2023年人工智能领域发展七大趋势
2022年人工智能领域发展七大趋势
有望在网络安全和智能驾驶等领域“大显身手”
人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。
美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。
增强人类的劳动技能
人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。
比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。
总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
更大更好的语言建模
语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。
2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。
众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。
网络安全领域的人工智能
今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。
随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。
人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。
人工智能与元宇宙
元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。
人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。
低代码和无代码人工智能
2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。
美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。
自动驾驶交通工具
数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。
特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。
此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。
创造性人工智能
在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。
2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)
【纠错】【责任编辑:吴咏玲】人工智能的十大技术及应用
编辑导语:人工智能从诞生以来,其理论和技术日益成熟,应用领域也不断扩大。本篇作者给我们介绍了人工智能的十大技术及其相关应用,一起来看看吧。
人工智能发展到现在已经将近有80年的历史。近日来特斯拉也说了自己不是汽车公司,是可再生能源公司、是机器人公司、是人工智能公司,特斯拉也明确表示未来人工智能汽车自动化驾驶的方向是视觉识别+机器学习。
人工智能从诞生以来,其理论和技术日益成熟,应用领域也不断扩大,接下来我将给大家介绍下人工智能的十大技术及其相关应用。
一、问题求解
人工智能的第一个大成就是发展了能够求解难题的下棋程序。在下棋程序中应用的某些技术,如向前看几步,把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋、国际象棋和围棋。
1997年5月,IBM公司研制的深蓝(DeepBlue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。
二、逻辑推理与定理证明
逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。
为此,不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。1976年7月,美国的阿佩尔(K.Appe1)笔人合作解决了长达124年之久的难题–四色定理,轰动了整个计算机界。他们用了三台大型计算机,花了1200小时。
三、自然语言理解
自然语言处理是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘输入计算机的指令)。人工智能在语言翻译与语音理解程序方面已经取得可喜的成就。
四、自动程序设计
自动程序设计是人工智能的一个重要研究领域。目前已经研制出能够以各种不同的目的描述来编写计算机程序。对自动程序设计的研究不仅可以促进半自动软件开发系统的发展,而且也使通过修正自身数码进行学习(即修正它们的性能)的人工智能系统得到发展。
五、专家系统
专家系统是一个具有大量专门知识与经验的计算机程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。
专家系统可以解决的问题一般包括解释、预测、诊断、设计、规划、监视、修理、指导和控制等。随着人工智能整体水平的提高,专家系统也得到发展。在新一代专家系统中,不但采用基于规则的方法,而且采用基于模型的原理。
六、机器学习
学习是人类智能的主要标志和获得知识的基本手段。香克(R.Shank)认为:
一台计算机若不会学习,就不能称为具有智能的。
机器学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。
七、神经网络
人脑是一个功能特别强大、结构异常复杂的信息处理系统,其基础是神经元及其互联关系。对人脑神经元和人工神经网络的研究,可能创造出新一代人工智能机器。
20世纪80年代以来,神经网络研究职又得重大进展。例如,霍普菲尔德(Hopfield)提出用硬件实现神经网络,鲁梅尔哈特(Rumelhart)等提出多层网络中的反向传播(BP)算法。
目前,神经网网络已在模式识别、图像处理、组合优化、自动控制、信息处理、机器人学和工智能其他领域获得日益广泛的应用。
八、模式识别
模式识别是指识别出给定物体所模仿的标本,如文字识别、汽车牌照识别、指纹识别、语音识别等。这是一种用计算机代替人类或帮助人类的感知模式,是对人类感知外界功能的模拟,使一个计算机系统具有模拟人类通过感官接收外界信息、识别和理解周围环境的感知能力。
九、机器视觉
机器视觉或计算机视觉已从模式识别的一个研究领域发展为一门独立的学科。视觉是感知问题之一。在人工智能中研究的感知过程通常包含一组操作。例如,可见的景物由传感器编码,并被表示为一个灰度数值的矩阵。这些灰度数值由检测器加以处理。
检测器搜索主要图像的成分,如线段、简单曲线和角度等。这些成分又被处理,以便根据景物的表面和形状来推断有关景物的三维特性信息。机器视觉已在机器人装配、卫星图像处理、工业过程监控、飞行器跟踪和制导以及电视实况转播等领域获得极为广泛的应用。
十、智能控制
智能控制是一类不需要(或需要尽可能少的)人的干预就能够独立地驱动智能机器实现其目标的自动控制,是自动控制的高级阶段。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。十多年后,建立实用智能控制系统的技术逐渐成熟。
百度公司董事长兼首席执行官李彦宏认为,人工智能是具有显著产业溢出效应的基础性技术,能够推动多个领域的变革和跨越式发展。例如:人工智能可以加速发现医治疾病的新疗法,大幅降低新药研发成本;可以带动工业机器人、无人驾驶汽车等新兴产业的飞跃式发展;可以大幅提升国防信息化水平,加速无人作战装备的应用。人工智能技术将极大地提升和扩展人类的能力边界对促进技术创新、提升国家竞争优势,乃至推动人类社会发展产生深远影响。
以上就是人工智能的相关技术及其应用,如何让人工智能带给生活更大提升,不仅仅是技术上的创新,也需要更多的人工智能专业产品经理去思考。
本文由@汪仔2461原创发布于人人都是产品经理,未经许可,禁止转载
题图来自Unsplash,基于CC0协议
人工智能 领域六大分类
1)深度学习
深度学习是基于现有的数据进行学习操作,是机器学习研究中的一个新的领域,机在于建立、模拟人脑进行分析学习的神经网
络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。
2)自然语言处理
自然语言处理是用自然语言同计算机进行通讯的一种技术。人工智能的分支学科,研究用电子计算机模拟人的语言交际过程,
使计算机能理解和运用人类社会的自然语言如汉语、英语等,实现人机之间的自然语言通信,以代替人的部分脑力劳动,
包括查询资料、解答问题、摘录文献、汇编资料以及一切有关自然语言信息的加工处理。例如生活中的电话机器人的核心技术
之一就是自然语言处理
3)计算机视觉
计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适
合人眼观察或传送给仪器检测的图像。计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完
成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。
计算机视觉应用的实例有很多,包括用于控制过程、导航、自动检测等方面。
4)智能机器人
如今我们的身边逐渐开始出现很多智能机器人,他们具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、
嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这些机器人都离不开人工智能的技术支持。
科学家们认为,智能机器人的研发方向是,给机器人装上“大脑芯片”,从而使其智能性更强,在认知学习、自动组织、对模糊信
息的综合处理等方面将会前进一大步。
5)自动程序设计
自动程序设计是指根据给定问题的原始描述,自动生成满足要求的程序。它是软件工程和人工智能相结合的研究课题。自动程序
设计主要包含程序综合和程序验证两方面内容。前者实现自动编程,即用户只需告知机器“做什么”,无须告诉“怎么做”,这后一步
的工作由机器自动完成;后者是程序的自动验证,自动完成正确性的检查。其目的是提高软件生产率和软件产品质量。
自动程序设计的任务是设计一个程序系统,接受关于所设计的程序要求实现某个目标非常高级描述作为其输入,然后自动生成一
个能完成这个目标的具体程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。
6)数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处
理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分
类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘。