人工智能的七种类型
33782019年07月09日
人工智能的七种类型作者:ForbesChina
文/NaveenJoshi
图片来源:视觉中国
人工智能(ArtificialIntelligence)可能是有史以来最复杂也最惊人的创造。尽管这个领域尚未被完全开拓,但这意味着我们今天看到的每一个惊人的AI应用程序仅仅代表了这庞大冰山的一角。虽然这个事实不言自明,但我们仍然很难完全预测AI在未来可能会造成的影响。其原因在于如今,AI已对社会产生了革命性的影响,而这种影响从它崭露头角时便可窥见一斑。
人工智能的快速增长与其强大的功能使人们对人工智能接管社会的必然性感到担忧。此外,人工智能在不同行业带来的转变使得企业领导者和主流大众认为,我们已经接近最大限度开发人工智能潜能的高峰。然而,了解未来可能出现的AI以及现存的类型将使我们清晰地了解如今的AI功能以及未来研究的漫长道路。
人工智能的不同类型
由于人工智能研究旨在使机器仿效人类,因此AI系统可以何种程度复制人类的行为被用作归类它们的基准。因此,根据机器较于人类所展现出的多功能性与不同表现,它们可以依次被分门别类。在这样的分类系统下,同等条件下更能够表现出如人类般的处理能力的人工智能将被视为更为进化的AI类型,而具有有限功能和性能的AI将被视为更简单且落后的类型。
基于此标准,人工智能通常可以被分成两类。其中一种的分类标准基于人工智能与人类的相似性,以及它们如人类般“思考”与“感知”的能力。按照这种基准,AI与基于AI的系统可被大致分为四种:反应机器,少量记忆,思想理论和自我意识的AI。
人工智能的四种类型
反应机器:没有内存功能,只会对特定的刺激有所响应
少量记忆:使用内存来学习和改善其对策
思想理论:了解其他智能单位的需求
自我意识:具有类似人类的智慧和自我意识
1.ReactiveMachines(反应机器)
这些是能力极其有限的最古老的人工智能系统,它们能够模仿人类思维对不同刺激所做出的反应。这些机器没有存储功能,这意味着它们不能基于经验来模拟对策,即是说它们不具有“学习”的能力。这些机器只能用于自动响应有限的一组命令,也不能依赖内存来改善操作。这类机器的一个例子是IBM的DeepBlue,这台机器在1997年击败了国际象棋大师加里卡斯帕罗夫。
2.LimitedMemory(有限记忆)
有限记忆AI除了具有反应机器的能力之外,还能够从历史数据中学习以作出决策。我们所知的几乎所有现有的应用程序都可归类于此类AI。如今所有的AI系统,例如那些使用深度学习的系统都基于大量的训练数据,而这些数据将被储存于它们的历史数据中,以形成解决未来问题的参考模型。例如,使用数千张图片及其标签来训练图像识别AI,以教导它自动命名扫描的对象。当通过这样的AI扫描图像时,它使用训练图像作为参考来理解呈现给它的图像的内容,并且基于其“学习体验”,它标记新图像时将具有更高的准确度。
几乎所有当前的AI应用程序,从聊天机器人、虚拟助手到自动驾驶车辆,都是由有限记忆AI驱动的。
图片来源:视觉中国
3.TheoryofMind(心灵理论)
前两种类型的AI已经得以大量运用,而现今,接下来的两种新型AI正存在于概念或逐渐成型的阶段之中。心灵理论AI是研究人员目前正在进行钻研的下一级AI系统,通过辨别互动者的需求,情感,信念和思考过程,心灵理论AI能够更好地理解它们的互动对象。虽然人工智能于研究者而言已经是一个炙手可热的领域,但实现AI的心灵理论水平也同时需要其他各类部门的协力。这是因为如果要真正理解人类的需求,人工智能机器必须将人类视为单独思考的复杂个体,而这对于它们而言,基本上等同于“理解”人类。
4.Self-aware(自我意识)
这是人工智能开发的最后阶段,目前只存在于概念构想中。如字面所述,自我意识AI是一种如人类大脑般具有自我意识的人工智能。对人工智能研究而言,这一直都是一个长久以来的终极命题。这种类型的AI不仅能够理解和唤起与其互动的人的感情,而且还能拥有自己的情感,需求,信念和潜在的欲望,而这就是科技领域的末日预言者所担忧的AI。虽然AI自我意识的发展可能会给我们的文明带来飞跃式的进步,但同样也有可能会导致灾难。这是因为一旦AI拥有了自保的想法,这些想法可能直接或间接地导致人类灭绝;这样的AI可以轻易地战胜任何人的智慧,并编造精心设计的计谋来超越人类。
另一种在技术术语中更常用的分类基准是将AI技术分类为弱智能(ANI),强人工智能(AGI)和人工超智能(ASI)。
5.弱人工智能(ANI)
这种类型的人工智能囊括了所有现有的AI,甚至包括迄今为止创建的最复杂和最强大的AI。ANI指的是只能使用类似人类的能力自主执行特定任务的AI系统,这些机器只能执行已被写好的命令,因此它们的能力范围十分有限。根据上述分类基准,ANI可被归类入所有的反应机器与有限记忆的范围。即使是最为复杂、会进行自我学习的AI,也仍旧属于ANI这一范畴。
6.强人工智能(AGI)
AGI代表着AI拥有像人类一样学习、感知、理解和运作的能力,这些系统将能够独立构建多种技能,并形成跨域的连接和概括能力,大大减少学习所需的时间。通过学习人类的多功能处理系统,AI系统将会与人类变得一样强大。
7. 超人工智能(ASI)
ASI的发展可能标志着人工智能研究的巅峰,因为AGI将成为迄今为止地球上最强力的AI。而ASI除了复制人类的多方面智能之外,由于更大的内存,更快的数据处理、分析以及决策能力,它们的能力将会远超上述所有类型的AI。AGI和ASI的发展将导致一种通常被称为“奇点”的场景;可尽管拥有如此强大的机器的前景似乎很有吸引力,但这些机器也可能威胁到我们的存在或是生活方式。
从这一点来看,当更先进的AI出现时,我们很难想象那时世界的模样。然而,要实现这一目标显然还前路漫漫,因为人工智能开发的现状与预期相比还处于起步阶段。对于那些对人工智能的未来持负面看法的人来说,这意味着现在要担心奇点问题还为时过早,而且还有时间来确保AI的安全性。对于那些对人工智能的未来持乐观态度的人来说,事实上我们只是触及了人工智能开发的皮毛,这使得这一领域的未来更加令人拭目以待。
NaveenJoshi为福布斯撰稿人,表达观点仅代表个人。译Chloe校李永强
本文为福布斯中文网版权所有,未经允许不得转载。如需转载请联系wechat@forbeschina.com
人工智能分类浅谈
文章目录前言一、什么是人工智能?二、人工智能的分类1.按学派分类2.按能力分类3.按业务领域分类4.按学习方式分类5.按实时分类6.按学习步骤来分7.按学习技巧来分8.按学习轮次来分9.按模型种类来分10.按任务来分11.按模型来分前言本文将粗略介绍人工智能的分类
一、什么是人工智能?通过学习掌握了某种技能的机器,我们认为他具备了人工智能。
二、人工智能的分类1.按学派分类符号主义:又被称为逻辑主义,心理学派,专家系统。该学派认为人工智能是源于数学逻辑的,该学派认为人类认知和思维的基本单元为符号,把这种符号输入到能处理符号的计算机中,从而模拟人的认知过程来实现人工智能。
连接主义:又被称为仿生学。该学派是基于神经网络及网络间的连接学习算法的智能模拟方法。
行为主义:又被称为进化主义或控制论学派。研究的是一个群体的行为。
2.按能力分类弱人工智能:只能处理单一的问题,该模型如果被训练为识别猫狗分类,那么他就只能够处理这个问题。
强人工智能:在各个方面都能够和人类相比。
超人工智能:在各个方面的远超人类。
3.按业务领域分类信号领域
图像领域:识别/侦测,跟踪,切割,生成
语音领域:
自然语义
自动化
4.按学习方式分类有监督:每条数据都有对应的标签。如在训练手写数字识别的时候我会告诉网络传入的图片所对应的数字。高效但成本高
无监督:在训练网络的时候,只给网络对应的数据没有标签,不告诉网络图片对应的数字。成本低而且泛化性能较好但效率低
半监督:输入网络的数据只有部分数据有标签。(少量包含标签的大量无标签的)
自监督
5.按实时分类在线学习:推理和学习是同时进行的。
离线学习:学习完成之后在使用。
6.按学习步骤来分非端到端学习:数据在输入模型之前需要认为进行特征提取。传入模型的不是原始数据,而是经过处理之后的特征。特征提取比较难,对最终的结果影响大。
端到端学习:数据直接输入模型得到输出,特征提取是由模型自己提取的。当任务比较复杂的时候学习起来比较困难。
7.按学习技巧来分迁移学习:在已经训练好的基础上继续学习新的任务。如某个模型已经学会了识别猫狗,我们在这个基础上继续学习识别飞机,船等。
元学习:元学习学习的数据的本质特征
级联学习:将任务进行分解来进行学习
递增学习:逐级增加学习的难度
对抗学习:两个网络相互竞争从而来进行学习
合作学习:分工合作学习
8.按学习轮次来分N-shot/Few-shot
one-shot
zero-shot
9.按模型种类来分判别模型
生成模型
10.按任务来分回归/拟合/函数逼近:当模型的输出为一个具体的数值时为回归任务如预测物体的所在的坐标点时。
分类
聚类:聚类和分类本质上都是把数据分开,区别时聚类为无监督学习。我不知道这堆数据里面有几个类别也不知道哪些是具体的哪一类的数据。
特征提取/降维/主成分分析
生成创作
评估与规划
决策
11.按模型来分统计:传统的机器学习,非端到端学习
仿生:神经网络
人工智能领域技术,主要包含了哪些核心技术
从语音识别到智能家居,从人机大战到无人驾驶,人工智能的“演化”给我们社会上的一些生活细节,带来了一次又一次的惊喜,未来更多智能产品依托的人工智能技术会发展成什么样呢?让我们来看看2018人工智能标准化白皮书里面,对人工智能关键技术的定义。
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:在网络大时代背景下,人工智能技术是如何应用的http://www.duozhishidai.com/article-15277-1.html未来人工智能技术,主要包含哪几种?http://www.duozhishidai.com/article-4938-1.html人工智能时代,你需要了解的9大技术领域http://www.duozhishidai.com/article-3845-1.html
————————————————版权声明:本文为CSDN博主「人工智能爱好者」的原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/zhinengxuexi/article/details/88716489
人工智能的算法有哪些AI常用算法
人工智能(AI)是一个非常广泛的领域,其中包含许多不同的算法和技术。以下是一些常见的人工智能算法:
人工智能的算法有哪些?
机器学习(MachineLearning):机器学习是人工智能领域的一个重要分支,其主要目的是通过利用统计学习理论和算法来训练模型,使得机器能够从数据中学习并不断优化自身的预测和决策能力。机器学习算法包括监督学习、无监督学习和半监督学习等。
深度学习(DeepLearning):深度学习是一种机器学习技术,通过建立深层神经网络模型,可以从大量的数据中进行学习和预测。深度学习被广泛应用于计算机视觉、自然语言处理、语音识别等领域。
自然语言处理(NaturalLanguageProcessing,NLP):自然语言处理是研究人工智能系统如何理解和处理人类语言的学科。自然语言处理涉及到文本预处理、语言分析、语言生成、语言理解等多个方面。
强化学习(ReinforcementLearning):强化学习是一种通过与环境互动来学习行为策略的学习方法。通过对不断变化的环境做出反应并获得反馈,强化学习算法可以逐步优化自己的行动策略。
遗传算法(GeneticAlgorithm):遗传算法是一种模拟自然选择和遗传机制的优化算法。通过从一个种群中选择和进化最适应的解决方案,遗传算法可以帮助人工智能系统找到最优解决方案。
支持向量机(SupportVectorMachine,SVM):支持向量机是一种常见的监督学习算法,通过将数据映射到高维空间中,将数据分成多个类别。支持向量机算法可以处理多维数据,具有较强的分类能力。
贝叶斯网络(BayesianNetwork):贝叶斯网络是一种用于表示变量之间条件依赖关系的概率图模型。贝叶斯网络可以用于预测、决策和诊断等领域,是一种广泛应用的人工智能算法。
总之,人工智能领域的算法种类繁多,随着技术的不断发展和深入研究,新的算法不断涌现。除了上述几种常见的算法,还有许多其他的算法,如决策树、神经进化算法、随机森林等等。
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。
下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号321领取(一定要发暗号321)目录
一、人工智能免费视频课程和项目
二、人工智能必读书籍
三、人工智能论文合集
四、机器学习+计算机视觉基础算法教程
五、深度学习机器学习速查表(共26张)
学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。
点击下方名片,扫码关注公众号【AI技术星球】发送暗号321免费领取文中资料。人工智能系统的技术架构
一、架构图
1.基础层包括:
硬件设施、软件设施、数据资源。其中在硬件设施方面,做深度学习和神经网络训练时候往往会涉及到模型训练是在CPU还是GPU上面,在这个里面GPU就是做计算加速的,第二个是智能芯片,市面上出现的智能语音芯片和图像识别的芯片就是对应这一块。在软件设施方面,智能云平台解决的是硬件资源管理的问题,目前市面上有阿里云,腾讯云、亚马逊云,微软云,百度云等各种云平台,对外输出的是资源的服务能力,第二个是大数据平台,涉及到的是分布式存储,Hadoop等框架,在数据资源方面,把通用数据作为基础层,主要考量的点是通用数据更多的是人工智能类产品当前对外输出的人类相关的数据,往往涉及到人机对话聊天等数据,而专业的行业数据,在会场的智能导航,智能问诊等场景有所应用。
2.技术层包括:
基础框架、算法模型、通用技术,其中基础框架与软件设施有一定的映射关系,算法模型包括机器学习深度学习增强学习等,深度学习包括神经网络,深度神经网络,卷积神经网络等具体的算法,通用技术是算法模型的一个应用,包括自然语言处理、智能语音、机器问答、计算机视觉等,这里需要注意一个点,我们把自然语言处理等归类为通用技术,说明它本身并不是一种算法模型,而是算法模型支撑起来的一种具体的技术形态。
3.底应用层:
包括应用平台和智能产品,需要注意的是智能操作系统,智能音箱、人脸支付等都属于终端,它依赖于音箱和手机等智能设备,这些设备是需要依赖于特定的硬件平台上的,而硬件平台的管理控制则依赖于智能操作系统,这个可以直接对比传统的移动互联网时代,操作系统是安卓、iOS,在PC互联网时代的Windows,Ubuntu。
目前市面上能看到的智能操作系统有百度DuerOS、图灵等。
4.案例:
在这张图对应的是DuerOS的整体技术 架构,从上到下包括三个层次:能力层(小度技术开放平台),包括原生技能、第三方技能的各种开发工具。核心层(小度对话核心系统),对应的是通用技术层,包括语音识别、语音播报、屏幕展示、对话服务等。应用层(小度智能设备开放平台),包括各种API接口、开发套件、麦克风阵列等。在这个里面我们能看到的是它的整体涵盖了对外的开放平台,然后它的技术设备层面对外开放对话核心系统。