全球人工智能产业发展现状及发展趋势浅析
人工智能是指使用机器代替人类实现认知、识别、分析、决策等功能,是研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,其本质是对人的意识和思想的信息过程的模拟。人工智能是一种尖端技术,是新一轮科技革命和产业变革的重要驱动力量,它给经济、政治、社会等带来了颠覆性的影响,或将改变未来的发展格局。在21世纪,人工智能已逐渐成为全球各国新一轮科技战和智力战的必争之地,全球围绕人工智能领域的布局抢位日趋激烈。
一、全球人工智能发展现状
2021年7月8日,世界人工智能大会在上海开幕。根据统计数据评分,全球人工智能排名前10的国家依次为:美国、中国、韩国、加拿大、德国、英国、新加坡、以色列、日本和法国。其中,中国的综合得分为50.6分,美国为66.31分。
(一)美国着重国家和经济安全,力争保持全球领导地位
美国人工智能战略和政策的着力点在于保持其全球“领头羊”地位,并期望对人工智能的发展始终具有主动性与预见性。美国自2013年开始就发布了多项人工智能计划,并提及人工智能在智慧城市、自动驾驶和教育等领域的应用和愿景。2016年,美国将人工智能上升至国家战略层面,出台了《国家人工智能研究与发展计划》,从政策、技术、资金等方面给予一定的支持和保障。特朗普政府执政后,于2019年2月发布了第13859号总统行政令—《维持美国在人工智能领域领导地位的倡议》,从国家战略层面提出美国未来发展人工智能的指导原则,明确指出要集中联邦政府资源发展人工智能,扩大美国的繁荣,增强国家和经济安全,力图保持其在人工智能时代的全球领导地位。2021年6月,拜登政府宣布成立了由12名学术界、政界和产业界人士组成的国家人工智能研究资源工作组(NAIRR),他们将制定一项计划,让人工智能研究人员获得更多政府数据、计算资源和其他工具。该项计划基本继承了《2020年美国人工智能倡议法》的战略诉求。NAIRR的创建是美国政府加速美国国内技术进步的更广泛努力的一部分,美国参议院批准了2500亿美元的投资,用于从人工智能到量子通信等科学研究,这意味着,人工智能战略是拜登政府战略重心之一。
(二)韩国加快构建可持续的人工智能技术能力
韩国拥有雄厚的ICT产业发展根基,这为其发展人工智能奠定了良好的研发与应用生态基础。2018年5月15日,韩国第四次工业革命委员会审议并通过《人工智能研发战略》(以下简称《战略》),旨在重点推广人工智能技术进步,并加快AI在各领域的创新发展,打造世界领先的人工智能研发生态,构建可持续的人工智能技术能力。韩国认为人工智能是经济与社会大变革的核心动力之一,但其AI技术能力与中国和美国相比仍有较大差距,因此提升人工智能技术能力迫在眉睫,事关其能否在第四次工业革命中占得技术主导权。为了加快经济和社会的创新发展,为产业注入新的活力,韩国于2019年12月17日公布了《国家人工智能战略》,旨在凝聚国家力量、发挥自身优势,实现从“IT强国”到“人工智能强国”的转变。根据预算,相关措施若得以实施,到2030年,韩国将在人工智能领域创造455万亿韩元(约合2.7万亿元人民币)的经济效益。
(三)加拿大大力发展人工智能产学研用聚集中心
2017年3月,加拿大政府发布了全球首个人工智能国家战略计划——《泛加拿大人工智能战略(PanCanadianArtificialIntelligenceStrategy)》,计划拨款1.25亿加元支持AI研究及人才培养。该计划还提出了“增加加拿大优秀人工智能研究人员和熟练毕业生的数量”“在加拿大埃德蒙顿、蒙特利尔和多伦多3个主要人工智能中心建立互联的科学卓越节点”“在人工智能发展的经济、伦理、政策和法律意义上发展全球思想领导”以及“支持国家人工智能研究团体”等目标。此外,加拿大在全国范围内形成了数个有代表性城市的人工智能产学研用聚集中心,正是这些中心支撑起了加拿大人工智能发展的基本格局。这些聚集中心包括蒙特利尔、多伦多、埃德蒙顿、滑铁卢、温哥华和魁北克等城市,它们构成了加拿大人工智能研究的中坚力量。如果将加拿大人工智能领域看作一个生态系统,风险投资机构、加速器或孵化器以及公共非盈利机构构成了这个生态系统的土壤,为加拿大人工智能的研发和应用提供基础;各个人工智能产学研用聚集中心有其不同的偏重方向,就像不同种类的作物;各个聚集中心培育出来的初创企业,是人工智能服务人类生活的直接载体,就如作物结出的花朵与果实;国家和地方的政策支持、各领域方向的人才团队构成了人工智能生态的空气和养分;同时,加拿大社会开放,具备吸引外国投资机构、企业实体和人才的良好环境,为整个人工智能生态系统提供了有益补充。
(四)欧盟构建可信人工智能框架,抢占全球伦理规则主导权
欧盟很早就把发展以智能化为基础的经济模式作为其主要战略目标,注重在研发和人才上的投入,但由于缺乏风险资本和私募股权投资,以及民众过多顾虑隐私保护等问题,其在人工智能上的发展落后于中国和美国。为改变这一现状,欧盟采取多种措施大力发展人工智能,发力构建可信人工智能,力争取得全球主导权。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。2018年12月,欧盟发布了《人工智能协调计划》,提出要进一步增加资金投入、深化人工智能技术创新与应用、完善人才培养和技能培训、构建欧洲数据空间、建立人工智能伦理道德框架、促进公共部门人工智能技术使用、加强国际合作等行动,推进欧洲人工智能的开发与应用,实现欧盟和各国人工智能投资收益最大化,推动发展符合欧中价值观和伦理观念的人工智能,力争在伦理与治理领域占据全球领先地位。欧盟于2020年2月发布的《人工智能白皮书—欧洲追求卓越和信任的策略》,透露了欧盟人工智能将由“强监管”转向“发展和监管并重”,在促进人工智能广泛应用的同时,解决新技术使用所产生的风险问题。
二、我国人工智能发展现状
我国人工智能产业在政策、资本、市场需求的共同推动和引领下快速发展。产业上,我国人工智能企业“质、量”兼顾,同步发展,集聚发展效应明显,产业规模不断扩大,产业链布局不断完善。技术上,论文数量不断攀升,在复杂的国际环境下我国迎难而上,芯片产业突破明显,在国际竞赛中我国企业成果颇丰。为进一步推动技术创新,诸多高校设置人工智能相关专业、成立人工智能学院。融合上,我国人工智能与实体经济融合在广度和深度上都进一步深化,全国人工智能产业形成了特色化的发展格局。
2015年7月,国务院印发《关于积极推进“互联网+”行动的指导意见》。《指导意见》将人工智能作为其主要的十一项行动之一,并明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。2016年3月,国务院发布《国民经济和社会发展第十三个五年规划纲要(草案)》,人工智能概念进入“十三五”重大工程。2017年3月十二届全国人大五次会议上,“人工智能”首次被写入政府工作报告;7月,国务院发布《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心;10月,人工智能进入十九大报告,将推动互联网、大数据、人工智能和实体经济深度融合;12月,《促进新一代人工智能产业发展三年行动计划(2018-2020年)》的发布,它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。工信部为加快推动我国新一代人工智能产业创新发展,组织实施了人工智能产业创新任务揭榜挂帅工作,在人工智能项目攻关、选才用才方面效果显著。
相关数据显示,2020年人工智能行业核心产业市场规模将超过1500亿元,预计在2025年将超过4000亿元,中国人工智能产业在各方的共同推动下进入爆发式增长阶段,市场发展潜力巨大,未来中国有望发展为全球最大的人工智能市场。
我国高度重视人工智能技术进步与行业发展,人工智能已上升为国家战略。在此背景下,许多地方出台促进人工智能发展的政策,针对人工智能开展了布局,以广东省为例,广州、深圳、佛山等不少基础雄厚的城市都在积极谋划创建人工智能试验区,其中佛山市提出要“创建国家新一代人工智能创新发展试验区”,这一举措对区域在人工智能发展赛道抢占先机十分有利,对于区域人工智能发展有着显著的带动效果。在产业布局方面,佛山市因地制宜,将人工智能与工业制造进行融合。作为全国制造业的重要基地,佛山拥有2.16万亿的工业产值,对促进人工智能和实体经济融合发展有着大量的需求,可以实现人工智能技术在区域的产业化发展。2021年7月,《佛山市推进制造业数字化智能化转型发展若干措施》提出,“建设数字化智能化示范工厂、示范车间,支持技术改造升级”,加大金融财政支持力度、推动产业链协同、增强产业数字化智能化供给能力多措并举,以加快佛山制造业数字化、网络化、智能化转型升级。8月,佛山市南海区对外释放在人工智能方面的新布局,通过聚焦前沿技术,引进高科技企业和高端人才项目,联合高校科研院所共同攻克人工智能领域关键核心技术,一系列举措阐释着佛山市南海区全力打造国内一流的人工智能创新高地,助力打造佛山市制造业数字化智能化转型发展引领区,赋能佛山制造业升级提速的信心。这是佛山市南海区制造业高质量发展的表现,也是佛山市南海区在人工智能发展到新一阶段的布局升级,同时也反映了地方政府在新的时期发展和布局人工智能的信心与决心。
三、人工智能未来发展趋势
在未来的数十年里,人工智能有可能会极大地改变人类社会结构和生存方式。人工智能技术加速融入经济社会发展各领域全过程已是大势所趋。人工智能在重组全球要素资源、重塑全球经济结构、改变全球竞争格局方面将发挥出重要作用。我国面临中华民族伟大复兴战略全局和世界百年未有之大变局,将以国内国际两个大局、发展安全两件大事为出发点,充分发挥海量数据和丰富应用场景优势,促进人工智能与实体经济深度融合,赋能传统产业转型升级,催生新产业新业态新模式。在加强核心技术攻关、加快新型基础设施建设、推动人工智能和实体经济融合发展、规范行业发展和完善行业治理等方面持续发力,促进人工智能创新发展。
参考资料
1.国家工业信息安全发展研究中心.2019-2020人工智能发展报告.2020-7
2.李月白,江晓原.钱学森与20世纪80年代的人工智能热.2019-11
3.广州日报.2020中国人工智能产业白皮书:五年内市场规模预计超过4000亿元.2021-2
4.李贺南,陈奕彤,宋微.2020年韩国人工智能国家战略.2020-4
5.韩联社.韩国斥巨资大力发展人工智能.2020
6.江丰光,熊博龙,张超.我国人工智能如何实现战略突破——基于中美4份人工智能发展报告的比较与解读.2020-1
来源:中国网
免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。
人工智能人才培养现状、问题及发展方向
7月26日,中国科协青少年科技中心、中国青少年科技辅导员协会和山东省科学技术协会共同主办的2021年中国人工智能普及教育发展论坛在山东烟台举行。论坛主题为“智能时代智创未来”,中国科学院大学人工智能学院副院长肖俊,浙江大学计算机学院教授、教育部义务教育信息科技课标组专家翁恺,山东大学软件学院副院长许信顺围绕人工智能人才培养现状、问题及如何做好人工智能人才培养等话题进行了分享和交流。小编整理专家们的干货观点,为你呈现:
2021年中国人工智能普及教育发展论坛会议现场
人工智能人才培养历史及现状
01
国内外人工智能人才培养链条初步形成
基于研究的高端人工智能人才培养已经发展了近半个世纪,肖俊梳理了国内外人工智能人才培养发展过程中有影响力的十件大事。
1958年,麦卡锡在麻省理工大学组建全球第一个人工智能实验室,开始人工智能研究和人才培养。1962年他在斯坦福组建了世界上第二个人工智能实验室。时至今日,上述两个实验室和卡内基梅隆大学的人工智能实验室排名全球前三。
2017年5月,中国科学院大学成立国内首个全面人工智能人才培养学院,随后,清华大学、北京大学、中国人民大学、南京大学等相继成立了人工智能学院和研究院。
2017年,中国《新一代人工智能发展规划》出台,明确提出要加快培养聚集人工智能高端人才,包括“人工智能+X”复合专业培养、学科交叉和产学研合作,同时实施全民智能教育项目,中小学阶段设置人工智能相关课程。
2018年4月,中国教育部印发《高等学校人工智能创新行动计划》,提出要加强理论研究,引导高校从增量知识和存量调整方面加大人工智能人才培养力度。教育部印发文件还指出,为构建人工智能多层次教育体系,中小学阶段也将引入人工智能普及教育。同时鼓励支持高校相关教学、科研资源开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作。
2018年5月,卡内基梅隆大学(CMU)开设全美第一个人工智能本科专业。同年,中国35所高校申请并获批招收人工智能本科专业学生,2019年之后逐渐变多,教育部也新增高职(专科)人工智能专业,2020年起开始执行。人工智能本科、专科和研究生层次的人才培养开始正式招生。
2018年来,中小学人工智能普及教育引发广泛关注。相关专业机构成立、面向中小学的教材陆续出版。2018年4月14日,中国青少年科技辅导员协会成立人工智能普及教育专业委员会;2019年5月26日中国人工智能学会成立了中小学工作委员会。如陈玉琨、汤晓鸥编写的《人工智能基础(高中版)》等。
2019年,中国人社部相关通知发布人工智能工程技术人员成为“新”的职业工种并组织专家和相关企业起草人工智能职业的相关标准和规范。
2019年3月22日,首届中国人工智能教育大会召开;2019年5月16-18日,国际人工智能与教育大会在北京召开,时任中国教育部部长陈宝生出席。
2019年9月22日,北京大学、清华大学等9所高校及清华大学出版社成立中国人工智能教育联席会,围绕全面提高人工智能人才培养这一核心,共同研讨人工智能人才培养的理念、方法和机制,抓好人工智能专业内涵建设,构建和完善“多主体协同育人长效机制”,培养高水平人工智能人才。
2020年1月21日,教育部、国家发展改革委和财政部印发的《关于“双一流”建设高校促进学科融合加快人工智能领域研究生培养的若干意见》出台,2020年人工智能专业研究生大幅扩招。
从上述这十件事情可以看出:尽管国内人工智能教育开始时间不长,但已受到学校、企业和政府等多方的高度重视;我国已逐步开启学位教育与职业培训协同发展的多元化人工智能人才培养模式;我国已经初步形成覆盖中小学、专科、本科、研究生等各个层次的人工智能人才培养链条,但仅仅是“初步形成”,和高等教育相比,中小学、专科和本科教育仍需再深入研究。
02
我国人工智能人才缺口大
人工智能人才紧缺是我国人工智能发展面临的主要困境。肖俊以2017年《全球AI领域人才报告》为依据,将当前中美人工智能人才数量做了一个对比。截至2017年一季度,全球人工智能领域专业技术人才数量超过190万,美国超过85万,排在第一位,而中国超过5万,全球第七,不足美国的6%。从人工智能人才从业时间的角度分析,中国高层次AI人才极其稀缺且从业时间短,美国从业十年以上的人才比我国高一倍。从年龄分布角度来看,我国也处于明显的弱势,整体而言28-37岁是AI主力军,但是在中国48岁以上的资深AI人才比较少,年轻人比较多一些。而48岁以上美国占到16.5%,中国只有3.7%。
随着诸多行业转向人工智能领域,该领域的人才需求量十分巨大。传统IT企业全面向人工智能转型,纷纷抢占智能产业制高点,如谷歌、IBM等。诸多非IT企业也开始布局人工智能产业,这与人工智能逐渐深入各行各业迫使它们不得不向该方向做转型有关,比如碧桂园就不惜重金招人工智能博士帮企业布局新发展。很多学物理化学材料专业的学生也开始学人工智能技术,希望可以通过学科交叉做出一些新的东西。据TalentSeer和AI人才社区Robin.ly联合发布的数据显示,2016-2019年,全球人工智能人才需求年均增长达74%,而我国工业和信息化部人才交流中心数据显示,当前我国人工智能产业内,有效人才缺口达30万。可见,人工智能的人才培养已是刻不容缓。
人工智能高等教育人才培养
面临的问题及解决思路
01
追求短平快,学科建设、各方协作不足
肖俊认为我国目前的人工智能高等教育主要存在三方面的问题。一是学科建设不健全。人工智能非一级学科,国内现在有几个专业都在做人工智能人才培养,包括智能科学与技术、数据科学和大数据、机器人工程等,没有明确规定人工智能人才必须在哪个系统或者哪个学院培养,导致培养体系不健全,目前每所高校的方案都不一样。二是要警惕“短平快”导向偏差。现在人人都来跨专业学人工智能,简单学一些深度学习算法和Python编程等基本能力就出去找工作。这种浅层次学习和人才培养其实不一定需要由高校承担。高校的人才培养需要贯彻落实“百年树人”思想,不能追求短平快。三是产学研协作不足。人才培养定位和目标不明确、校企供需对接不够、学校招生需求与就业脱节。
02
做好人才培养的精确分类
肖俊认为,人才培养需要执行“三个面向”方针,即面向世界科技前沿,面向国家重大需求和面向国民经济主战场,对人才做好分类培养。针对人工智能人才培养定位和目标不明确、校企供需对接不够、学校招生需求与就业脱节等问题,首先应面向不同需求做好精确分类,比如学术和职业教育层面就应区分开。研究生层面应设立创新型人才培养与技术应用型人才培养互补,专业化培育与定制型培育相结合的培养体系。职业教育层面,要充分发挥高职高专的职业教育优势,尤其是要与新公布的人工智能新职业工种和标准做好衔接。此外,人工智能教育培训市场目前也存在一定的泡沫,社会化培训也需要进一步规范,培养人才的初衷不能变。面向成人的教育,可以以技能培训为目标,并与职业资格考试结合。许信顺将高等教育人工智能人才培养划分为三个层次:一是研究人才培养,主要做核心算法、核心理念创新的工作,还有产业研发等;二是应用型人才培养,主要是把人工智能算法和具体产业相结合落地,使用现有人工智能工具,根据场景解决具体问题,做规模化、产业化;三是人工智能人才基础素养培养。
03
注重学科交叉、数理人文基础教育
“学科交叉”是肖俊谈人工智能高等人才培养的第一个关键词。针对人工智能培养体系不健全等问题,他认为首先应加快人工智能一级学科论证,充分考虑和重视人工智能的学科交叉性,考虑在2020年新增的“交叉学科”门类下进行设置;第二,应制定规范的人工智能人才培养方案,明确招生目标,合理设置招生专业和课程,充分体现人工智能与计算机科学、控制科学的异同;第三,应区分相关教材和专著,目前是专著多,教材少,应打造真正适合教学、学生使用的人工智能系列教材。针对“短平快”问题,现阶段人工智能方向的研究生应将模式识别、计算机视觉作为首选方向,像一些基础性、交叉性方向比如(脑)科学、生物信息学是很好的,但很多学生不一定很感兴趣,他们大多喜欢刷数据集,做应用,调参数,短平快的出成果。当然,出现这一现象也有老师的一部分责任,很多教师的目标在于出“成果”,这个目标本无可厚非,但不应该是人才培养的全部。事实上,不管是人工智能人才培养还是其它学科的人才培养,既然是人才培养,就一定要遵循自身规律,要注重周期性、流畅和质量。
“数理人文基础”是肖俊提出的第二个关键词。在论坛中,他介绍了卡内基梅隆大学(CMU)开设的人工智能本科专业的课程设置。它的课程很有特点,数学与统计学核心课程占6门,人文与艺术占7门,反而像计算机科学和人工智能这类核心课程加一起才8门。可见其非常重视培养学生的数理基础和人文艺术等交叉学科的整体素养的培养。这也是现在我国很多大学所做的通识教育,比如中国科学院大学的本科,前三个学期主要在学数理基础。因此,通过国外的做法可以看到,人工智能高等教育应重视对学生数理基础和人文知识素养的培养,为交叉学科做好准备。因为数学是人工智能核心算法的基础,而人文、伦理是人工智能涉及的重要方面。
04
政府、学校、企业协同
作为一个对硬件和软件要求较高的学科,在人工智能人才培养过程中联合政府、学校和企业之力实现资源共建共享是十分必要的,这也是目前很多学校在探索的路径。
许信顺提出,研究型人才的主要培养主体在高校和研究所。高校主要做规模化课程体系,而科研院所拥有非常先进的设备和优质的研究环境。除了前述两个主体外,还离不开政府和企业。政府方面,在国内能否培养哪个专业人才是需要教育部批准的,另外还需要做资金投入,需要政府拨款,与此同时政府还通过典型的项目投资来推动相关人才的培养工作。企业方面,前些年许多企业经常表示大学培养出来的人才与实际需求相脱钩,为此国家也非常重视这方面的问题,比如推动产教融合的人才培养模式。在人才培养过程中,企业可以提供相关研究环境包括数据,从而深入参与到人才培养过程中。尤其,对于应用型人才培养,更应该推动高校和企业的联合培养,高校有系统化的课程体系,企业有非常完善和成熟的应用场景,二者可以做深度结合。
肖俊也提出,校企协作是提高人工智能人才培养效率重要途径。企业、研究机构和高校有最先进的技术、设备和体验场所可以向社会开放,如中国科学院的研究所每年都有公众开放日,年年预约总是瞬间就满了,这说明社会需求量很大。如果相关企业高校都可以做这种开放日让公众去体验,那么可以在很大程度上解决这个问题。还有如百度、华为、阿里等企业,它们都有体验中心可以对学生开放,在这方面国外企业开始的很早,而国内比较晚。
中小学人工智能普及教育
面临的问题及解决思路
01
基础教育师资短缺,课程、平台不完善
人工智能普及教育要进入中小学,目前面临了三个难题。第一是没有形成成套系统的课程体系。许信顺建议,应该把人工智能基本概念、算法程序设计、机器学习、计算机视觉、人机交互等知识在整个素养培养过程当中进行融入。除了课程体系外,师资力量短缺的问题更是制约发展的瓶颈。依靠现有各个中小学的师资,把所有课程体系内容都讲通有一定难度,在济南很多学校达不到,师资配备不可能把所有课程串起来。第三,教学平台不完善。据许信顺了解,目前济南市拥有比较完善平台的学校只有一所,大部分学校现有的教学平台难以支撑实施所有的人工智能课程模块。现在很多学校有一个思路就是做高校企业的联合培养,通过资源整合来加快人才的培养进程。
02
人工智能普及教育应是一种素质教育
翁恺在论坛发言中特别强调,基础教育阶段的人工智能教育首先应是一种素质教育,即所有学生都应该在基础教育阶段学习,从小学到大学需要有连贯的规划和设计。其次是非技能性,基础教育学科的课程都是基本原理,而不是技能,既不期望学生学了语文可以成为小说家,也不期望学生学了物理可以成为机械工程师;理解人工智能的核心价值和基础理念比掌握具体可见的人工智能技术、手段更重要。
翁恺简单介绍了教育部新一轮的义务教育阶段信息科技课程标准修订的大致情况。课程的核心素养包括信息意识、计算思维、数字化学习以及信息社会责任等,课程目标是让学生具备应用信息科技解决问题的能力,养成合作与探究的习惯,自觉践行信息社会责任,为成为信息社会的合格公民打下数字化基础。
为什么要提“信息科技”而非“信息技术”呢?翁恺表示,之所以这样提,是为了使课程更具科学性。课程的科学性既体现在知识内容上,也体现在教和学的方法上,如何设计教学手段让学生自己探究来得到这些知识,这才是更重要的。教育不仅仅是使学生习得谋生的方法,正如浙江大学老校长竺可桢曾说,教育更需要有科学的方法来分析,公正的态度来计划和果断的决心来执行,而这些都应该是小学时代养成和学习的,这就是教育当中科学的体现。
03
培养孩子对机器的亲切感
生活在信息时代的孩子们,是互联网的原住民,对于非物质世界的认识,他们比以往任何一代都要深刻。因此,人工智能作为一门理解非物质世界的基础学科,需要把握好核心和出发点。在翁恺看来,人工智能教育最重要的是培养和机器打交道的能力,最原始的出发点就是让孩子喜欢计算机,培养他们对机器的亲切感,见到机器不陌生不害怕,习惯用机器解决问题。就像农民的孩子看到锄头是亲切的,医生的孩子看到听诊器是亲切的,我们的孩子看到机器应该是亲切的。在这样一个基础之上理解什么是虚拟,什么是现实,理解技术的边界和能力。
(来源:“全国青少年人工智能科普活动”微信公众号)
中国青少年科技辅导员协会
提醒广大科技辅导员
戴口罩勤洗手少集会
不给病毒可乘之机!
原标题:《人工智能人才培养现状、问题及发展方向》
我国人工智能的发展现状
人工智能现在备受大家关注,各个国家的科技团队都开始并致力于钻研人工智能,人工智能产品层出不出,让我们大呼惊奇。在美国,人工智能的发展处于顶尖状态,而我国的人工智能也已经位于第一梯队,不管是从融资规模和新增企业数量上,中国排名仅位于美国之后位居第二。那么我们当前的人工智能的发展状况是什么样的呢?下面我们就给大家介绍一下这个问题。
可以说中国的人工智能领域在世界排名第二,这是由于在人工智能领域的国际科技论文发表量和发明专利授权量已居世界第二,依托于庞大的网络和用户,国内拥有先进的语音、视觉、传感等人工智能相关领域的技术优势。中国人工智能的产业十分的发达,并且有极大的优势可以发展人工智能。但是中国的人工智能还是存在着很多的瓶颈问题,这些问题包括人工智能原创性理论基础不强,重大原创成果不足;在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面,与以美国的人工智能发达国家相比还存在较大差距。当然,人工智能产业结构布局还不完善,人工智能人才队伍,特别是尖端人才不能满足发展需求等。可以用一个词来总结中国的人工智能,那就是大而不强。
而中国的人工智能开始被很多国家限制,这是因为中国的人工智能发展前景十分好,好的让这些国家眼红,而美国政府正在考虑采取类似的措施,原因也是出于对中国可能获得珍贵的人工智能知识的担忧。中国对机器人和人工智能的兴趣尤其令人担忧,并扬言要对中国投资技术企业进行立法上的限制。
在这里需要给大家说明的是,人工智能中的10%在于算法,20%在于技术,70%在于应用场景和落地。这一推断没错,但是如果在前面30%失去技术优势,后面的70%就没有了什么意义。因此,增强人工智能基础,必须在大数据分析、深度学习、自主协同等方面进行学科理论梳理和研究,开展类脑智能计算、生物仿真等基础技术的研究,以实验室和研究院等形式专注研究成果的产品转化。
当然我们需要意识到一个问题,那就是基础理论是根本,基础技术是主干,应用是枝叶。只有根底深厚庞大,主干强劲,人工智能产业才能日益兴荣昌盛。目前人工智能共享技术包括知识计算引擎技术、自然语言处理技术、群体智能关键技术、自主无人系统智能技术、虚拟现实智能建模技术,以及智能计算芯片与系统等。中国人工智能的未来前景还是比较乐观的,但是这些乐观还是多少有一点悲观的,不过相信我们的国家会解决这些问题。
陈兵:以市场化法治化国际化促人工智能健康发展丨法经兵言
近日,欧盟议会投票通过了欧盟《人工智能法案》,禁止实时面部识别,并对ChatGPT等生成式人工智能工具提出了新的透明度要求。预计该法案将在今年年底获得最终批准,随后是企业和组织适应的宽限期,通常约为两年。
无独有偶,今年4月11日,中国国家互联网信息办公室起草了《生成式人工智能服务管理办法(征求意见稿)》,对生成式人工智能的监管被提上日程。
规则制定对人工智能发展至关重要
近年来,人工智能算法技术不断迭代升级,尤其是训练模型和转换模型的不断改进赋予了人工智能强大的学习能力,使其不再局限于对数据进行分类或决策,而是可以通过训练生成的语言模板规则,根据用户提出的指令即可生成灵活且真实的内容,甚至能够实现高质量的内容创作,即生成式人工智能。
人工智能不再是存在于科幻小说中的虚幻的事物。智能汽车、智慧医疗、智能司法、智能家居等应用场景的出现,尤其是生成式人工智能服务的出现,打破了人们对人工智能的印象,让人们看到了人工智能技术和产品在多领域应用的巨大前景和无限可能,但也带来了算法歧视、数据泄露、技术垄断等风险和挑战。
实践中伴随人工智能技术及应用的发展,新型竞争行为与模式不断涌现,譬如,使用人工智能技术与限制排除竞争,尤其是滥用知识产权垄断间的界限越来越模糊,如何把握激励创新竞争与规制违法竞争间的界限,正成为人工智能场景下规范创新与创新规制面临的难题。此外,由于传统法律规制体系偏向于对行为的事中事后规制,在面对基于数据自主学习和算法优化所带来的预设竞争和引诱行为,现行法律仍存在一定的滞后性,亟待因应人工智能发展带来的新变化,探寻科学合理的竞争法治方案。
在人工智能发展的过程中,除科技创新层面的竞争外,还需高度重视规则制定与实施对人工智能技术和产业发展的影响,规则侧的竞争同等重要,甚至超过了科技本身的竞争,规则将为人工智能科技发展廓清边界和指明方向。
中国相关立法情况
我国近年来高度重视在人工智能领域的法治建设,特别是在数字领域的立法上取得了较为显著的成绩,《人工智能法》草案预备于今年年内由国务院提请全国人大常委会审议,这无疑将有助于更好应对来自人工智能技术开发与应用的挑战。
细数近年来与人工智能发展相关的立法、司法解释等活动,发现其主要聚焦于人工智能核心要素的数据竞争治理方面,这在很大程度上也反映出我国对待发展人工智能的基本态度,即关注人工智能发展的市场化、法治化、国际化推进。譬如2017年修订的《反不正当竞争法》新增互联网专条,意味着经营者不得利用包括人工智能在内的技术手段,实施妨碍、破坏其他经营者合法提供的网络产品或者服务正常运行的行为。
2022年3月20日起施行的《最高人民法院关于适用〈中华人民共和国反不正当竞争法〉若干问题的解释》,结合新时代技术特性,对《反不正当竞争法》的适用作出了细化规定,有助于规范流量劫持、妨碍干扰、恶意不兼容、屏蔽广告、“二选一”、数据爬取、数据“杀熟”等基于人工智能为底层技术的不正当竞争行为。
2022年8月1日,新修订的《反垄断法》正式施行,在总则部分增加第9条,在“滥用市场支配地位行为”章第22条第2款增加了对数字(平台)经济具体要素的规制,这些条款的写入,被认为是对数字经济下平台利用数据与算法、技术、资本优势及平台规则等实施违法排除、限制竞争行为进行规制的积极响应。
同年11月22日,国家市场监督管理总局公布了《中华人民共和国反不正当竞争法(修订草案征求意见稿)》,向社会公开征求意见。征求意见稿主要涉及完善数字经济反不正当竞争、规范治理新经济、新业态、新模式发展中出现的扰乱竞争秩序的行为,其中第4条规定“国家健全数字经济公平竞争规则。经营者不得利用数据和算法、技术、资本优势以及平台规则等从事不正当竞争行为”。如果这一草案获得正式通过,也将会对人工智能发展中相关具体要素,譬如数据和算法、技术、资本等产生重要影响,值得持续关注。
在此基础上,以党的二十大报告中提出的“加强重点领域、新兴领域、涉外领域立法,统筹推进国内法治和涉外法治,以良法促进发展、保障善治”为指引,以大数据战略、人工智能发展等相关政策为指导,分析概括人工智能场景下新型竞争行为与模式的主要类型及特点,探究新型竞争行为与模式对市场规制法律运行带来的挑战,已成为当下规范和支持人工智能健康发展的亟待回应的问题。
人工智能政策法规亟待完善
实践中鉴于人工智能发展带来了市场主体资格、地位及结构的改变,市场规制法律的制定与实施需做出相应调整。
首先,人工智能的出现,为市场竞争注入了新要素。在人工智能算法的加持下,区块链、云计算、工业互联网、机器学习等相关技术在市场中的应用更加广泛,甚至成为了某些行业中平台企业获取竞争优势的关键技术,因此在科学研判人工智能面临的具体风险和治理挑战前,还需厘清人工智能相关技术的概念,以及支撑人工智能的核心要素。
其次,聚焦不断涌现的新型竞争行为与模式。譬如,人工智能算法通过自主定价系统造成价格歧视,还有部分企业会通过域名劫持和网络爬虫等技术手段非法获取其他企业的流量和数据等。因此,为确保人工智能经济业态能够健康发展,就必须对人工智能时代市场竞争形态的转变有更清晰的认识,识别新型竞争行为的类型与可能对市场竞争产生的影响。
再次,面对人工智能发展带来的新风险和新挑战,在立法方面,我国先后出台了《网络安全法》《数据安全法》《个人信息保护法》等基本法。在此基础上,聚焦重点行业、新兴技术的数据安全相关政策与司法解释也于2021年密集出台,为加快培育数据要素市场、保障人工智能健康发展奠定了坚实的制度基础。
在司法方面,人工智能技术在给我国司法带来挑战的同时,也推动着司法智能化的变革和发展;在执法方面,我国对平台企业运用人工智能技术实施的各类行为施行“敏捷、精准、持续、规范”的常态化监管。
同时,必须清醒看到,虽然我国因应人工智能发展在相关制度供给及实践上取得了显著成绩,但是人工智能技术及其相关应用对现行法律规制系统带来颠覆性影响,在治理理念、治理体系、具体司法以及执法等方面仍需进一步完善。特别是人工智能技术及应用存在跨领域、跨行业等特征,这也对我国人工智能领域立法、司法及监管执法的体制机制等提出了新要求。
最后,传统的“先发展,后治理”模式在人工智能场景下面临巨大挑战。建议在人工智能发展中必须尽快搭建科学合理且具有适度超前性的法律系统,以便实现创新激励与公平竞争间的高效互促,需加强科学立法、公平执法、公正司法,围绕数据和算法算力的治理来寻求契合人工智能发展的法治建设切入点与着力点。譬如,人工智能发展在头部企业与中小企业间不断加深的数据与算法算力壁垒,很可能抑制中小企业的创新发展,但也不能以保护中小企业创新之名,来不当损害头部企业的正当利益,为此,亟须平衡公平竞争与创新保护之间的可持续发展关系。
聚焦当下,放眼未来。我国虽然具有人工智能技术创新与产业发展的良好基础,但是整体水平和持续创新能力还有待提升,促进人工智能发展的基础设施、政策法规、标准体系亟待完善,需积极应对来自人工智能发展所带来的治理挑战,抢占发展先机,通过推进人工智能治理的市场化、法治化及国际化,来优化人工智能产业发展的国内外环境,带动国家科技创新竞争力的整体跃升和跨越式发展。
(陈兵系南开大学竞争法研究中心主任,法学院副院长、教授,数字经济交叉科学中心研究员)