最适合人工智能开发的5种编程语言
自从去年,AlphaGo打遍天下棋手无对手,人工智能的风头就一直无人能及。在刚刚过去的IT领袖峰会上,BAT三位大佬都看好人工智能的未来发展。今年年初,百度就做了一个大动作,在医疗方面押宝人工智能,所以在这次峰会上李彦宏也发声称互联网是道开胃菜,人工智能才是主菜。
人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发,所以很难说人工智能必须用哪一种语言来开发。选择多也意味着会有优劣之分,并不是每种编程语言都能够为开发人员节省时间及精力。所以我们整理了5种比较适用于人工智能开发的编程语言,希望能够对你有所帮助。
如果你想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作。教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。
Python
Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。
Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如
Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。
另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。
Java
Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。
对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。
Lisp
Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。
Lisp语言因其可用性和符号结构而主要用于机器学习/ILP子领域。著名的AI专家彼得·诺维奇(PeterNorvig)在其《ArtificialIntelligence:Amodernapproach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一,感兴趣的朋友可以自行查看。
Prolog
Prolog与Lisp在可用性方面旗鼓相当,据《PrologProgrammingforArtificialIntelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。
Prolog广泛应用于AI的expert系统,也可用于医疗项目的工作。
C++
C++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。C++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C++。
在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C++被广泛地快速执行,游戏中的AI主要用C++编码,以便更快的执行和响应时间。
写在最后:
其实为AI项目选择编程语言,其实很大程度上都取决于sub-field,对于编程语言的选择要从大局入手,不能只考虑部分功能。在这些编程语言中,Python因为适用于大多数AIsub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。
游戏人工智能开发之6种决策方法
c#中Class和Struct使用与性能的区别幸运阿飞:第5条,分析不全,引用类型没有更省内存,省的是传递数据量
UnityPostProcessingStackv2源码整体结构梳理zhang_guo_zheng:打包后报了这样的错ArgumentException:Invalidshader(null)atUnityEngine.Rendering.PostProcessing.PropertySheetFactory.Get(UnityEngine.Shadershader)[0x00014]in:0atUnityEngine.Rendering.PostProcessing.PostProcessLayer.RenderBuiltins(UnityEngine.Rendering.PostProcessing.PostProcessRenderContextcontext,System.BooleanisFinalPass,System.Int32releaseTargetAfterUse,System.Int32eye)[0x0000c]in:0atUnityEngine.Rendering.PostProcessing.PostProcessLayer.Render(UnityEngine.Rendering.PostProcessing.PostProcessRenderContextcontext)Invalidpassnumber(1)forGraphics.Blit(Material"(Unknownmaterial)"with1passes)
unity3dHumanskinrealtimerendering真实模拟人皮实时渲染&H₂SO₄:作者大大,为什么用了lut图后会有一些黑点呢??
世界传说换装迷宫2所有人物及所有技能及奖励技能&&传说系列各秘奥技和台词火恐龙:最爽的还是瓦尔基里
UnityPostProcessingStackv2源码分析系列十二`:老师你好,这些链接打不开了
如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
(责编:赵超、吕骞)分享让更多人看到