博舍

智能既不是数学也不是逻辑 人工智能源于数理逻辑吗对吗

智能既不是数学也不是逻辑

智能不是数学。智能可以被看作是一种综合性的能力,它涉及到多个学科和领域的知识,包括数学、计算机科学、神经科学、心理学、哲学等等。虽然数学是智能研究中的重要工具,但智能并不等同于数学。智能是指人类或机器能够基于输入的信息,进行学习、推理、判断和决策的能力,而数学只是一种工具和语言,用于描述和分析智能的过程和结果。因此,虽然数学可以帮助我们理解智能的一些方面,但智能本身是一个更广泛、更复杂的概念,它需要跨学科的研究和探索。

智能和逻辑是两个不同的概念。智能是指人类和动物的认知能力,包括感知、思考、学习、记忆、判断、推理、解决问题等多个方面。而逻辑是研究推理和论证的科学,它关注如何正确地推理和证明论断。逻辑使用符号和规则来分析和构造有关推理和证明的语言和结构。虽然智能和逻辑之间有一些重叠,例如推理和判断等方面,但它们的范畴和内涵不同。智能是一种广泛的、复杂的、多方面的能力,而逻辑是一种狭窄的、专门的、局部的学科。因此,智能和逻辑是两个不同的概念。

逻辑和数学之间有很大的重叠和交叉,但它们是两个不同的学科。逻辑是研究推理和论证的科学,它关注如何正确地推理和证明论断。逻辑使用符号和规则来分析和构造有关推理和证明的语言和结构。而数学则是一种研究数量、结构、变化以及空间和形式的科学,它使用符号和公式来描述和解决问题。数学是一种实证科学,它依赖于实证数据和实验来验证结论。虽然逻辑和数学都使用符号和规则来描述和解决问题,但它们的目的和方法不同。逻辑更关注于推理和证明的正确性,而数学更关注于实际应用和解决实际问题。因此,尽管它们有很多相似之处,逻辑和数学是两个不同的学科。

总之,我们不能简单地把数学和逻辑等形式化的知识作为智能的全部,因为智能不仅仅是形式化的思维能力,还包括非数学、非逻辑、人文艺术、哲学宗教等多方面的能力。因此,单纯依靠数学和逻辑等形式化的知识来解释智能是片面的,而且可能会忽略了智能的其他方面。当然,数学和逻辑等形式化的知识在智能研究中也是非常重要的工具,但是不能仅仅依赖于它们来解释智能。

偶发一感,顺记如下:

记忆确实是我们获取和处理信息的基础。我们从经验和记忆中获取知识,进行推理和决策,而计算则是一种工具,用来加速和扩展我们的认知能力。因此,在某种程度上说,记忆确实优于计算。从计算机科学的角度来看,计算机的运行也离不开记忆。计算机需要存储和处理数据,而这些数据都需要存储在计算机的内存中。因此,记忆和计算在计算机科学中是同等重要的。另外,记忆约束计算的观点可能指的是对计算的限制和约束,以保证计算的正确性和安全性。比如,在人工智能领域,研究人员们提出了一些约束条件,如公平性、可解释性等,以确保人工智能系统的决策不会带来不良后果或歧视性。这也说明了记忆和计算都是需要受到约束和限制的。总之,记忆和计算在不同的领域和情境下都有其重要性和作用,它们之间并不是简单的优劣关系,而是相互依存、相互制约的关系。

人工智能——数据挖掘1

1.概述

从技术角度,数据挖掘(datamining)是从大量的不完全的、有噪南的(模糊的随机的实际应用数据中提取隐含在其中的、人们事先不知道的,但又是潜化有用的信身和知识的过程。与数据挖掘相近的同义词包括数据融合、数据分析和决策持第。预处理过程这一定义包括好几层含义:数据源必须是真实的、海量的、含噪声的:发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。

从商业角度,数据挖掘是一.种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性信息。

简言之,数据挖掘其实是一类深层次的数据分析方法。因此,数据挖掘可以描述为:按企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的有效方法。

数据挖掘作为一一门新兴的交叉学科,涉及数据库系统、数据仓库、统计学、机器学习、可视化、信息检索和高性能计算等诸多领域。

此外数据挖掘还与神经网络、模式识别、空间数据分析图像处理、信号处理、概率论、图论和归纳逻辑等领域关系密切。

数据挖掘与统计学有密切关系.近几年.人们逐渐发现数据挖掘中有许多工作是由统计方法来完成的。甚至有些人(尤其是统计学家)认为数据挖掘是统计学的一个分支,当然大多数人(包括绝大多数数据挖掘研究人员)并不这么认为。

但是,统计学和数据挖掘的目标非常相似,而且数据挖掘中的许多算法也源于数理统计,统计学对数据挖掘发展的贡献功不可没。

数据挖掘与传统数据分析方法主要有以下两点区别:

首先,数据挖掘的数据源与以前相比有了显著的改变,包括数据是海量的,数据有噪声,数据可能是非结构化的。

其次,传统的数据分析方法一般都是先给出一个假设,然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来的。即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。

在缺乏强有力的数据分析工具而不能分析这些资源的情况下,历史数据库也就变成了“数据坟墓”里面的数据几乎不再被访问。也就是说,极有价值的信息被“淹没”在海量数据堆中,领导者决策时只能凭自己的经验和直觉。因此改进原有的数据分析方法,使之能够智能地处理海量数据,也就演化为数据挖掘。

研究数据挖掘的目的,不再是单纯为了研究,更主要的是为商业决策提供真正有价值的信息进而获得利润。目前所有企业北面临的一个共同问题是,企业数据量非常大.而其中真正有价值的信息却很少,因此需要经过深层分析,从大量的数据中获得有利于商业运作,提高竞争力的信息,就像从矿石中石中淘金一样.数据挖掘也由此而得名。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇