博舍

人工智能的算法有哪些AI常用算法 人工智能经典算法有哪些

人工智能的算法有哪些AI常用算法

人工智能(AI)是一个非常广泛的领域,其中包含许多不同的算法和技术。以下是一些常见的人工智能算法:

人工智能的算法有哪些?

机器学习(MachineLearning):机器学习是人工智能领域的一个重要分支,其主要目的是通过利用统计学习理论和算法来训练模型,使得机器能够从数据中学习并不断优化自身的预测和决策能力。机器学习算法包括监督学习、无监督学习和半监督学习等。

深度学习(DeepLearning):深度学习是一种机器学习技术,通过建立深层神经网络模型,可以从大量的数据中进行学习和预测。深度学习被广泛应用于计算机视觉、自然语言处理、语音识别等领域。

自然语言处理(NaturalLanguageProcessing,NLP):自然语言处理是研究人工智能系统如何理解和处理人类语言的学科。自然语言处理涉及到文本预处理、语言分析、语言生成、语言理解等多个方面。

强化学习(ReinforcementLearning):强化学习是一种通过与环境互动来学习行为策略的学习方法。通过对不断变化的环境做出反应并获得反馈,强化学习算法可以逐步优化自己的行动策略。

遗传算法(GeneticAlgorithm):遗传算法是一种模拟自然选择和遗传机制的优化算法。通过从一个种群中选择和进化最适应的解决方案,遗传算法可以帮助人工智能系统找到最优解决方案。

支持向量机(SupportVectorMachine,SVM):支持向量机是一种常见的监督学习算法,通过将数据映射到高维空间中,将数据分成多个类别。支持向量机算法可以处理多维数据,具有较强的分类能力。

贝叶斯网络(BayesianNetwork):贝叶斯网络是一种用于表示变量之间条件依赖关系的概率图模型。贝叶斯网络可以用于预测、决策和诊断等领域,是一种广泛应用的人工智能算法。

总之,人工智能领域的算法种类繁多,随着技术的不断发展和深入研究,新的算法不断涌现。除了上述几种常见的算法,还有许多其他的算法,如决策树、神经进化算法、随机森林等等。

免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号321领取(一定要发暗号321)

目录

一、人工智能免费视频课程和项目

二、人工智能必读书籍

三、人工智能论文合集

四、机器学习+计算机视觉基础算法教程

 五、深度学习机器学习速查表(共26张)

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注公众号【AI技术星球】发送暗号321免费领取文中资料。

机器学习十大经典算法入门

一,SVM(SupportVectorMachine)支持向量机a.SVM算法是介于简单算法和神经网络之间的最好的算法。b.只通过几个支持向量就确定了超平面,说明它不在乎细枝末节,所以不容易过拟合,但不能确保一定不会过拟合。可以处理复杂的非线性问题。c.高斯核函数d.缺点:计算量大

二,决策树(有监督算法,概率算法)a.只接受离散特征,属于分类决策树。b.条件熵的计算H(Label|某个特征)这个条件熵反映了在知道该特征时,标签的混乱程度,可以帮助我们选择特征,选择下一步的决策树的节点。c.Gini和entropy的效果没有大的差别,在scikitlearn中默认用Gini是因为Gini指数不需要求对数,计算量少。d.把熵用到了集合上,把集合看成随机变量。e.决策树:贪心算法,无法从全局的观点来观察决策树,从而难以调优。f.叶子节点上的最小样本数,太少,缺乏统计意义。从叶子节点的情况,可以看出决策树的质量,发现有问题也束手无策。优点:可解释性强,可

人工智能的常用十种算法

导读:人工智能是科技研究中最热门的方向之一。

整理了一份关于python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供,,加我裙966367816 也可以领取的内部资源,人工智能题库,大厂面试题学习大纲自学课程大纲还有200G人工智能资料大礼包免费送哦~

这是小编整理的人工智能必备数学基础 

https://blog.csdn.net/Java_college/article/details/120431070?spm=1001.2014.3001.5501

1、决策树

根据一些feature(特征)进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

 2、随机森林

随机森林是集成学习的一个子类,它依靠于决策树的投票选择来决定最后的分类结果。集成学习通过建立几个模型组合的来解决单一预测问题。集成学习的简单原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

随机森林的构建过程:

假设N表示训练用例(样本)个数,M表示特征数目,随机森林的构建过程如下:

 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集,并用未抽到的用例(样本)作预测,评估其误差。  对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据m个特征,计算其最佳的分裂方式。每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用。 重复上述步骤,构建另外一棵棵决策树,直到达到预定数目的一群决策树为止,即构建好了随机森林。其中,预选变量个数(m)和随机森林中树的个数是重要参数,对系统的调优非常关键。这些参数在调节随机森林模型的准确性方面也起着至关重要的作用。科学地使用这些指标,将能显著的提高随机森林模型工作效率。

 3、 逻辑回归

基本上,逻辑回归模型是监督分类算法族的成员之一。Logistic回归通过使用逻辑函数估计概率来测量因变量和自变量之间的关系。

逻辑回归与线性回归类似,但逻辑回归的结果只能有两个的值。如果说线性回归是在预测一个开放的数值,那逻辑回归更像是做一道是或不是的判断题。

逻辑函数中Y值的范围从0到1,是一个概率值。逻辑函数通常呈S型,曲线把图表分成两块区域,因此适合用于分类任务。

 比如上面的逻辑回归曲线图,显示了通过考试的概率与学习时间的关系,可以用来预测是否可以通过考试。

4、线性回归

所谓线性回归,就是利用数理统计中的回归分析,来确定两种或两种以上变量间,相互依赖的定量关系的一种统计分析方法。

线性回归(LinearRegression)可能是最流行的机器学习算法。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。然后就可以用这条线来预测未来的值!

这种算法最常用的技术是最小二乘法(Leastofsquares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。

5、朴素贝叶斯

朴素贝叶斯(NaiveBayes)是基于贝叶斯定理,即两个条件关系之间。它测量每个类的概率,每个类的条件概率给出x的值。这个算法用于分类问题,得到一个二进制“是/非”的结果。

朴素贝叶斯分类器是一种流行的统计技术,经典应用是过滤垃圾邮件。

6、神经网络

NeuralNetworks适合一个input可能落入至少两个类别里:NN由若干层神经元,和它们之间的联系组成。第一层是input层,最后一层是output层。在hidden层和output层都有自己的classifier。

input输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output层的节点上的分数代表属于各类的分数,下图例子得到分类结果为class1;同样的input被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights和bias,这也就是forwardpropagation。

7、K-均值

K-均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到K个聚类。K-均值用于无监督学习,因此,我们只需使用训练数据X,以及我们想要识别的聚类数量K。

先要将一组数据,分为三类,粉色数值大,黄色数值小。最开始先初始化,这里面选了最简单的3,2,1作为各类的初始值。剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别。欺诈检测中应用广泛,例如医疗保险和保险欺诈检测领域

8、支持向量机

要将两类分开,想要得到一个超平面,最优的超平面是到两类的margin达到最大,margin就是超平面与离它最近一点的距离。

是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。

 应用于面部识别、文本分类等

9、K-最近邻算法

给一个新的数据时,离它最近的k个点中,哪个类别多,这个数据就属于哪一类。例子∶要区分“猫”和“狗”,通过“claws”和“sound”两个feature来判断的话,圆形和三角形是已知分类的了,那么这个“star”代表的是哪一类呢? 

 10、降维

降维(Dimensionalityreduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析(PrincipalComponentAnalysis,PCA)是最流行的降维技术。

主成分分析通过将数据集压缩到低维线或超平面/子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。

整理了一份关深度学习和机器视觉的资料,有python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供,,加我裙966367816下载,+vx也可以领取的内部资源,人工智能题库,大厂面试题学习大纲自学课程大纲还有200GAI资料大礼包免费送哦~有什么问题都可以来问我

欢迎大家扫码 获取AI免费视频资料

人工智能常见算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(SupervisedLearning),无监督学习(UnsupervisedLearning)、半监督学习(Semi-supervisedLearning)和强化学习(ReinforcementLearning)四大类。

常见的监督学习算法包含以下几类:(1)人工神经网络(ArtificialNeuralNetwork)类:反向传播(Backpropagation)、波尔兹曼机(BoltzmannMachine)、卷积神经网络(ConvolutionalNeuralNetwork)、Hopfield网络(hopfieldNetwork)、多层感知器(MultilyerPerceptron)、径向基函数网络(RadialBasisFunctionNetwork,RBFN)、受限波尔兹曼机(RestrictedBoltzmannMachine)、回归神经网络(RecurrentNeuralNetwork,RNN)、自组织映射(Self-organizingMap,SOM)、尖峰神经网络(SpikingNeuralNetwork)等。(2)贝叶斯类(Bayesin):朴素贝叶斯(NaiveBayes)、高斯贝叶斯(GaussianNaiveBayes)、多项朴素贝叶斯(MultinomialNaiveBayes)、平均-依赖性评估(AveragedOne-DependenceEstimators,AODE)贝叶斯信念网络(BayesianBeliefNetwork,BBN)、贝叶斯网络(BayesianNetwork,BN)等。(3)决策树(DecisionTree)类:分类和回归树(ClassificationandRegressionTree,CART)、迭代Dichotomiser3(IterativeDichotomiser3,ID3),C4.5算法(C4.5Algorithm)、C5.0算法(C5.0Algorithm)、卡方自动交互检测(Chi-squaredAutomaticInteractionDetection,CHAID)、决策残端(DecisionStump)、ID3算法(ID3Algorithm)、随机森林(RandomForest)、SLIQ(SupervisedLearninginQuest)等。(4)线性分类器(LinearClassifier)类:Fisher的线性判别(Fisher’sLinearDiscriminant)线性回归(LinearRegression)、逻辑回归(LogisticRegression)、多项逻辑回归(MultionmialLogisticRegression)、朴素贝叶斯分类器(NaiveBayesClassifier)、感知(Perception)、支持向量机(SupportVectorMachine)等。

常见的无监督学习类算法包括:(1)人工神经网络(ArtificialNeuralNetwork)类:生成对抗网络(GenerativeAdversarialNetworks,GAN),前馈神经网络(FeedforwardNeuralNetwork)、逻辑学习机(LogicLearningMachine)、自组织映射(Self-organizingMap)等。(2)关联规则学习(AssociationRuleLearning)类:先验算法(AprioriAlgorithm)、Eclat算法(EclatAlgorithm)、FP-Growth算法等。(3)分层聚类算法(HierarchicalClustering):单连锁聚类(Single-linkageClustering),概念聚类(ConceptualClustering)等。(4)聚类分析(Clusteranalysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(FuzzyClustering)、K-means算法、K均值聚类(K-meansClustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。(5)异常检测(Anomalydetection)类:K最邻近(K-nearestNeighbor,KNN)算法,局部异常因子算法(LocalOutlierFactor,LOF)等。

常见的半监督学习类算法包含:生成模型(GenerativeModels)、低密度分离(Low-densitySeparation)、基于图形的方法(Graph-basedMethods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(DeepQNetwork)、策略梯度算法(PolicyGradients)、基于模型强化学习(ModelBasedRL)、时序差分学习(TemporalDifferentLearning)等。

常见的深度学习类算法包含:深度信念网络(DeepBeliefMachines)、深度卷积神经网络(DeepConvolutionalNeuralNetworks)、深度递归神经网络(DeepRecurrentNeuralNetwork)、分层时间记忆(HierarchicalTemporalMemory,HTM)、深度波尔兹曼机(DeepBoltzmannMachine,DBM)、栈式自动编码器(StackedAutoencoder)、生成对抗网络(GenerativeAdversarialNetworks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-classClassification)、多分类算法(Multi-classClassification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(AnomalyDetection)五种。1.二分类(Two-classClassification)(1)二分类支持向量机(Two-classSVM):适用于数据特征较多、线性模型的场景。(2)二分类平均感知器(Two-classAveragePerceptron):适用于训练时间短、线性模型的场景。(3)二分类逻辑回归(Two-classLogisticRegression):适用于训练时间短、线性模型的场景。(4)二分类贝叶斯点机(Two-classBayesPointMachine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-classDecisionForest):适用于训练时间短、精准的场景。(6)二分类提升决策树(Two-classBoostedDecisionTree):适用于训练时间短、精准度高、内存占用量大的场景(7)二分类决策丛林(Two-classDecisionJungle):适用于训练时间短、精确度高、内存占用量小的场景。(8)二分类局部深度支持向量机(Two-classLocallyDeepSVM):适用于数据特征较多的场景。(9)二分类神经网络(Two-classNeuralNetwork):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。常用的算法:(1)多分类逻辑回归(MulticlassLogisticRegression):适用训练时间短、线性模型的场景。(2)多分类神经网络(MulticlassNeuralNetwork):适用于精准度高、训练时间较长的场景。(3)多分类决策森林(MulticlassDecisionForest):适用于精准度高,训练时间短的场景。(4)多分类决策丛林(MulticlassDecisionJungle):适用于精准度高,内存占用较小的场景。(5)“一对多”多分类(One-vs-allMulticlass):取决于二分类器效果。

回归回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:(1)排序回归(OrdinalRegression):适用于对数据进行分类排序的场景。(2)泊松回归(PoissionRegression):适用于预测事件次数的场景。(3)快速森林分位数回归(FastForestQuantileRegression):适用于预测分布的场景。(4)线性回归(LinearRegression):适用于训练时间短、线性模型的场景。(5)贝叶斯线性回归(BayesianLinearRegression):适用于线性模型,训练数据量较少的场景。(6)神经网络回归(NeuralNetworkRegression):适用于精准度高、训练时间较长的场景。(7)决策森林回归(DecisionForestRegression):适用于精准度高、训练时间短的场景。(8)提升决策树回归(BoostedDecisionTreeRegression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。(1)层次聚类(HierarchicalClustering):适用于训练时间短、大数据量的场景。(2)K-means算法:适用于精准度高、训练时间短的场景。(3)模糊聚类FCM算法(FuzzyC-means,FCM):适用于精确度高、训练时间短的场景。(4)SOM神经网络(Self-organizingFeatureMap,SOM):适用于运行时间较长的场景。异常检测异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:(1)一分类支持向量机(One-classSVM):适用于数据特征较多的场景。(2)基于PCA的异常检测(PCA-basedAnomalyDetection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(InductiveTransferLearning)、直推式迁移学习(TransductiveTransferLearning)、无监督式迁移学习(UnsupervisedTransferLearning)、传递式迁移学习(TransitiveTransferLearning)等。

算法的适用场景:需要考虑的因素有:(1)数据量的大小、数据质量和数据本身的特点(2)机器学习要解决的具体业务场景中问题的本质是什么?(3)可以接受的计算时间是什么?(4)算法精度要求有多高?

有了算法,有了被训练的数据(经过预处理过的数据),那么多次训练(考验计算能力的时候到了)后,经过模型评估和算法人员调参后,会获得训练模型。当新的数据输入后,那么我们的训练模型就会给出结果。业务要求的最基础的功能就算实现了。

互联网产品自动化运维是趋势,因为互联网需要快速响应的特性,决定了我们对问题要快速响应、快速修复。人工智能产品也不例外。AI+自动化运维是如何工作的呢?

参考:《人工智能产品经理–AI时代PM修炼手册》作者:张竞宇

智能优化算法总结

优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。

梯度为基础的传统优化算法具有较高的计算效率、较强的可靠性、比较成熟等优点,是一类最重要的、应用最广泛的优化算法。但是,传统的最优化方法在应用于复杂、困难的优化问题时有较大的局限性。一个优化问题称为是复杂的,通常是指具有下列特征之一:(1)目标函数没有明确解析表达;(2)目标函数虽有明确表达,但不可能恰好估值;(3)目标函数为多峰函数;(4)目标函数有多个,即多目标优化。一个优化问题称为是困难的,通常是指:目标函数或约束条件不连续、不可微、高度非线性,或者问题本身是困难的组合问题。传统优化方法往往要求目标函数是凸的、连续可微的,可行域是凸集等条件,而且处理非确定性信息的能力较差。这些弱点使传统优化方法在解决许多实际问题时受到了限制。

智能优化算法一般都是建立在生物智能或物理现象基础上的随机搜索算法,目前在理论上还远不如传统优化算法完善,往往也不能确保解的最优性,因而常常被视为只是一些“元启发式方法”(meta-heuristic)。但从实际应用的观点看,这类新算法一般不要求目标函数和约束的连续性与凸性,甚至有时连有没有解析表达式都不要求,对计算中数据的不确定性也有很强的适应能力。

下面给出一个局部搜索,模拟退火,遗传算法,禁忌搜索的形象比喻:为了找出地球上最高的山,一群有志气的兔子们开始想办法。1.兔子朝着比现在高的地方跳去。他们找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是局部搜索,它不能保证局部最优值就是全局最优值。2.兔子喝醉了。他随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,他渐渐清醒了并朝最高方向跳去。这就是模拟退火。

3.兔子们吃了失忆药片,并被发射到太空,然后随机落到了地球上的某些地方。他们不知道自己的使命是什么。但是,如果你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会找到珠穆朗玛峰。这就是遗传算法。4.兔子们知道一个兔的力量是渺小的。他们互相转告着,哪里的山已经找过,并且找过的每一座山他们都留下一只兔子做记号。他们制定了下一步去哪里寻找的策略。这就是禁忌搜索。

一般而言,局部搜索就是基于贪婪思想利用邻域函数进行搜索,若找到一个比现有值更优的解就弃前者而取后者。但是,它一般只可以得到“局部极小解”,就是说,可能这只兔子登“登泰山而小天下”,但是却没有找到珠穆朗玛峰。而模拟退火,遗传算法,禁忌搜索,神经网络等从不同的角度和策略实现了改进,取得较好的“全局最小解”。模拟退火算法(SimulatedAnnealing,SA)模拟退火算法的依据是固体物质退火过程和组合优化问题之间的相似性。物质在加热的时候,粒子间的布朗运动增强,到达一定强度后,固体物质转化为液态,这个时候再进行退火,粒子热运动减弱,并逐渐趋于有序,最后达到稳定。模拟退火的解不再像局部搜索那样最后的结果依赖初始点。它引入了一个接受概率p。如果新的点(设为pn)的目标函数f(pn)更好,则p=1,表示选取新点;否则,接受概率p是当前点(设为pc)的目标函数f(pc),新点的目标函数f(pn)以及另一个控制参数“温度”T的函数。也就是说,模拟退火没有像局部搜索那样每次都贪婪地寻找比现在好的点,目标函数差一点的点也有可能接受进来。随着算法的执行,系统温度T逐渐降低,最后终止于某个低温,在该温度下,系统不再接受变化。模拟退火的典型特征是除了接受目标函数的改进外,还接受一个衰减极限,当T较大时,接受较大的衰减,当T逐渐变小时,接受较小的衰减,当T为0时,就不再接受衰减。这一特征意味着模拟退火与局部搜索相反,它能避开局部极小,并且还保持了局部搜索的通用性和简单性。

在物理上,先加热,让分子间互相碰撞,变成无序状态,内能加大,然后降温,最后的分子次序反而会更有序,内能比没有加热前更小。就像那只兔子,它喝醉后,对比较近的山峰视而不见,迷迷糊糊地跳一大圈子,反而更有可能找到珠峰。

值得注意的是,当T为0时,模拟退火就成为局部搜索的一个特例。

模拟退火的伪码表达:proceduresimulatedannealingbegint:=0;initializetemperatureTselectacurrentstringvcatrandom;evaluatevc;repeatrepeatselectanewstringvnintheneighborhoodofvc;(1)iff(vc)thenvc:=vn;elseifrandom[0,1]thenvc:=vn;until(termination-condition)(3)T:=g(T,t);(4)T:=t+1;until(stop-criterion)(5)end;上面的程序中,关键的是(1)新状态产生函数,(2)新状态接受函数,(3)抽样稳定准则,(4)退温函数,(5)退火结束准则(简称三函数两准则)是直接影响优化结果的主要环节。虽然实验结果证明初始值对于最后的结果没有影响,但是初温越高,得到高质量解的概率越大。所以,应该尽量选取比较高的初温。上面关键环节的选取策略:

(1)状态产生函数:候选解由当前解的邻域函数决定,可以取互换,插入,逆序等操作产生,然后根据概率分布方式选取新的解,概率可以取均匀分布、正态分布、高斯分布、柯西分布等。(2)状态接受函数:这个环节最关键,但是,实验表明,何种接受函数对于最后结果影响不大。所以,一般选取min[1,exp((f(vn)-f(vc))/T)]。

(3)抽样稳定准则:一般常用的有:检验目标函数的均值是否稳定;连续若干步的目标值变化较小;规定一定的步数;(4)退温函数:如果要求温度必须按照一定的比率下降,SA算法可以采用,但是温度下降很慢;快速SA中,一般采用。目前,经常用的是一个不断变化的值。

(5)退火结束准则:一般有:设置终止温度;设置迭代次数;搜索到的最优值连续多次保持不变;检验系统熵是否稳定。为了保证有比较优的解,算法往往采取慢降温、多抽样、以及把“终止温度”设的比较低等方式,导致算法运行时间比较长,这也是模拟退火的最大缺点。人喝醉了酒办起事来都不利索,何况兔子?遗传算法(GeneticAlgorithm,GA)“物竞天择,适者生存”,是进化论的基本思想。遗传算法就是模拟自然界想做的事。遗传算法可以很好地用于优化问题,若把它看作对自然过程高度理想化的模拟,更能显出它本身的优雅——虽然生存竞争是残酷的。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

作为一种新的全局优化搜索算法,遗传算法以其简单通用、健壮性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。遗传算法的伪码:proceduregeneticalgorithmbegininitializeagroupandevaluatethefitnessvalue;(1)whilenotconvergent(2)beginselect;(3)ifrandom[0,1]crossover;(4)ifrandom(0,1)mutation;(5)end;end上述程序中有五个重要的环节:(1)编码和初始群体的生成:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。然后随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个体构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。比如,旅行商问题中,可以把商人走过的路径进行编码,也可以对整个图矩阵进行编码。编码方式依赖于问题怎样描述比较好解决。初始群体也应该选取适当,如果选取的过小则杂交优势不明显,算法性能很差(数量上占了优势的老鼠进化能力比老虎强),群体选取太大则计算量太大。(2)检查算法收敛准则是否满足,控制算法是否结束。可以采用判断与最优解的适配度或者定一个迭代次数来达到。(3)适应性值评估检测和选择:适应性函数表明个体或解的优劣性,在程序的开始也应该评价适应性,以便和以后的做比较。不同的问题,适应性函数的定义方式也不同。根据适应性的好坏,进行选择。选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。遗传算法通过选择过程体现这一思想,进行选择的原则是适应性强的个体为下一代贡献一个或多个后代的概率大。选择实现了达尔文的适者生存原则。(4)杂交:按照杂交概率(pc)进行杂交。杂交操作是遗传算法中最主要的遗传操作。通过杂交操作可以得到新一代个体,新个体组合了其父辈个体的特性。杂交体现了信息交换的思想。可以选定一个点对染色体串进行互换,插入,逆序等杂交,也可以随机选取几个点杂交。杂交概率如果太大,种群更新快,但是高适应性的个体很容易被淹没,概率小了搜索会停滞。(5)变异:按照变异概率(pm)进行变异。变异首先在群体中随机选择一个个体,对于选中的个体以一定的概率随机地改变串结构数据中某个串的值。同生物界一样,GA中变异发生的概率很低。变异为新个体的产生提供了机会。变异可以防止有效基因的缺损造成的进化停滞。比较低的变异概率就已经可以让基因不断变更,太大了会陷入随机搜索。想一下,生物界每一代都和上一代差距很大,会是怎样的可怕情形。就像自然界的变异适和任何物种一样,对变量进行了编码的遗传算法没有考虑函数本身是否可导,是否连续等性质,所以适用性很强;并且,它开始就对一个种群进行操作,隐含了并行性,也容易找到“全局最优解”。禁忌搜索算法(TabuSearch,TS)为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索中“禁忌表(tabulist)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabulength)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“besttofar”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspirationcriterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。伪码表达:proceduretabusearch;begininitializeastringvcatrandom,clearupthetabulist;cur:=vc;repeatselectanewstringvnintheneighborhoodofvc;ifva>best_to_farthen{vaisastringinthetabulist}begincur:=va;letvatakeplaceoftheoldeststringinthetabulist;best_to_far:=va;endelsebegincur:=vn;letvntakeplaceoftheoldeststringinthetabulist;end;until(termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabulist,也可以把和当然值在同一“等高线”上的都放进tabulist。

(2)为了降低计算量,禁忌长度和禁忌表的集合不宜太大,但是禁忌长度太小容易循环搜索,禁忌表太小容易陷入“局部极优解”。(3)上述程序段中对best_to_far的操作是直接赋值为最优的“解禁候选解”,但是有时候会出现没有大于best_to_far的,候选解也全部被禁的“死锁”状态,这个时候,就应该对候选解中最佳的进行解禁,以能够继续下去。(4)终止准则:和模拟退火,遗传算法差不多,常用的有:给定一个迭代步数;设定与估计的最优解的距离小于某个范围时,就终止搜索;当与最优解的距离连续若干步保持不变时,终止搜索;禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的。人工神经网络(ArtificialNeuralNetwork,ANN)神经网络从名字就知道是对人脑的模拟。它的神经元结构,它的构成与作用方式都是在模仿人脑,但是也仅仅是粗糙的模仿,远没有达到完美的地步。和冯·诺依曼机不同,神经网络计算非数字,非精确,高度并行,并且有自学习功能。生命科学中,神经细胞一般称作神经元,它是整个神经结构的最基本单位。每个神经细胞就像一条胳膊,其中像手掌的地方含有细胞核,称作细胞体,像手指的称作树突,是信息的输入通路,像手臂的称作轴突,是信息的输出通路;神经元之间错综复杂地连在一起,互相之间传递信号,而传递的信号可以导致神经元电位的变化,一旦电位高出一定值,就会引起神经元的激发,此神经元就会通过轴突传出电信号。而如果要用计算机模仿生物神经,就需要人工的神经网络有三个要素:(1)形式定义人工神经元;(2)给出人工神经元的连接方式,或者说给出网络结构;(3)给出人工神经元之间信号强度的定义。历史上第一个人工神经网络模型称作M-P模型,非常简单:其中,表示神经元i在t时刻的状态,为1表示激发态,为0表示抑制态;是神经元i和j之间的连接强度;表示神经元i的阈值,超过这个值神经元才能激发。

这个模型是最简单的神经元模型。但是功能已经非常强大:此模型的发明人McCulloch和Pitts已经证明,不考虑速度和实现的复杂性,它可以完成当前数字计算机的任何工作。以上这个M-P模型仅仅是一层的网络,如果从对一个平面进行分割的方面来考虑的话,M-P网络只能把一个平面分成个半平面,却不能够选取特定的一部分。而解决的办法就是“多层前向网路”。图2是多层前向网络的示意图。最下面的称作输入层,最上面一层称作输出层,任何一个中间层都接受来自前一层的所有输入,加工后传入后一层。每一层的神经元之间没有联系,输入输出层之间也没有直接联系,并且仅仅是单向联系,没有反馈。这样的网络被称作“多层前向网络”。数据在输入后,经过每一层的加权,最后输出结果。如图3,用可覆盖面来说明多层网络的功能:单层网络只能把平面分成两部分,双层网络就可以分割任意凸域,多层网络则可以分割任意区域。为了让这种网络有合适的权值,必须给网络一定的激励,让它自己学习,调整。一种方法称作“向后传播算法(BackPropagation,BP)”,其基本思想是考察最后输出解和理想解的差异,调整权值,并把这种调整从输出层开始向后推演,经过中间层,达到输入层。可见,神经网络是通过学习来达到解决问题的目的,学习没有改变单个神经元的结构和工作方式,单个神经元的特性和要解决的问题之间也没有直接联系,这里学习的作用是根据神经元之间激励与抑制的关系,改变它们的作用强度。学习样本中的任何样品的信息都包含在网络的每个权值之中。BP算法中有考察输出解和理想解差异的过程,假设差距为w,则调整权值的目的就是为了使得w最小化。这就又包含了前文所说的“最小值”问题。一般的BP算法采用的是局部搜索,比如最速下降法,牛顿法等,当然如果想要得到全局最优解,可以采用模拟退火,遗传算法等。当前向网络采用模拟退火算法作为学习方法的时候,一般成为“波尔兹曼网络”,属于随机性神经网络。在学习BP算法学习的过程中,需要已经有一部分确定的值作为理想输出,这就好像中学生在学习的时候,有老师的监督。如果没有了监督,人工神经网络该怎么学习?就像没有了宏观调控,自由的市场引入了竞争一样,有一种学习方法称作“无监督有竞争的学习”。在输入神经元i的若干个神经元之间开展竞争,竞争之后,只有一个神经元为1,其他均为0,而对于失败的神经元,调整使得向对竞争有利的方向移动,则最终也可能在一次竞争中胜利;人工神经网络还有反馈网络如Hopfield网络,它的神经元的信号传递方向是双向的,并且引入一个能量函数,通过神经元之间不断地相互影响,能量函数值不断下降,最后能给出一个能量比较低的解。这个思想和模拟退火差不多。人工神经网络应用到算法上时,其正确率和速度与软件的实现联系不大,关键的是它自身的不断学习。这种思想已经和冯·诺依曼模型很不一样。

由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。

总结

模拟退火,遗传算法,禁忌搜索,神经网络在解决全局最优解的问题上有着独到的优点,并且,它们有一个共同的特点:都是模拟了自然过程。模拟退火思路源于物理学中固体物质的退火过程,遗传算法借鉴了自然界优胜劣汰的进化思想,禁忌搜索模拟了人类有记忆过程的智力过程,神经网络更是直接模拟了人脑。它们之间的联系也非常紧密,比如模拟退火和遗传算法为神经网络提供更优良的学习算法提供了思路。把它们有机地综合在一起,取长补短,性能将更加优良。这几种智能算法有别于一般的按照图灵机进行精确计算的程序,尤其是人工神经网络,是对计算机模型的一种新的诠释,跳出了冯·诺依曼机的圈子,按照这种思想来设计的计算机有着广阔的发展前景

十大经典预测算法

十大经典预测算法(一)----线性回归十大经典预测算法(二)----逻辑回归十大经典预测算法(四)----支持向量机(SVM算法)十大经典预测算法(六)---集成学习(模型融合算法)十大经典预测算法(七)---随机森林十大经典预测算法(八)---ADBOOST十大经典预测算法(九)---GBDT

 

1.线性回归

在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。

预测建模主要关注的是在牺牲可解释性的情况下,尽可能最小化模型误差或做出最准确的预测。我们将借鉴、重用来自许多其它领域的算法(包括统计学)来实现这些目标。

线性回归模型被表示为一个方程式,它为输入变量找到特定的权重(即系数B),进而描述一条最佳拟合了输入变量(x)和输出变量(y)之间关系的直线。

线性回归

例如:y=B0+B1*x

我们将在给定输入值x的条件下预测y,线性回归学习算法的目的是找到系数B0和B1的值。

我们可以使用不同的技术来从数据中学习线性回归模型,例如普通最小二乘法的线性代数解和梯度下降优化。

线性回归大约有200多年的历史,并已被广泛地研究。在使用此类技术时,有一些很好的经验规则:我们可以删除非常类似(相关)的变量,并尽可能移除数据中的噪声。线性回归是一种运算速度很快的简单技术,也是一种适合初学者尝试的经典算法。

2.Logistic回归

Logistic回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。

像线性回归一样,Logistic回归的目的也是找到每个输入变量的权重系数值。但不同的是,Logistic回归的输出预测结果是通过一个叫作「logistic函数」的非线性函数变换而来的。

logistic函数的形状看起来像一个大的「S」,它会把任何值转换至0-1的区间内。这十分有用,因为我们可以把一个规则应用于logistic函数的输出,从而得到0-1区间内的捕捉值(例如,将阈值设置为0.5,则如果函数值小于0.5,则输出值为1),并预测类别的值。

Logistic回归

由于模型的学习方式,Logistic回归的预测结果也可以用作给定数据实例属于类0或类1的概率。这对于需要为预测结果提供更多理论依据的问题非常有用。

与线性回归类似,当删除与输出变量无关以及彼此之间非常相似(相关)的属性后,Logistic回归的效果更好。该模型学习速度快,对二分类问题十分有效。

3.线性判别分析

Logistic回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。

LDA的表示方法非常直接。它包含为每个类计算的数据统计属性。对于单个输入变量而言,这些属性包括:

每个类的均值。所有类的方差。

 

线性判别分析

预测结果是通过计算每个类的判别值、并将类别预测为判别值最大的类而得出的。该技术假设数据符合高斯分布(钟形曲线),因此最好预先从数据中删除异常值。LDA是一种简单而有效的分类预测建模方法。

4.分类和回归树

决策树是一类重要的机器学习预测建模算法。

决策树可以被表示为一棵二叉树。这种二叉树与算法设计和数据结构中的二叉树是一样的,没有什么特别。每个节点都代表一个输入变量(x)和一个基于该变量的分叉点(假设该变量是数值型的)。

决策树

决策树的叶子结点包含一个用于做出预测的输出变量(y)。预测结果是通过在树的各个分叉路径上游走,直到到达一个叶子结点并输出该叶子结点的类别值而得出。

决策树的学习速度很快,做出预测的速度也很快。它们在大量问题中往往都很准确,而且不需要为数据做任何特殊的预处理准备。

5.朴素贝叶斯

朴素贝叶斯是一种简单而强大的预测建模算法。

该模型由两类可直接从训练数据中计算出来的概率组成:1)数据属于每一类的概率;2)给定每个x值,数据从属于每个类的条件概率。一旦这两个概率被计算出来,就可以使用贝叶斯定理,用概率模型对新数据进行预测。当你的数据是实值的时候,通常假设数据符合高斯分布(钟形曲线),这样你就可以很容易地估计这些概率。

贝叶斯定理

朴素贝叶斯之所以被称为「朴素」,是因为它假设每个输入变量相互之间是独立的。这是一种很强的、对于真实数据并不现实的假设。不过,该算法在大量的复杂问题中十分有效。

6.K最近邻算法

K最近邻(KNN)算法是非常简单而有效的。KNN的模型表示就是整个训练数据集。这很简单吧?

对新数据点的预测结果是通过在整个训练集上搜索与该数据点最相似的K个实例(近邻)并且总结这K个实例的输出变量而得出的。对于回归问题来说,预测结果可能就是输出变量的均值;而对于分类问题来说,预测结果可能是众数(或最常见的)的类的值。

关键之处在于如何判定数据实例之间的相似程度。如果你的数据特征尺度相同(例如,都以英寸为单位),那么最简单的度量技术就是使用欧几里得距离,你可以根据输入变量之间的差异直接计算出该值。

K最近邻

KNN可能需要大量的内存或空间来存储所有数据,但只有在需要预测时才实时执行计算(或学习)。随着时间的推移,你还可以更新并管理训练实例,以保证预测的准确率。

使用距离或接近程度的度量方法可能会在维度非常高的情况下(有许多输入变量)崩溃,这可能会对算法在你的问题上的性能产生负面影响。这就是所谓的维数灾难。这告诉我们,应该仅仅使用那些与预测输出变量最相关的输入变量。

7.学习向量量化

KNN算法的一个缺点是,你需要处理整个训练数据集。而学习向量量化算法(LVQ)允许选择所需训练实例数量,并确切地学习这些实例。

学习向量量化

LVQ的表示是一组码本向量。它们在开始时是随机选择的,经过多轮学习算法的迭代后,最终对训练数据集进行最好的总结。通过学习,码本向量可被用来像K最近邻那样执行预测。通过计算每个码本向量与新数据实例之间的距离,可以找到最相似的邻居(最匹配的码本向量)。然后返回最匹配单元的类别值(分类)或实值(回归)作为预测结果。如果将数据重新放缩放到相同的范围中(例如0到1之间),就可以获得最佳的预测结果。

如果你发现KNN能够在你的数据集上得到不错的预测结果,那么不妨试一试LVQ技术,它可以减少对内存空间的需求,不需要像KNN那样存储整个训练数据集。

8.支持向量机

支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。

超平面是一条对输入变量空间进行划分的「直线」。支持向量机会选出一个将输入变量空间中的点按类(类0或类1)进行最佳分割的超平面。在二维空间中,你可以把他想象成一条直线,假设所有输入点都可以被这条直线完全地划分开来。SVM学习算法旨在寻找最终通过超平面得到最佳类别分割的系数。

支持向量机

超平面与最近数据点之间的距离叫作间隔(margin)。能够将两个类分开的最佳超平面是具有最大间隔的直线。只有这些点与超平面的定义和分类器的构建有关,这些点叫作支持向量,它们支持或定义超平面。在实际应用中,人们采用一种优化算法来寻找使间隔最大化的系数值。

支持向量机可能是目前可以直接使用的最强大的分类器之一,值得你在自己的数据集上试一试。

9.袋装法和随机森林

随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。

自助法是一种从数据样本中估计某个量(例如平均值)的强大统计学方法。你需要在数据中取出大量的样本,计算均值,然后对每次取样计算出的均值再取平均,从而得到对所有数据的真实均值更好的估计。

Bagging使用了相同的方法。但是最常见的做法是使用决策树,而不是对整个统计模型进行估计。Bagging会在训练数据中取多个样本,然后为每个数据样本构建模型。当你需要对新数据进行预测时,每个模型都会产生一个预测结果,Bagging会对所有模型的预测结果取平均,以便更好地估计真实的输出值。

随机森林

随机森林是这种方法的改进,它会创建决策树,这样就不用选择最优分割点,而是通过引入随机性来进行次优分割。

因此,为每个数据样本创建的模型比在其它情况下创建的模型更加独特,但是这种独特的方式仍能保证较高的准确率。结合它们的预测结果可以更好地估计真实的输出值。

如果你使用具有高方差的算法(例如决策树)获得了良好的结果,那么你通常可以通过对该算法执行Bagging获得更好的结果。

10.Boosting和AdaBoost

Boosting是一种试图利用大量弱分类器创建一个强分类器的集成技术。要实现Boosting方法,首先你需要利用训练数据构建一个模型,然后创建第二个模型(它企图修正第一个模型的误差)。直到最后模型能够对训练集进行完美地预测或加入的模型数量已达上限,我们才停止加入新的模型。

AdaBoost是第一个为二分类问题开发的真正成功的Boosting算法。它是人们入门理解Boosting的最佳起点。当下的Boosting方法建立在AdaBoost基础之上,最著名的就是随机梯度提升机。

AdaBoost

AdaBoost使用浅层决策树。在创建第一棵树之后,使用该树在每个训练实例上的性能来衡量下一棵树应该对每个训练实例赋予多少权重。难以预测的训练数据权重会增大,而易于预测的实例权重会减小。模型是一个接一个依次创建的,每个模型都会更新训练实例权重,影响序列中下一棵树的学习。在构建所有的树之后,我们就可以对新的数据执行预测,并根据每棵树在训练数据上的准确率来对其性能进行加权。

由于算法在纠正错误上投入了如此多的精力,因此删除数据中的异常值在数据清洗过程中是非常重要的。

 

目标检测中的经典算法有哪些

目标检测是计算机视觉领域中的重要任务,旨在从图像或视频中自动识别和定位出不同类别的物体。随着深度学习的发展,许多基于深度学习的目标检测算法取得了显著的性能提升。然而,在深度学习方法出现之前,一些经典的目标检测算法为该领域的发展奠定了基础。本文将介绍一些经典的目标检测算法,包括基于特征的方法和基于机器学习的方法。

一、基于特征的方法

Haar特征分类器Haar特征分类器是一种基于特征的目标检测方法,最早由Viola和Jones提出。该方法通过使用一组特征模板来表示图像中的目标区域,然后使用级联分类器进行目标的检测。Haar特征分类器具有较快的检测速度和较高的准确性,被广泛应用于面部检测等任务。

HOG特征+SVMHOG(HistogramofOrientedGradients)特征是一种基于梯度方向的特征表示方法,常用于行人检测等目标检测任务。该方法将图像分割为小的区域块,并计算每个块中梯度方向的直方图。然后使用支持向量机(SVM)进行分类器的训练和目标的检测。

SIFT特征+RANSACSIFT(Scale-InvariantFeatureTransform)特征是一种基于局部特征的目标检测方法,具有尺度不变性和旋转不变性。该方法通过在图像中检测关键点,并计算关键点周围的局部特征描述子。然后使用RANSAC(RandomSampleConsensus)算法进行特征匹配和目标的定位。

二、基于机器学习的方法

Viola-Jones算法Viola-Jones算法是一种基于机器学习的目标检测方法,主要用于人脸检测。该方法使用AdaBoost算法进行特征的选择和分类器的训练。它结合了Haar特征和级联分类器,能够快速检测人脸区域并具有较高的准确性。

HOG特征+BoostingHOG特征与Boosting算法的结合是一种常见的基于机器学习的目标检测方法。该方法使用HOG特征提取图像特征,并使用Boosting算法训练分类器。Boosting算法通过迭代训练多个弱分类器,并将它们组合成一个强分类器,以提高目标检测的准确性。

Bag-of-Words模型+SVMBag-of-Words模型与支持向量机(SVM)结合是一种常用的基于机器学习的目标检测方法,主要用于图像分类和目标识别。该方法将图像分割为小的局部区域,并使用局部特征描述子构建视觉词袋。然后使用SVM进行分类器的训练和目标的检测。

以上介绍了一些经典的目标检测算法,它们在计算机视觉领域中具有重要的地位和作用。随着深度学习的兴起,基于深度神经网络的目标检测算法取得了更好的性能。然而,这些经典算法为目标检测领域的发展奠定了基础,对于理解目标检测的原理和方法仍然具有重要的意义。

整理了有关人工智能的籽料,有图像处理opencv自然语言处理、机器学习、数学基础等人工智能籽料,深度学习神经网络+CV计算机视觉学习(两大框架pytorch/tensorflow+源free免费提供关注公众...H:AI技术星球 回复暗号 123 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇