人工智能发展综述
摘要近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。
1.引言人工智能(ArtificialIntelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。
近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。
人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。
2.图灵测试人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力:
自然语言处理(naturallanguageprocessing)
知识表示(knowledgerepresentation)
自动推理(automatedreasoning)
机器学习(machinelearning)
计算机视觉(computervision)
机器人学(robotics)
这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(AlanTuring)在1950年还提出了一种图灵测试(TuringTest),旨在为计算机的智能性提供一个令人满意的可操作性定义。
关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。
在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(EugeneGoostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。
在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。
3.人工智能发展历史①1943-1955年人工智能的孕育期
人工智能的最早工作是WarrenMcCulloch和WalterPitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。
②1956年人工智能的诞生
1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。
③1952-1969年人工智能的期望期
此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。
后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。
1958年,麦卡锡发表了“ProgramwithCommonSense”的论文,文中他描述了“AdviceTaker”,这个假想的程序可以被看作第一个人工智能的系统。
④1966-1973人工智能发展的困难期
这个时期,在人工智能发展时主要遇到了几个大的困难。
第一种困难来源于大多数早期程序对其主题一无所知;
第二种困难是人工智能试图求解的许多问题的难解性。
第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。
⑤1980年人工智能成为产业
此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。
⑥1986年以后
1986年,神经网络回归。
1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。
1995年,智能Agent出现。
2001年,大数据成为可用性。
4.人工智能发展近况4.1人机博弈在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手GarryKasparov而震惊了世界。
在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名第一的柯洁。
2017年1月6日,百度的人工智能机器人“小度”在最强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“最强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在最强大脑的收官之战中战胜了人类代表队的黄政与Alex。
4.2百度大脑2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%。
“深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。
百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。
语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。
4.3工业4.0工业4.0是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。
工业4.0已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业4.0”对于未来中德经济发展具有重大意义。
工业4.0项目主要分为三大主题:智能工厂、智能生产、智能物流。
它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。
但是随着AI的发展,工业4.0的推进速度将会大大推快。
5.人工智能的应用领域人工智能可以渗透到各行各业,领域很多,例如:
①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。
②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。
③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。
④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。
⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。
⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。
⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。
⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。
6.人工智能算法的实现6.1专家系统专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。
6.2机器学习机器学习(MachineLearning,ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。
机器学习领域的研究工作主要围绕以下三个方面进行:
(1)面向任务的研究
研究和分析改进一组预定任务的执行性能的学习系统。
(2)认知模型
研究人类学习过程并进行计算机模拟。
(3)理论分析
从理论上探索各种可能的学习方法和独立于应用领域的算法
机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。
6.2.1遗传算法遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。
遗传算法示意图6.2.2DeepLearningDeepLearning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。
他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I=>S1=>S2=>…..=>Sn
=>O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。DeepLearning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…,Sn。对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。
深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络;
LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM;
生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。
7.人工智能的未来随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。
参考文献[1]Russell,S.J.Norvig,P.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(2016.12重印)
[2]库兹韦尔,人工智能的未来杭州:浙江人民出版社,2016.3
[3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108.
[4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126.
[5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70.
[6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264.
[7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152.
[8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.
[9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342.
[10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9.
[11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18
[12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015.
[13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26.
[14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336.
[15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214.
[16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112.
[17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13.
[18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200.
[19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59.
[20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942
[21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210.
[22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010
人工智能综述:AI的发展
人工智能综述:AI的发展概括:人工智能学科自从诞生之后,技术理论不断发展,应用领域不断延伸。应用领域主要包括智能机器人、图像处理、自然语言处理及语音识别等。人工智能的基础理论科学包括计算机科学、逻辑学、生物学、心理学及哲学等众多学科。从人工智能的发展历史、人工智能的技术核心以及人工智能的应用前景3个方面阐述人工智能的发展与应用。0引言人工智能是集合了计算机科学、逻辑学、生物学、心理学和哲学等众多学科,在语音识别、图像处理、自然语言处理、自动定理证明及智能机器人等应用领域取得了显著成果。人工智能在社会发展中扮演着不可或缺的角色。人工智能在提升劳动效率、减低劳动成本、优化人力资源结构及创造新的工作岗位需求方面带来了革命性的成果。人工智能的出现为疲软的全球经济提供了新的动力,提升了全球GDP的增长速度。
人工智能规模发展迅速,截至2018年,中国人工智能市场规模已达238.2亿元。人工智能的产生已经为人类创造出很大的经济效益,正在惠及生活的方方面面,无人驾驶、人工智能医疗及语音识别等,为人类的生活提供了便利。同时人工智能的出现,取代了很多传统岗位,同时也创造了很多新的岗位来消化社会劳动力。人工智能的出现极大地推动了社会发展,让社会发展步入新的时期。
1人工智能发展历史人工智能雏形的出现是在1955年,在一次“学习机器讨论会”上,著名的科学家艾伦·纽厄尔和奥利弗·塞弗里奇分别提出了下棋与计算机模式识别的研究。在次年的达特茅斯会议上,提出了“人工智能”一词,并讨论确定了人工智能最初的发展路线与发展目标。之后由阿瑟·塞缪尔提出了机器学习理论,根据这一理论编写完成了能够与人类进行对弈的西洋跳棋程序,并于1962年战胜了美国的西洋跳棋大师。20世纪70年代中叶符号学派走向低谷,以仿生学为基础的研究学派逐渐火热。神经网络由于BP算法的广泛应用获得了高速发展。在大环境下,专家系统的大量使用使工业界节约了大量成本,提升了产业效益。例如价值上亿的矿藏由PROSPECTOR专家系统成功地分析得出。在此之后,人们开始尝试研究具有通用性的人工智能程序,却遇到了严重的阻碍,陷入停滞。人工智能又一次步入低谷。1997年,“深蓝”的成功让人工智能的发展又提上日程。随着算力的增加,人工智能的瓶颈被打破,为基于大数据的深度学习与增强学习提供了发展的可能。GPU不断发展,与此同时定制化处理器的研制成功使算力不断提升,为人工智能的爆发提供了基础。在无人驾驶领域北京地平线信息技术有限公司,发布了一款嵌入式视觉芯片,主要针对无人驾驶汽车领域。阿里投资千亿成立“达摩院”,在机器学习等方面开展研究和进行产品开发。人工智能步入了快速发展期。
如图1所示,人工智能自出现以来,经历了两次低谷三次浪潮,现在正处于人工智能的第三次浪潮,人工智能正在快速发展,为生产力的提升提供变革的动力。
图1人工智能发展历程
2人工智能技术核心2.1计算机视觉人们认识世界91%是通过视觉来实现。同样,计算机视觉的最终目标就是让计算机能够像人一样通过视觉来认识和了解世界,它主要是通过算法对图像进行识别分析,目前计算机视觉最广泛的应用是人脸识别和图像识别。
2.1.1图像分类传统图像分类的方法主要经过2个步骤:特征提取和训练分类器。
特征提取通用的方法主要包括2种,使用通用特征提取和使用自己设计的特征提取。例如在人脸识别中,使用HOG,LBP等通用特征进行检测。选定特征之后,使用传统的机器学习方法,例如adaboost等建模方法训练分类模型,然后选择效果最好的模型进行调参,最终生成人脸检测模型。
自2015年之后,图像处理使用深度学习进行分类的方法得到了广泛应用。神经网络通过神经元构建成网络,通过激活函数使模型具有非线性拟合能力。只需要给模型设计好输入和输出,模型就能自动学习特征提取和训练分类器的过程。深度学习的使用让图像分类过程中最为费时费力的过程得以简化,提升了图像分类的效果和效率。VGG,ResNet(残差神经网络),inception这几种结构是工程中最常用的。工程上使用的模型必须要兼顾效率和效果,即在保证精度的同时也要保证速度。所以,在训练好模型之后会对模型进行微调和缩减。FRCNN,Mask-RCNN,YOLO是现在常用的网络模型,这几个模型拥有的共同点就是精度高、速度快。例如应用在人脸识别领域,这几个模型都可以实时检测并得出结果。
2.1.2目标追踪目标跟踪主要有3类算法,相关滤波算法、检测与跟踪相结合的算法和基于深度学习的算法。
相关滤波(CorrelationFilter,CF)是当前研究的一个重点,最初它应用在信号领域,之后引入目标跟踪领域。它引入了快速傅里叶变换从而使得算法效率得到有效提升。MOSSE是目标检测算法中应用最早的算法。在研究过程中在实时性应用方面做出突破的算法是CSK。在CSK的基础上进行改进,产生了KCF算法。之后还提出了CN,DSST,SRDCF等算法。检测与跟踪相结合的算法,简单来说就是目标跟踪的判别式算法。算法的实现理念是先找出目标的位置,然后再对目标进行跟踪。
深度学习的推广也影响到目标跟踪研究。基于深度学习的算法有分类和回归两类。R-CNN,FastR-CNN,FasterR-CNN是基于分类的算法。3种算法最大的不同在于检测窗口的选择,R-CNN采用滑动窗口,FastR-CNN采用SelectiveSearch,FasterR-CNN采用RPN。
2.1.3语义分割计算机视觉就是将图片分割成像素,然后对像素进行处理。语义分割的意义是理解分割后像素的含义,例如图片中识别人、摩托、汽车及路灯等,它需要对密集的像素进行判别。卷积神经网络推动了语义分割算法的发展。语义分割中最基础的方法是通过滑动的窗口进行分类预测。
2014年,全卷积神经网络(FullyConvolutionalNetworks,FCN)的出现替代了网络全连接层。基于FCN研究出Encoder-Decoder架构。Encoder是降低空间维度的操作,Decoder是恢复空间维度和细节信息的操作。之后空洞卷积(Dialated/Atrous)取代了Pooling操作。空洞卷积的优点是它可以保持空间分辨率。除了之前的几种方法,还有一种叫条件随机场(ConditionalRandomFields,CRFs)的方法来提升分割效果。
2.2机器学习机器学习的基本思想是通过计算机对数据的学习来提升自身性能的算法。机器学习中需要解决的最重要的4类问题是预测、聚类、分类和降维。
机器学习按照学习方法分类可分为:监督学习、无监督学习、半监督学习和强化学习。
2.2.1监督学习监督学习指的是用打好标签的数据训练预测新数据的类型或值。根据预测结果的不同可以分为2类:分类和回归。监督学习的典型方法有SVM和线性判别。
回归问题指预测出一个连续值的输出,例如可以通过房价数据的分析,根据样本的数据输入进行拟合,进而得到一条连续的曲线用来预测房价。
分类问题指预测一个离散值的输出,例如根据一系列的特征判断当前照片是狗还是猫,输出值就是1或者0。
2.2.2无监督学习无监督学习是在数据没有标签的情况下做数据挖掘,无监督学习主要体现在聚类。简单来说是将数据根据不同的特征在没有标签的情况下进行分类。无监督学习的典型方法有k-聚类及主成分分析等
k-聚类的一个重要前提是数据之间的区别可以用欧氏距离度量,如果不能度量的话需要先转换为可用欧式距离度量。
主成分分析是一种统计方法。通过使用正交变换将存在相关性的变量,变为不存在相关性的变量,转换之后的变量叫做主成分。其基本思想就是将最初具有一定相关性的指标,替换为一组相互独立的综合指标。
2.2.3半监督学习半监督学习根据字面意思可以理解为监督学习和无监督学习的混合使用。事实上是学习过程中有标签数据和无标签数据相互混合使用。一般情况下无标签数据比有标签数据量要多得多。半监督学习的思想很理想化,但是在实际应用中不多。一般常见的半监督学习算法有自训练算法(Self-training)、基于图的半监督算法(Graph-basedSemi-supervisedLearning)和半监督支持向量机(S3VM)。
2.2.4强化学习随着AlphaGo的火热,强化学习成为了当前最火热的研究领域之一,强化学习词热点居高不下。强化学习是通过与环境的交互获得奖励,并通过奖励的高低来判断动作的好坏进而训练模型的方法。强化学习中探索和开发的权重高低是一个难题:为获得更好的奖励必须尽量选择能获得高奖励的动作,但是为了获得更好的奖励,也必须要挖掘未知的动作。
强化学习的基础来源于行为心理学。在1991年Thorndike提出了效用法则,即在环境中让人或者动物感到舒服的动作,人或者动物会不断强化这一动作。反之,如果人或者动物感觉到不舒服的行为,人或者动物会减少这种动作。强化学习换言之是强化得到奖励的行为,弱化受到惩罚的行为。通过试错的机制训练模型,找到最佳的动作和行为获得最大的回报。它模仿了人或者动物学习的模式,并且不需要引导智能体向某个方向学习。智能体可以自主学习,不需要专业知识的引导和人力的帮助。
基础的强化学习算法有使用表格学习的q_learning,sarsa以及使用神经网络学习的DQN,直接输出行为的PolicyGradients及ActorCritic等。强化学习算法应用到游戏领域取得了不错的成果,在星际(图2)和潮人篮球(图3)的AI训练方面都取得了不错的成果。
图2星际争霸
图3潮人篮球
2.3自然语义处理自然语言处理(NLP)是指计算机拥有识理解人类文本语言的能力,是计算机科学与人类语言学的交叉学科。自然语言是人与动物之间的最大区别,人类的思维建立在语言之上,所以自然语言处理也就代表了人工智能的最终目标。机器若想实现真正的智能自然语言处理是必不可少的一环。自然语言处理分为语法语义分析、信息抽取、文本挖掘、信息检索、机器翻译、问答系统和对话系统7个方向。
句法语义分析,是对于给定的语言提取词进行词性和词义分析,然后分析句子的句法、语义角色和多词义选取。信息抽取,是指从给定的一段文字中抽取时间、地点和人物等主要信息,以及因果关系等句子关系。文本挖掘,对大量的文档提供自动索引,通过关键词或其他有用信息的输入自动检索出需要的文档信息。机器翻译,输入源文字并自动将源文字翻译为另一种语言,根据媒介的不同可以分为很多的细类,如文本翻译、图形翻译及手语翻译等。问答系统,是提出一个文字表达的问题,计算机可以给出准确的答案,过程中需要对问题进行语义分析,然后在资料库中寻出对应答案。对话系统,指计算机可以联系上下文和用户进行聊天及交流等任务,针对不同的用户采用不同的回复方式等功能。
自然语言处理主要有5类技术,分别是分类、匹配、翻译、结构预测及序列决策过程。
2.4语音识别现在人类对机器的运用已经到了一个极高的状态,所以人们对于机器运用的便捷化也有了依赖。采用语言支配机器的方式是一种十分便捷的形式。语音识别技术是将人类的语音输入转换为一种机器可以理解的语言,或者转换为自然语言的一种过程。
人类的声音信号经过话筒接收以后,转变成为电信号并作为语音识别系统的输入,然后系统对传入信号进行处理,再进行特征抽取,提取特征参数,从而提取出特征。将特征与原有数据库进行对比,最终输出识别出的语言结果。
语音识别的难点主要集中在噪声处理、鲁棒性和语音模型上。在输入语音时总是可能出现各种各样的噪声,提高对噪声的处理是提高识别准确率的重要一环。鲁棒性,现有的语音识别系统对环境的依懒性偏高,不同的环境中识别的准确性可能会有较大差别。语音模型的优化也是面临的一个重大问题,语言的复杂性毋庸置疑,语言的语义、情绪及语速等都会影响到语音的真实意义,所以优化语音模型,优化语音模型的基础就是需要大量的数据。
3人工智能应用前景人工智能市场发展迅速,不断将科研成果应用到实践中。除了现在的基础科研,还将科研成果不断付诸实践,各种人工智能计算机不断产出。以上人工智能四大核心技术的应用前景十分广阔。
3.1计算机视觉应用在计算机视觉领域,中国融资过亿的企业就有11家。商汤科技是一家以计算机视觉技术为核心的企业,专注于人工智能视觉引擎,拥有自主研发的深度学习平台,不断产出计算机视觉技术,它涉及的行业有无人驾驶、平安城市及金融等高技术产业,不断将产业技术付诸实践,吸收融资后致力于商汤的自主技术商业化。国内眼擎科技公司发布的AI视觉成像芯片全球首发,它的出现提升了现有的视觉识别能力,即使在极其复杂的环境中依然可以拥有十分优秀的视觉能力。
计算机视觉技术在安防领域的应用也十分广泛。通过视频内容自动识别车辆、人还有其他信息,为安防提供技术支持,并在追逃阶段可以自动汇报追踪相应的可疑车辆和人的运动轨迹,为公安机关抓捕提供可靠的信息。
计算机视觉领域不断有企业涌现出旺盛的生命力,体现了人工智能这一技术方向的巨大潜力。
3.2机器学习应用机器学习与自动驾驶、金融及零售等行业紧密结合,不断提升行业的发展潜力。在自动驾驶领域运用机器学习的技术,不断提升自动驾驶的路测能力,通过强化学习的手段让无人汽车在环境中不断提升自己的能力,训练出的模型在基本路测环境中保持稳定。通过不断引入新的机器学习技术,让无人驾驶的商业化成为可展望的未来。零售行业运用机器学习的技术分析用户的喜好,进行定点推送,提供顾客更偏向购买的物品,提升零售的成功率。
在金融领域人工智能的市场规模已经变得越来越大,通过机器学习的技术手段,预测风险和股市的走向。运用机器学习的手段进行金融风险管控,整合多源的资料,实时向人提供风险预警信息。利用大数据对相应的金融风险进行分析,实时提供相应金融资产的风险预警,节省投资理财的人力物力消耗,构建科学合理的风险管控体系,为金融业的发展添砖加瓦。
3.3自然语言处理应用自然语言处理应用领域也很广阔。在邮件领域,它被用来分析处理垃圾邮件,为用户提供良好的应用环境。通过语言识别对文档进行自动分类,节省了人力并为企业的自动化运转提供了技术支持;在书籍分类中,可以根据书籍内容进行自动分类,为用户查找相应书籍提供便捷的寻找手段;自动翻译的便捷功能,让语言不再成为知识交流的障碍,在线翻译软件可以即时翻译出绝大部分文本;人工智能客服的出现也改变了用户体验,基本问题可以直接找机器客服解决。
在金融领域的智能客服和智能投资顾问也运用了自然语言处理技术。智能投资顾问和智能客服采用语义识别技术,对咨询者的语义进行分析,并在资源库中找出最合适的回答方式和内容。智能投资顾问管理的资产在2012年还基本不存在,在2014年时技能已经达了140亿美元,到2019年初处于其管理下的资产已经到达了一个十分惊人的数字。
3.4语音识别应用语音识别应用的领域更加广泛,语音识别技术的普及让即时翻译不再困难。在微信中,通过语音识别技术可以不听取他人语音直接翻译为相应的文本,使微信交流功能在不方便听取语音的环境中不受影响。智能家居是一种以居住环境为平台的先进理念,通过人工智能的方式让与生活相关的家居统筹管理,使人的生活环境更加智能、舒适。智能家居中也应用了语音识别技术,通过解析人的语言命令,让家居进入相应的开关程序,并对人的命令作出回应,提升人的居住体验。
4结束语人工智能技术综合了多个学科领域,对人类的发展具有不可替代的作用。可以预见的是,人工智能必将成为下一次工业革命的核心。由此带来的变革不仅体现在技术上,对人类的心理、人文及伦理等方面都会造成冲击。当前90%的人力工作将来都有可能被人工智能取代,但是当人工智能取代传统岗位之后依然会衍生出新的岗位,不会引起大面积失业。人工智能时代已经降临,在教育层面应当响应时代号召,积极学习人工智能各项新技术;在社会层面应当积极接受新的事物,不断前进并开拓出更多新的生活方式,不断与时俱进、更新思想大跨步迈进人工智能新时代。
摘自:人工智能综述:AI的发展
全球人工智能产业发展现状及发展趋势浅析
人工智能是指使用机器代替人类实现认知、识别、分析、决策等功能,是研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,其本质是对人的意识和思想的信息过程的模拟。人工智能是一种尖端技术,是新一轮科技革命和产业变革的重要驱动力量,它给经济、政治、社会等带来了颠覆性的影响,或将改变未来的发展格局。在21世纪,人工智能已逐渐成为全球各国新一轮科技战和智力战的必争之地,全球围绕人工智能领域的布局抢位日趋激烈。
一、全球人工智能发展现状
2021年7月8日,世界人工智能大会在上海开幕。根据统计数据评分,全球人工智能排名前10的国家依次为:美国、中国、韩国、加拿大、德国、英国、新加坡、以色列、日本和法国。其中,中国的综合得分为50.6分,美国为66.31分。
(一)美国着重国家和经济安全,力争保持全球领导地位
美国人工智能战略和政策的着力点在于保持其全球“领头羊”地位,并期望对人工智能的发展始终具有主动性与预见性。美国自2013年开始就发布了多项人工智能计划,并提及人工智能在智慧城市、自动驾驶和教育等领域的应用和愿景。2016年,美国将人工智能上升至国家战略层面,出台了《国家人工智能研究与发展计划》,从政策、技术、资金等方面给予一定的支持和保障。特朗普政府执政后,于2019年2月发布了第13859号总统行政令—《维持美国在人工智能领域领导地位的倡议》,从国家战略层面提出美国未来发展人工智能的指导原则,明确指出要集中联邦政府资源发展人工智能,扩大美国的繁荣,增强国家和经济安全,力图保持其在人工智能时代的全球领导地位。2021年6月,拜登政府宣布成立了由12名学术界、政界和产业界人士组成的国家人工智能研究资源工作组(NAIRR),他们将制定一项计划,让人工智能研究人员获得更多政府数据、计算资源和其他工具。该项计划基本继承了《2020年美国人工智能倡议法》的战略诉求。NAIRR的创建是美国政府加速美国国内技术进步的更广泛努力的一部分,美国参议院批准了2500亿美元的投资,用于从人工智能到量子通信等科学研究,这意味着,人工智能战略是拜登政府战略重心之一。
(二)韩国加快构建可持续的人工智能技术能力
韩国拥有雄厚的ICT产业发展根基,这为其发展人工智能奠定了良好的研发与应用生态基础。2018年5月15日,韩国第四次工业革命委员会审议并通过《人工智能研发战略》(以下简称《战略》),旨在重点推广人工智能技术进步,并加快AI在各领域的创新发展,打造世界领先的人工智能研发生态,构建可持续的人工智能技术能力。韩国认为人工智能是经济与社会大变革的核心动力之一,但其AI技术能力与中国和美国相比仍有较大差距,因此提升人工智能技术能力迫在眉睫,事关其能否在第四次工业革命中占得技术主导权。为了加快经济和社会的创新发展,为产业注入新的活力,韩国于2019年12月17日公布了《国家人工智能战略》,旨在凝聚国家力量、发挥自身优势,实现从“IT强国”到“人工智能强国”的转变。根据预算,相关措施若得以实施,到2030年,韩国将在人工智能领域创造455万亿韩元(约合2.7万亿元人民币)的经济效益。
(三)加拿大大力发展人工智能产学研用聚集中心
2017年3月,加拿大政府发布了全球首个人工智能国家战略计划——《泛加拿大人工智能战略(PanCanadianArtificialIntelligenceStrategy)》,计划拨款1.25亿加元支持AI研究及人才培养。该计划还提出了“增加加拿大优秀人工智能研究人员和熟练毕业生的数量”“在加拿大埃德蒙顿、蒙特利尔和多伦多3个主要人工智能中心建立互联的科学卓越节点”“在人工智能发展的经济、伦理、政策和法律意义上发展全球思想领导”以及“支持国家人工智能研究团体”等目标。此外,加拿大在全国范围内形成了数个有代表性城市的人工智能产学研用聚集中心,正是这些中心支撑起了加拿大人工智能发展的基本格局。这些聚集中心包括蒙特利尔、多伦多、埃德蒙顿、滑铁卢、温哥华和魁北克等城市,它们构成了加拿大人工智能研究的中坚力量。如果将加拿大人工智能领域看作一个生态系统,风险投资机构、加速器或孵化器以及公共非盈利机构构成了这个生态系统的土壤,为加拿大人工智能的研发和应用提供基础;各个人工智能产学研用聚集中心有其不同的偏重方向,就像不同种类的作物;各个聚集中心培育出来的初创企业,是人工智能服务人类生活的直接载体,就如作物结出的花朵与果实;国家和地方的政策支持、各领域方向的人才团队构成了人工智能生态的空气和养分;同时,加拿大社会开放,具备吸引外国投资机构、企业实体和人才的良好环境,为整个人工智能生态系统提供了有益补充。
(四)欧盟构建可信人工智能框架,抢占全球伦理规则主导权
欧盟很早就把发展以智能化为基础的经济模式作为其主要战略目标,注重在研发和人才上的投入,但由于缺乏风险资本和私募股权投资,以及民众过多顾虑隐私保护等问题,其在人工智能上的发展落后于中国和美国。为改变这一现状,欧盟采取多种措施大力发展人工智能,发力构建可信人工智能,力争取得全球主导权。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。2018年12月,欧盟发布了《人工智能协调计划》,提出要进一步增加资金投入、深化人工智能技术创新与应用、完善人才培养和技能培训、构建欧洲数据空间、建立人工智能伦理道德框架、促进公共部门人工智能技术使用、加强国际合作等行动,推进欧洲人工智能的开发与应用,实现欧盟和各国人工智能投资收益最大化,推动发展符合欧中价值观和伦理观念的人工智能,力争在伦理与治理领域占据全球领先地位。欧盟于2020年2月发布的《人工智能白皮书—欧洲追求卓越和信任的策略》,透露了欧盟人工智能将由“强监管”转向“发展和监管并重”,在促进人工智能广泛应用的同时,解决新技术使用所产生的风险问题。
二、我国人工智能发展现状
我国人工智能产业在政策、资本、市场需求的共同推动和引领下快速发展。产业上,我国人工智能企业“质、量”兼顾,同步发展,集聚发展效应明显,产业规模不断扩大,产业链布局不断完善。技术上,论文数量不断攀升,在复杂的国际环境下我国迎难而上,芯片产业突破明显,在国际竞赛中我国企业成果颇丰。为进一步推动技术创新,诸多高校设置人工智能相关专业、成立人工智能学院。融合上,我国人工智能与实体经济融合在广度和深度上都进一步深化,全国人工智能产业形成了特色化的发展格局。
2015年7月,国务院印发《关于积极推进“互联网+”行动的指导意见》。《指导意见》将人工智能作为其主要的十一项行动之一,并明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。2016年3月,国务院发布《国民经济和社会发展第十三个五年规划纲要(草案)》,人工智能概念进入“十三五”重大工程。2017年3月十二届全国人大五次会议上,“人工智能”首次被写入政府工作报告;7月,国务院发布《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心;10月,人工智能进入十九大报告,将推动互联网、大数据、人工智能和实体经济深度融合;12月,《促进新一代人工智能产业发展三年行动计划(2018-2020年)》的发布,它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。工信部为加快推动我国新一代人工智能产业创新发展,组织实施了人工智能产业创新任务揭榜挂帅工作,在人工智能项目攻关、选才用才方面效果显著。
相关数据显示,2020年人工智能行业核心产业市场规模将超过1500亿元,预计在2025年将超过4000亿元,中国人工智能产业在各方的共同推动下进入爆发式增长阶段,市场发展潜力巨大,未来中国有望发展为全球最大的人工智能市场。
我国高度重视人工智能技术进步与行业发展,人工智能已上升为国家战略。在此背景下,许多地方出台促进人工智能发展的政策,针对人工智能开展了布局,以广东省为例,广州、深圳、佛山等不少基础雄厚的城市都在积极谋划创建人工智能试验区,其中佛山市提出要“创建国家新一代人工智能创新发展试验区”,这一举措对区域在人工智能发展赛道抢占先机十分有利,对于区域人工智能发展有着显著的带动效果。在产业布局方面,佛山市因地制宜,将人工智能与工业制造进行融合。作为全国制造业的重要基地,佛山拥有2.16万亿的工业产值,对促进人工智能和实体经济融合发展有着大量的需求,可以实现人工智能技术在区域的产业化发展。2021年7月,《佛山市推进制造业数字化智能化转型发展若干措施》提出,“建设数字化智能化示范工厂、示范车间,支持技术改造升级”,加大金融财政支持力度、推动产业链协同、增强产业数字化智能化供给能力多措并举,以加快佛山制造业数字化、网络化、智能化转型升级。8月,佛山市南海区对外释放在人工智能方面的新布局,通过聚焦前沿技术,引进高科技企业和高端人才项目,联合高校科研院所共同攻克人工智能领域关键核心技术,一系列举措阐释着佛山市南海区全力打造国内一流的人工智能创新高地,助力打造佛山市制造业数字化智能化转型发展引领区,赋能佛山制造业升级提速的信心。这是佛山市南海区制造业高质量发展的表现,也是佛山市南海区在人工智能发展到新一阶段的布局升级,同时也反映了地方政府在新的时期发展和布局人工智能的信心与决心。
三、人工智能未来发展趋势
在未来的数十年里,人工智能有可能会极大地改变人类社会结构和生存方式。人工智能技术加速融入经济社会发展各领域全过程已是大势所趋。人工智能在重组全球要素资源、重塑全球经济结构、改变全球竞争格局方面将发挥出重要作用。我国面临中华民族伟大复兴战略全局和世界百年未有之大变局,将以国内国际两个大局、发展安全两件大事为出发点,充分发挥海量数据和丰富应用场景优势,促进人工智能与实体经济深度融合,赋能传统产业转型升级,催生新产业新业态新模式。在加强核心技术攻关、加快新型基础设施建设、推动人工智能和实体经济融合发展、规范行业发展和完善行业治理等方面持续发力,促进人工智能创新发展。
参考资料
1.国家工业信息安全发展研究中心.2019-2020人工智能发展报告.2020-7
2.李月白,江晓原.钱学森与20世纪80年代的人工智能热.2019-11
3.广州日报.2020中国人工智能产业白皮书:五年内市场规模预计超过4000亿元.2021-2
4.李贺南,陈奕彤,宋微.2020年韩国人工智能国家战略.2020-4
5.韩联社.韩国斥巨资大力发展人工智能.2020
6.江丰光,熊博龙,张超.我国人工智能如何实现战略突破——基于中美4份人工智能发展报告的比较与解读.2020-1
来源:中国网
免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。