博舍

2023医疗人工智能:距离盈利,医疗AI还有多远 人工智能在医疗领域的图片

2023医疗人工智能:距离盈利,医疗AI还有多远

图片来源@视觉中国

文|vb动脉网

从《海伯利安》到《赛博朋克2077》,每一个描述AI时代的视听作品都在不厌其烦地绘制科技时代的技术、建筑、生活,乐于讨论赛博时代与生存、发展、共生相关的哲学问题。

但当AI褪下虚幻的面纱,以潜移默化的方式真正进入人们的生活时,更为必要的是跳出技术的表现形式,追溯它的发展动力。

过往的五年时间,近千亿资金注入医疗人工智能赛道,影像AI、新药研发AI、机器人AI、智慧医院等细分赛道以前所未有的速度向前发展。外界的持续滋养下,AI已经在医疗中的方方面面落地生根,成为媲美互联网技术一样的存在。

问题也出在此。超千家企业入局,但少有企业实现盈利。下一个五年,当资本的涓流不再馈赠,围绕AI的企业们能否筑起成熟的造血系统,依靠自身的力量活下去?

带着问题,我们与超过30家企业进行沟通、近100位专家进行采访,围绕整个产业发展流程进行调研,一步一步回答“医疗人工智能如何盈利”这一行业难题。

定义医疗AI的两个阶段

AI发轫时的目标作用方式在于对过往人类活动的“替代”与“优化”,实现智慧赋能下的降本增效,可谓AI1.0。

十年发展,这类医疗AI对于医生诊疗效率及患者看病流程的优化已非常成熟。一个直观的感受是,不少三甲医院的门诊大厅没有过去那么拥挤了,线上的智慧化信息流解决了问题。

这个过程中,AI技术本身也在不断探索与临床深度结合的可能性,尝试以优化临床路径的方式赋能医疗。由此而生的产品,在报告内被归类为AI2.0。

AI2.0是AI1.0应用场景范畴的延展,与AI1.0的差异判别在于:是否能够将知识与算法深度融合,对已有医疗流程进行重塑。简单来说,初始的AI注重于强化作用主体的效率,而进阶的AI有能力将流程进行推倒重建,围绕AI能力建立新的秩序。

此外,医疗AI2.0的价值创造方式也与AI1.0有所不同。1.0时代是覆盖式创新,即肺部做完了转向脑、心、肝等脏器,而2.0时代的创新是以1.0创新成果为基础的单点式创新,即各企业在各自领域探索AI的深层次价值,没有形成1.0时代的AI产品矩阵规模。

两种AI以各自的方式赋能医疗体系,为协同关系而非竞争关系。目前医疗AI行业已有不少成熟的AI2.0式应用,在这背后,日益丰富的高质量医疗数据与逐步多元的算法为AI创新提供了重要支撑。

那么从1.0到2.0时代的跃迁什么最重要?决定AI品质的算法、算力、数据三要素,真正能够形成壁垒的还是算法与数据。

以辅助诊断类AI为例。AI1.0时全球范围内均缺少开源的医疗大数据,AI企业能够直接获得的数据很少,存在数据量小、标准化低、标注成功率低、数据类型有限(以肺结节为主)。

在这个阶段,企业获取有效数据集必须与医院进行合作,在取得脱敏数据后对其进行分类、标注、训练。由于整个过程均需人工进行,单个数据标注成本在10-30元不等,耗时20-40分钟,投入有限但耗时极长,尤其要获得高质量的标注,企业/医院必须找到资深医生进行标注,标注的难度由此大大提升。

伴随AI技术愈发成熟,2020年开始,大量医院自发加入的单病种影像数据库、第三方测试数据库的构建中,数据量呈现指数增长,AI企业进行新适应症开发面临的难度骤减,加之第三方数据库逐渐形成规模,医疗AI的产品丰富程度随之增长,AI企业打造的数据壁垒开始削弱,算法壁垒的作用开始凸显。

另一方面,国家药监局器审中心于2022年3月7日发布了的《人工智能医疗器械注册审查指导原则》(后简称《指导原则》)重新描述了人工智能医疗器械的概念、注册基本原则、人工智能医疗器械生存周期过程、技术考量等部分。值得注意的是,该政策对人工智能审批适用的算法进行了完善,在深度学习的基础上加上了迁移学习、集成学习、联邦学习、强化学习、生成对抗网络、自适应学习。

各类AI算法的内容与监管(数据来源:蛋壳研究院)

在文件发布后,更多创新算法审评审批流程得到确认后,医疗AI的壁垒逐渐向算法偏移,更为丰富的算法将进入市场,以更为有效的方式赋能诊疗流程。

总的来说,无论是AI1.0还是AI2.0,医疗AI的价值都在于通过智能化重塑数字化医疗,这是一个缓慢而持续的过程。目前,AI+辅助诊断与新药AI等主流AI产品处于商业化的过渡期,即具备高准确度、可复制的模型;NMPA给出的医疗器械认证;完备的知识图谱;稳固的合作伙伴等等商业化组,但由于市场对于新技术认可的滞后性,大部分目标医院/药企因对智能化产品效益、创业公司能否持续经营运维持怀疑态度,因此付费率仍有提升空间。随着市场对于AI价值的不断认可,医疗AI企业们的商业化能力将逐步增强,或在数年之内实现扭亏为盈。

医疗AI的资本市场:谁在入局,谁在深潜?

尽管不同阶段的AI各有其价值,但资本对于赛道的偏爱还是能够通过数据直观地体现出来。

从全球范围看,基于计算机视觉的AI辅助诊断与基于NLP的医疗知识图谱构建是医疗AI之中跑得最快的两个领域。尤其是AI辅助诊断,在2015-2020年这个区间之内,数百家企业涌入这个赛道,超过百家企业从一级市场获得融资。

但在2022年,新药AI脱颖而出,成为整个领域最为火热的赛道。

2021统计年(2020年9月1日-2021年8月31日)总计发生的35起披露轮次新药AI融资中,早期项目(B轮以下,不包括B轮)占据了80%,2022统计(2021年9月1日-2022年8月31日)年整体数量由28起增至32起,早期项目仍维持有76%的比例。

2021年前,资金往往聚集于晶泰科技这样的头部企业,新药AI初创公司融资项目极为有限,但从近两年新药AI一级市场表现可知,新药AI已经成为AI技术中最具可投性的赛道,大量投资机构蜂拥入场,将AI的应用场景从晶体发现、临床患者筛选引向了制药流程的方方面面。

2021年及2022年新药AI融资轮次情况(数据来源:蛋壳研究院)

此外,同为软件开发,新药AI的估值要比AI支持下的其他赛道贵上不少。统计数据显示,处于天使轮的项目均需千万元以上,A轮(包括Pre-A轮、A+轮)企业募集的资金超过半数已过亿元。投资人对于新药AI赛道非常乐观,晶泰科技后期单轮3-4亿元的募资额,新合生物5亿元A+轮融资、百图生科1亿美元A轮融资均充分显示一级市场相信新药AI有着美好的图景。

再看商业化最成熟的影像AI领域。2021年医疗AI掀起上市潮后,科亚医疗、零氪科技、推想医疗、数坤科技等影像相关企业相继递交招股书;同年11月鹰瞳科技成功上市。

但这波势头在2022年戛然而止,大部分头部AI企业现金流较为稳定,资金储备充足,出于经济压力下行的破发忧虑,截至9月15日,国内仅博动医学递交招股书。值得注意的是,该企业以冠脉介入精准诊断为主攻方向,AI支持下的QFR仅是其产线之一。

上市之后,多家企业表现不俗。营收均呈现出不同幅度的正增长,表明市场进一步拓展。其中数坤科技2021年上半年同比增长达681%,收入已成规模的鹰瞳科技仍然录得142%的增长,2021年全年营收破亿。

交表企业主营收入分析(数据来源:各公司招股书、年报,蛋壳研究院)

不过,净利润为负也是每家企业不可回避的事实。蛋壳研究院认为:AI企业仍处于高速发展阶段,需要较高的技术研发投入维持竞争力,保证前沿市场的探索;另一方面,盈利规模效应初现苗头,其规模还有待提升,在高额的研发开支下,有限的营收目前不足以支撑净利润的大幅增长。

值得注意的是,绝大多数医疗AI企业的抗风险能力正在逐步增强。我们能够看到,不少企业的前五大客户营收占总营收比率不断下降,商业化路径逐步多元、分散,此趋势下,手握数十亿现金流的AI企业有充分时间找到自己的定位,逐步实现盈利。

最大客户分析(数据来源:各公司招股书、年报、LunitBP,蛋壳研究院)

IPO之外,多因素影响商业变现,盈利需要突破这些槛

企业的IPO数据反映了最成熟AI技术的商业化现状,但已商业化技术可能并非最具潜力,由此获得的收入也不能反映企业未来盈利能力。报告将对医疗AI目前作用的四个主要场景进行完整分析,探寻IPO之外的AI产业发展现状及盈利能力。本文以影像AI部分为例进行介绍分析。

作为医疗AI行业发展的风向标,截至9月1日已累计28家企业49款AI产品获得第三类医疗器械注册证,包含总计29款搭载深度学习算法的软件。从整体趋势看,国家药监局批准AI医疗器械三类证的速度不断变快,加速了医疗AI的商业化进程。

获证数量按照年份统计(数据来源:蛋壳研究院)

医疗三类证总量随时间推移不断上升,其同质化水平也不断加剧。49款AI产品总计涉及15个辅助诊断场景,其中,基于CT影像的肺结节AI多达9个,其次是借助眼底相机进行诊断的糖尿病视网膜病变AI,有7家企业拿到了市场的准入许可。CT-FFR、CT肺炎紧随其后,各有6家三类证,除AI心电领域乐普医疗独下4张三类证外,放疗、骨折、骨龄、颅脑出血、青光眼五个场景均有不止一家企业的AI产品通过审评审批。

三类证获取按照病种分类统计(数据来源:蛋壳研究院)

进一步讨论医疗AI作用的设备。当前所有获批产品使用的数据均来自于CT、眼底相机、X光、心电图机、MR、肠镜六类设备。CT场景作用范围广,作用价值高,患者人数多,标准数据量大,因而成为AI企业研发的首选,相关AI以31款的数量遥遥领先其他设备,而MR影像较为复杂,数据量偏少,肠镜影像标准化困难,均仅一款AI产品获批。

医疗人工智能作用设备分类统计(数据来源:蛋壳研究院)

超声是AI企业下一个审评审批可能迎来突破的重点赛道。超声检查所产生的数据比CT、DR二维的数据多了一个时间维度,且检查过程中可能存在大量无诊断意义的帧数,需要AI在动态环境下甄别每一帧的价值,将其相互对比,提取到特定时刻的责任切面,才能进行有效的影像分析。

病理AI的形势相对严峻,面临着审评审批体系之外的困难。由于影像辅助诊断处于产业链的中游,依赖于上游影像设备的统一,而国内主流的电子显微镜厂商没有指定统一的数据标准,也没有理由根据行业指定的数据标准对电子显微镜进行更改,因而在数据的互联互通上存在一定问题。该场景中迪英加、锟元方青、深思考等部分病理企业已拿到医疗器械二类证,能够进行一定规模的AI销售。

总的来说,在审批愈发成熟的条件下,医疗AI的开发成本逐渐变得可控,更多面向小众场景的影像AI也逐步拿到了器审中心颁布的三类证。譬如微视医疗在肠息肉中的研究、西门子在胸椎影像中的研究同样为其拿下医疗器械三类证,未来医疗AI的应用场景将随审评审批流程的成熟而进一步扩大,医疗AI企业也将获得更多规避风险的能力,有效降低研发成本。

完成市场准入的各个AI可以在探索物价准入与医保准入的同时进行商业转化。目前各企业正在积极推动省市物价准入,如科亚医疗“深脉分数”已跑通北京市、河北省、山东省、浙江省、江苏省等11省物价环节;博动医疗的QFR物价已获得11个省市的批准;鹰瞳科技的眼底AI完成5个省市物价准入。医保准入方面,2021年4月,上海医保局将“人工智能辅助治疗技术”等28个新项目纳入上海市基本医疗保险支付范围,其中“人工智能辅助治疗”的限定支付范围为前列腺癌根治术、肾部分切除术、子宫全切术、直肠癌根治术。

尽管物价准入和医保准入获得一定突破,但仍未成规模。我们认为,尽管国内AI企业希望保持独立的个体,借助招投标与直接销售两种模式,但在未来,将渠道工作交给影像设备企业、PACS厂商,自身专注于细分赛道的研发,形成细致的行业分工,或能更加利于影像AI的快速发展。

目前国内比较成熟的影像生态主要由GE医疗、飞利浦医疗、西门子医疗、联影医疗四家企业构建,各企业在影像设备国产化程度、智能解决方案发展潜力(中国)、智能化生态开放共享程度、影像设备发展潜力(中国)、影像设备融合能力、影像数据互联互通能力上各有千秋。

各生态能力对比(数据来源:蛋壳研究院)

除上述四家龙头之外,东软医疗、赛诺威盛等影像设备厂商也在协同软硬件共同发展,富士胶片(中国)、卫宁健康等信息化龙头亦有努力扩充生态。生态之间的战争将在长期打响,这个过程之中,影像AI企业可能在盈利的道路上跑得更快。

新场景、新模式,开启医疗AI发展新篇章

与互联网、5G等跨领域技术一致,AI是这个时代少有的能够独立形成产品体系的技术,但在医疗领域之中,AI的应用相对有限。如今医院对于医疗AI的认知逐步形成体系,监管体系逐步完善,企业搭建的AI产品矩阵中可适用的应用场景随之不断扩大。

新形势下,医疗“AI+”正不断向医疗“+AI”进行演进,其作用场景也从诊疗不断向科研、保险等场景不断延伸,构造新的市场增量。

从第一落点医疗机构向外扩展,既是AI开辟增量市场的有效途径,又是医疗器械审慎性审评审批选择下的被动之举。归结起来,医疗AI目前较为成熟的增量产品发展主要集中于C端与B端中的保险、药企部分,影像AI弱化了AI的医疗器械属性,基于NLP的知识图谱则在医疗之外纳入了更多维度的数据。

“扬帆出海”是AI企业寻找增量市场的另一路径,目前有海外市场开拓计划的企业包括新药研发类AI与影像类AI。新药AI企业主要与海外药企辅助药物研发关系,借助AI能力对新药研发部分流程进行优化提速。影像类AI的情况则相对复杂,市场准入作为商业化的开端,能够一定程度衡量AI企业的海外拓展水平。

CE、FDA、PMDA获证情况统计(不包含医疗影像设备制造商,数据来源:蛋壳研究院蛋壳研究院制)

此外,公益路径作为影像AI在2020年前无法突破国家药监局审评审批形势时采用的过渡手段,也已成为当前AI寻求新增量的重要形式。通过公益的方式落地,影像AI企业能在帮助国家推动肿瘤、眼科等疾病的早筛工作,亦能帮助AI产品提前适应市场。

2023年人工智能在医疗领域的十大应用场景

什么是医疗人工智能?医疗人工智能是指人工智能在医疗服务和医疗服务管理或交付中的应用。机器学习、非结构化的大型数据集、高级传感器、自然语言处理和机器人技术都被用于越来越多的医疗部门中。

除了广阔的应用前景,人工智能技术也带来了重大的潜在问题——例如可能来自患者数据的集中化和数字化的滥用,以及可能与纳米医学或通用生物识别ID的联系。在一些早期的人工智能应用中,公平和偏见也都是人们关注的问题,但该技术或许也能够提高医疗公平性。

尽管人工智能在医疗保健领域的部署才刚刚开始,但它正变得越来越普遍。调研机构Gartner公司预测,2021年全球医疗保健IT支出达到1400亿美元,企业将人工智能和机器人流程自动化(RPA)列为主要支出。

2020年,医疗成本接近美国经济总量的20)(19.7%)(约为4.1万亿美元)。而针对政府的欺诈行为尤其严重。

因此,从行政管理到医疗人工智能,医疗人工智能的潜在价值是巨大的。

2022年人工智能在医疗保健领域的十大应用场景以下是目前正在开发和部署医疗保健人工智能用例的10个主要领域。

(1)医疗管理

行政费用估计占医疗总费用的15%至25%。改进和简化管理的工具对保险公司、支付者和提供者都很有价值。

然而,识别和减少欺诈可能提供最直接的回报,因为医疗保健欺诈可能发生在许多层面,由各方实施。在一些最糟糕的情况下,欺诈可能导致保险公司为没有提供的服务收取费用,或导致外科医生进行不必要的手术以赔付更高的保险金。保险公司也可能因为有缺陷的设备或检测套件而赔偿更多的费用。

人工智能可以成为防止欺诈发生的有用工具。就像银行通常使用算法来检测异常交易一样,医疗保险公司也可以这样做。

•麦肯锡公司的研究发现,通过算法驱动的保险索赔“智能审计”可以节省开支。

•美国政府的医疗保险和医疗补助服务中心成立了一个医疗欺诈和预防伙伴关系组织,以识别集合数据库中的模式。

(2)公共卫生

人工智能已经应用于整个公共卫生部门。其中包括:

•机器学习算法正被应用于大型公共卫生数据集,美国疾病控制与预防中心(CDC)汇编了人工智能在分析新冠疫情及其公共卫生等方面的许多应用方法。

•自然语言处理正在公共卫生领域应用。

•越来越多的诊断成像数据被用于人群的分析和预测。

•将消费者数据科学和行为“推送”技术应用于创建“精确”或个性化推送,以促进医疗就诊、医疗合规性等。

(3)医学研究

•寻找治疗疾病的新药可能非常复杂。而计算机辅助药物设计是一个非常复杂的领域。

•在某些情况下,其目标是重新利用现有药物。最近的一个例子是,人工智能通过分析细胞图像来观察哪些药物对神经退行性疾病患者最有效。当对这些治疗产生积极反应时,神经元将会改变形状。然而,传统的计算机速度太慢,无法发现这些差异。

•制药供应商拜耳公司认为,通过使用医疗数据库信息创建虚拟控制组,人工智能可以增强临床试验。他们也在探索其他人工智能临床试验应用,使这些研究更安全、更有效。

(4)医疗培训

人工智能还可能改变医学院学生接受部分教育的方式。其中包括以下情况:

•一个例子是,在医学生学习切除脑肿瘤时,人工智能导师给他们提供了帮助。该系统采用机器学习算法,教授学生安全而有效的技术,然后评估他们的学习表现。采用人工智能系统学习技能的人员的速度比那些没有使用人工智能的人员快2.6倍,学习表现要好36%。

•美国和英国的医疗机构也部署了基于人工智能的患者服务,以促进虚拟和远程培训。当新冠疫情抑制群体聚集时,这种方法尤其有用。人工智能支持练习多种技能,例如安慰痛苦的患者服务或传递消息。

(5)医学专业支持

人工智能还用于支持临床环境中的医疗专业人员,其中包括:

•人工智能应用于支持医疗设施接收专业人员。斯坦福大学的一个试点项目使用算法来确定患者的风险是否高到需要ICU护理,或是否经历与代码相关的事件,或是否需要快速反应团队。他们在6到18个小时内评估这些事件发生的可能性,帮助医生做出更自信的决定。

•正在开发基于人工智能的应用程序,以支持护士,提供决策支持、传感器通知他们患者的需求,以及在所述领域的挑战或危险情况下提供机器人协助。

(6)为患者提供直接支持

人工智能也被用于为患者提供直接支持:

•医院使用人工智能聊天机器人与患者进行检查,帮助他们更快地获得必要的信息。当NorthwellHealth人工智能系统与患者聊天时,使用肿瘤服务的患者的参与率为94%。试用过该工具的临床医生一致认为,它延长了他们所提供的护理。聊天机器人能够检查病人的症状、恢复情况等。许多人习惯采用短信聊天,这提高了患者的接受度。聊天机器人还减少了患者在寻求治疗时可能遇到的挑战。人们可以使用它们查找医院或诊所,预约和描述需求。

•据估计,多达一半的患者没有按照处方服药。然而,人工智能可以增加患者按时服药的机会。一些平台使用智能算法来建议医疗专业人员何时应与患者就依从性问题进行沟通,以及通过何种渠道进行沟通。甚至也有了药物提醒聊天机器人。在最近的一个例子中,研究人员合作并使用人工智能来帮助为Ⅱ型糖尿病患者寻找最佳药物。这些算法帮助83%以上的患者选择了正确的治疗方案,甚至在患者需要同时服用多种药物的情况下也是如此。

(7)远程医学

自从发生新冠疫情导致出行限制以来,虚拟医生就诊形式的远程医疗已变得越来越普遍。除此之外,人工智能还支持其他形式的远程医疗,其中包括:

•VirtuSense应用预测人工智能远程监控和提醒供应商可能导致患者跌倒的高风险变化。

•目前使用人工智能进行监测的一些设施依赖它来检测从心脏病到糖尿病等各种疾病。医院还使用这种技术来监督新冠患者,从而更容易决定哪些患者可以接受家庭护理,哪些患者需要住院治疗。

(8)诊断

人工智能还用于医疗保健中心的诊断,其中包括:

•一个用于发现乳腺癌的人工智能系统可以检测出当前的问题和患者在未来几年内发展该疾病的可能性。

•人工智能在医疗保健领域的一些应用还可以检测精神疾病。研究人员使用训练过的算法,通过倾听他们的声音或扫描他们的社交媒体信息来识别抑郁症患者。

(9)手术

人工智能并不能消除手术问题,但它有可能减少这些问题,同时提高患者和外科医生的治疗效果。以下示例对此进行了说明:

•一家名为theatre的初创公司最近在A轮融资中筹集了3950万美元。该公司有一个人工智能视频解决方案,旨在帮助外科医生了解手术过程中的错误和正确之处。然后,他们可以研究这些视频,并在未来做出改进。

•人工智能在医疗保健领域的应用包括手术机器人,它们在手术室中越来越常见。许多是微创的,往往取得优于非机器人干预的结果。人工智能的这些应用不会取代人类的外科专业知识。不过,它们可以作为外科医生的搭档,提高手术成功的可能性。

(10)医院护理

除了上述描述的诊断用例之外,临床医生还必须满足患者的护理需求,并且储备医学用品和运送货物。人工智能驱动的协作机器人正开始减轻这种负担。根据Gartner公司的预计,到2023年,50%的美国供应商将投资于机器人流程自动化。医院中机器人流程自动化的一些例子包括:

•一家医院最近部署了五台名为Moxie的机器人。这些机器将主动确定护士何时需要用品或协助实验室检测后勤。然后,它们会在提供者的工作负载变得过于密集之前做出响应。

Atheon提供的机器人不仅支持医疗功能,还可以完成除草和垃圾清除等任务。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇