200亿元人民币的降本与增益价值。

8、目前人工智能在各行业的发展基础分析

根据不同行业的企业在组织机构方面、数据与技术基础方面以及人工智能应用情况上的现状,我们设计了不同行业人工智能发展基础的评估体系,对各个行业应用人工智能的准备程度进行了评估。

通过在各个行业积累的项目经验以及与各个行业的专家访谈,我们对13个行业在组织文化基础、数据与技术基础、人工智能应用基础三大方面的17个子问题进行了定量评估。

从结果上来看,金融、零售、医疗与汽车行业发展基础最为夯实。金融行业拥有良好的数据积累,在自动化的工作流与相关技术的运用上也有不错的成型成效,在组织机构的创新文化与灵活性上处于中等优势地位。医疗行业拥有多年的医疗数据积累与流程化的数据使用过程,因此在数据与技术基础上有着很强的优势。汽车行业已经开始利用人工智能技术布局自动驾驶、辅助驾驶技术,因此在组织基础与人工智能应用基础上有着很好的优势。零售行业在组织结构、数据积累、人工智能应用方面有一定基础,处于一个比较均衡的发展状态。

同时,制造、教育、通信行业值得关注。制造行业、通信行业虽然在组织机构上的基础相对薄弱,但由于拥有大量高质量的数据积累以及自动化的工作流,为人工智能技术的介入提供了良好的技术铺垫。教育行业的数据积累虽然仍处于发展过程中,但组织整体对人工智能持重点关注的态度,同时开始在实际业务中结合或应用人工智能技术。

9、企业如何布局人工智能

如前所述,人工智能技术是继互联网之后最具颠覆性的革命性技术,它将开启一系列新的商业变革。当下人工智能技术所处的发展阶段,就好似处于上世纪九十年代中期的互联网技术。目前,谷歌、Facebook、亚马逊、阿里巴巴、百度等互联网巨头都以收购人工智能初创企业或自建研发实验室等各种方式积极布局人工智能研发,各行业领军企业也在各类人工智能应用场景内进行积极的投资、收购与研发。对于各行业的企业而言,布局人工智能应用,时机就在当下。企业发展人工智能总体思路。

企业在制定人工智能发展计划时:

首先应当明确在目前业务场景下有哪些地方可以运用人工智能技术,有什么机会可以把握,或者换个角度说,如果不开始布局人工智能技术,会失去哪些机会。企业需要通过研究外部市场发展情况,了解目前行业中其他企业在此技术方向上的布局,评估人工智能技术在自身业务背景下的应用机会,学习观察在价值链各环节上的商业应用案例。

其次,企业需要评估在组织、数据与技术、运用与执行能力上具备的核心竞争力,认识到在哪些方面存在不足,并针对不足为相关部门提供各方面的支持与引导。

最后,结合对企业内部核心竞争力打造计划与应用实施计划,企业需要制定明确的发展方向与发展程度期望,设置具有时间节点的发展蓝图,并打造相关配套能力支持计划的执行。

来源:未来智库头条

版权声明:转载文章和图片均来自公开网络,推送文章除非无法确认,我们都会注明作者和来源。如果出处有误或侵犯到原作者权益,请与我们联系删除或授权事宜返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇