人工智能在垃圾分类领域的应用现状
二、服务于收集环节的智能终端
在垃圾收集环节,智能垃圾桶是目前市场上投放最多、研发最热的人工智能产品,主要有监督分类与自动分类两种类型。
监督分类型智能垃圾桶的技术难度相对较低。通过机器视觉判断垃圾分类正确性,用人脸识别等功能将居民信用与垃圾分类行为挂钩,以此督促居民正确投放。同时智能垃圾桶的设计也囊括了通过传感器、机械结构与物联网等来解决垃圾满仓、清洁与运输便捷性等问题。国内的德澜仕智能垃圾桶便是此中的佼佼者,其配套的奖惩系统也使居民更有动力,目前已在全国投放了近1000套设备。
自动分类垃圾桶则是人工智能更为高端的应用。最理想的状态应为:用户只需投入垃圾,由智能垃圾桶自动完成所有的细致分类。但这对AI图像识别与垃圾桶内机械结构的要求过高,同时实际场景与实验室的复杂度完全不同,要完成实现在所有场景的应用可能还需数十年的研发投入。目前实现了高精度自动分类的垃圾桶大多只接受单件投递,如波兰Bin-e公司与中国阿尔飞思公司的智能垃圾桶。阿尔飞思的“睿桶”已经在上海张江人工智能岛投入使用,但因每次只能投放一件垃圾,其适用场景较为有限。小圾科技的“圾生活智慧站”也已研发完毕,实现了干湿垃圾的自动分类,在城市居民区具良好应用。
圾生活智慧站”
三、服务于垃理环节的智能分拣设备
目前中国垃圾处理要求做到减量化、资源化、无害化,而垃圾分类处理则是最终也是最关键的环节,垃圾分类收集环节就是为了最终分类处理而服务的。对这一环节的机械化、智能化研究目前还处于初级阶段,其研发投资与难度较大。
现下我国垃圾处理环节的分拣基本依靠人力,机械辅助少,人力成本高且具危险性(有直接触碰有毒有害垃圾的可能)。国内外的科研机构与高新企业都有对这一方面进行探索。例如日本FANUC公司,美国Alphabet公司、芬兰ZenRobotics公司,中国中城绿建,美国麻省理工(MIT)AI研究所等都有研制基于人工智能机器视觉与机器学习的中大型机器人(机械臂),但分拣的主要对象为经济效益较高的可回收垃圾,其实用性与性价比不高,目前垃圾处理厂中大多还是以人工分拣为主。
垃圾分拣机械臂
结论:
在垃圾分类领域,人工智能技术有很大的应用空间与可能性,它能为垃圾分类提供强大的助力,对推动我国垃圾资源化和减量化处理具有重要意义。完善和优化垃圾分类领域的人工智能技术任重而道远,这也必将带来一场新的革命。
【更多科技与环保资讯,敬请关注“小圾科技”】
微信关注“小圾科技”公众号,了解“圾产品”,获悉更多科技与环保咨询返回搜狐,查看更多
人工智能技术在文化产业中的应用与影响研究
摘要:人工智能技术的发展为文化产业提供了诸多应用性机遇;其中一些关键性技术点与文化产业相结合,可以实现文化内容产生、创意资讯传播以及文化市场管理方面的创新。本文拟从几种主要的人工智能技术出发,介绍在技术与产业相结合过程中形成的代表性应用,同时探讨分析目前的人工智能应用带来的“信息茧房”“机器歧视”等社会问题,从而为我国文化产业发展提供相应的经验。
关键词:人工智能;文化产业;算法公平;信息茧房
人工智能(ArtificialIntelligence,AI)本质上是对人的意识与思维的信息过程的模拟,是指使用机器代替人类完成认知、识别、分析和决策等功能。在《人工智能:一个现代路径》[STUARTJ.RUSSELL&PETERNORVIG,ARTIFICIALINTELLIGENCE:AMODERNAPPROACH1034(3ded.2010),supranote7,at4.]一书中,“人工智能”被定义为:行为是为了获得最好的结果,或者在不确定的情况下,获得期待的最好结果,这是一种“理性行为”选择。在过去的十余年中,人工智能技术在以深度学习为代表的机器学习、语音识别、自然语言生成与处理、计算机视觉等领域取得不少成果,引得全球广泛关注。
世界各国都在积极部署关于人工智能的战略规划,2016年10月,美国和英国双双出台国家人工智能战略。就我国而言,2017年,国务院印发《新一代人工智能发展规划》,其中提出到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元[国务院:新一代人工智能发展规划[J].重庆与世界,2018(02):5-17.]。
基于此,本文重点关注人工智能技术在文化产业――即新闻出版、发行、广播电视、电影、文化艺术、文化信息传输、广告服务和文化休闲娱乐等领域中的应用现状、存在的问题及对策,从而为我国文化产业发展提供可借鉴思路。
一、人工智能的主要技术类型与文化产业中的典型性应用
在美联社于2017年发布的《人工智能工作手册》中,人工智能在新闻业应用最频繁的技术主要有5类,包括机器学习、自然语言技处理术、语音识别技术、机器视觉和机器人技术[余婷,陈实.人工智能在美国新闻业的应用及影响[J].新闻记者,2018(04):33-42.]。在整个文化产业当中,目前应用最为广泛的技术类型是以深度学习为代表的机器学习,其他4类技术类型也均有不少应用落地。
通过上表可知,人工智能中的虚拟代理、机器人自动化、机器学习、深度学习、生物与语音识别、自然语言生成与处理(NLP)、硬件优化与决策管理等技术可以与文化产业中的信息采集、内容生产、信息传播和受众管理等有效结合,提供诸如内容个性化算法、受众目标与偏好识别、自动新闻内容生产等方面的服务,也可以提供在客户管理与市场调研方面的有力手段。
目前,国外一些先进的文化媒体机构对于上述技术的应用已经形成一定的有益经验与有效做法。
首先,在内容生产中,人工智能可以实现自动写作与自动摘要、抽取式新闻写作,并试图使机器像人类一样阅读与思考。
美联社是最早运用AI技术进行自动化写作的媒体之一。2014年,美联社与美国AutomatedInsights公司合作,使用该公司开发的自动化写稿程序Wordsmith来自动编发企业财报新闻。该程序几分钟内可写出150-300字的快讯,每季度能生产4000篇财报新闻,是过去数量的10倍。2015年之后,国内腾讯新闻、新华社和今日头条等也陆续推出了写稿机器人。
其次,在信源数据收集中,人工智能可以基于传根器应用生成内容,实现信息传播的可视化追踪。
NewsTracer是路透社使用的新闻追踪系统,这一系统每天可以对5亿条Twitter信息进行分析,从假新闻、广告和杂音,以及众多的人名、机构和地点中找到真的新闻事件与线索,这让记者能够从社交媒体的众多信息中脱身,把更重要的时间用来挖掘故事。
第三,在文化创意视频类服务中,人工智能可以实现文本和视频之间的转换、高效寻找视频片段与资源以及优化视频内容搜索等。
Zorroa是美国的一家视觉资产管理公司,2017年,公司推出企业可视化智能平台(EVI),帮助用户对大型数据库中的可视资产进行搜索和运行分析。在与索尼影业的合作中,EVI通过面部识别、图像分类、机器学习等方式整理、分析了索尼多年来积累的数百万小时的视觉资产。使用该平台后,平时需要27小时才能搜索到的特定视频资源,仅需3分钟即可检索到,为索尼影业的视频资源开发带来极大的便利[https://zorroa.com/case-studies/]。
第四,在文化信息传播中,人工智能可以通过受众的好奇点与文化传媒内容进行匹配、通过信号源获取受众的兴趣点,并且精准分析受众,预测其内容消费需求,实现精准投放。
Netflix是在用户个性化分发业务上较为成熟的视频网站。2016年年报显示,Netflix拥有9300万全球会员,每天流媒体播放超过1.25亿小时的电视节目和电影。预测用户想要观看的内容是其公司业务模式的关键部分。2016年,Netflix开发名为Meson的应用程序,构建、培训和验证个性化算法,提供视频推荐建议。类似的企业还有IRIS.TV等,该公司曾在三个月的时间内运用个性化分发,将其客户所在公司的观众存留率提高了50%[https://www.techemergence.com/ai-in-movies-entertainment-visual-media/]。
最后,在市场调研与客户管理方面,人工智能可以获知受众对内容消费的使用特点、通过深度神经网络技术来感知受众对文化内容的情感参与和变化,从而进行有效的客户管理与市场营销。
2016年,日本广告公司MaCannEricksonJapan聘用了全球第一个使用人工智能开发的机器人创意总监AI-CD?。当年9月,机器人创意总监与人类创意总监以同一个广告主题各自开发了10分钟的广告片,并交由全国民意调查评判。尽管人类创意总监以8%的微弱优势险胜,AI在受众分析与市场营销方面的潜力不容小觑。
可见,人工智能已经显著改变了媒体格局――包括观众发现和参与内容的方式,以及内容创建和分发给观众的方式。目前,算法不仅会影响受众在不同平台上看到的内容,还会首先影响平台生产和创建的内容。人工智能从根本上改变了受众行为和创作过程。
二、人工智能应用对文化产业发展的影响与启示
尽管统计显示,就目前的全球文化产业而言,仅有8%的文化企业已经部署并使用了人工智能技术应用[https://www.ibc.org/tech-advances/the-future-is-artificial-ai-adoption-in-broadcast-and-media/2549.article],但人工智能技术对文化产业乃至整个社会的影响已经有所显露。
就其积极意义而言,人工智能技术在提高内容生产效率、提升用户留存率以及优化文化产业资产管理等方面存在重要意义、毋庸置疑的高效率和部分的不可替代性。而就其消极影响而言,内容分发的局限性开始受到社会关注;人工智能算法的公平化、透明化一度遭受质疑;算法带来的偏见与歧视又引发社会伦理问题;人工智能应用背后的商业力量或许是造成这一系列问题的原因之一……
不少科技界声名显赫的人物也因此表达了对人工智能未来发展的担忧,如特斯拉创始人埃隆・马斯克曾说:“我们应该十分小心地看待人工智能。我越来越倾向于认为,在国际或者国家层面上应当有相应的人工智能监管措施,以防人类做出不可挽回的事情来。”微软创始人比尔・盖茨、物理学家史蒂芬・霍金等也表达了类似的看法。未来人工智能应用将在何种程度上造福于人类,部分取决于今天我们在何种程度上理解并解决人工智能可能产生的问题与自有弊端。
具体而言,本文将从如下三方面阐述人工智能应用的问题、影响与对策:
(一)内容分发的局限性:“信息茧房”
如今的网络文化空间,从某种意义上说,是一个算法帮助公众做决定的环境。如果说曾经的传统媒体为公众搭建了一个“拟态环境”,不同的编辑部依托各自的编辑方针、新闻判断原则,以“议程设置”的方式决定着每日媒体内容的生产加工,那如今,在网络媒体中这一权力部分地转交给了算法。算法可以决定人们阅读哪些新闻,观看哪些视频,收到哪些广告,人们的数字存在(DigitalExistence)日益受到算法左右。
文化传媒企业使用算法决定内容推荐的初衷是在于解决信息过载的问题,提高用户获取信息的效率,更希望借此增加用户的沉浸时长,提高应用的用户忠诚度和留存率。因此,企业利用大数据主动搜集用户信息,根据用户自身兴趣,为用户定制个性化内容,形成一整套精确的内容分发模式。Facebook信息流产品Newsfeed、对话式新闻产品微软小冰和Quartz、今日头条以及Netflix、IRIS.TV等一系列人工智能应用均属于此类型。
这一初衷是好的,但问题出在“精确”上。信息越精确,代表着信息涉及的范围越狭窄。人工智能研究者已经发现,仅仅关注推荐系统的精确度远远不够,这会导致用户难以获取足够的信息增量,视野越来越狭隘。美国学者桑斯坦在其著作《信息乌托邦》[凯斯・R・桑斯坦.信息乌托邦:众人如何生产知识[M].法律出版社,2008:206-208.]中指出,人们借助网络平台和技术工具,在海量的信息中,完全根据自己的喜好定制报纸和杂志,进行一种完全个人化的阅读。在信息传播中,因公众自身的信息需求并非全方位的,公众只注意自己选择的东西和使自己愉悦的通讯领域,久而久之,会将自身桎梏于像蚕茧一般的“信息茧房”中。
学术界不少学者指出“信息茧房”问题的危害,将“信息茧房”与群体极化、证实性偏见等议题关联起来。学者陈昌凤认为,信息的个人化偏向容易产生詹姆斯・斯托纳(JamesStoner)1961年提出的群体极化现象,即团体成员从开始只是有某些偏向,通过协商、讨论,逐渐朝偏向的方向继续移动、形成极端的观点,甚至引发社会波动,如散播错误信息、形成极端性社会团体、公共理性批判缺失等[陈昌凤,张心蔚.信息个人化、信息偏向与技术性纠偏――新技术时代我们如何获取信息[J].新闻与写作,2017(08):42-45.]。与此同时,人们总是倾向于寻找、阅读自己认同的信息来佐证自己的认知,加深了信息的个人化偏向。对垂直细分领域内容的追逐,弱化了公共事务领域内容的传播,网络社会中传统媒体讲求的“社会公器”意义式微,一个对公共事务冷漠、毫无参与感与同理心的社会将会是“信息茧房”之下最极端也最为悲剧性的结局。
对此,文化传媒企业和公众这两个主体都需要采取一定的对策。对于文化企业而言,应当在推荐的精确度指标之外,加入新的算法推荐考量指标,如多样性、覆盖率、新颖性等;另外,有研究表明,基于关联规则的推荐方法要优于基于内容规则的推荐方法,更易为用户发掘新的兴趣点,现有的障碍在于关联规则难以抽取、耗时长[刘辉,郭梦梦,潘伟强.个性化推荐系统综述[J].常州大学学报(自然科学版),2017,29(03):51-59.]。
而对于公众而言,文化传媒企业设置算法推荐的初衷就有迎合用户喜好的意味,用户越是喜欢哪一类内容,平台就越是推荐哪一类内容。因此用户想要逃离“信息茧房”,第一个步骤就是反省自身,提升自身的媒介素养。平台可以帮助用户实现媒介素养提升,如每周发布用户阅读周报,告知用户在阅读中各类型信息的占比情况,提示用户哪一类信息了解匮乏等,起到一定的督促作用。
(二)从算法偏见到机器歧视――算法的公平与透明化困境
当我们在日常生活中的决策权部分地交给算法之后,我们本能地期待着一个更加公平、透明的环境。但是,一个不容忽视的问题是:算法或者机器真的能够做到公平、公正、不偏不倚吗?算法的规则是否本身就带有人类固有的偏见呢?
2015年5月,Google的照片应用加入自动标签功能,应用更新不久,一位黑人程序员发现自己的照片竟然被Google打上“大猩猩”的标签。Flickr类似的自动标签系统也犯过大错,曾把人标记为猿,把集中营标记为健身房。2016年3月,微软公司的人工智能聊天机器人Tay上线。可是上线不到一天,Tay就被网民“教育”成为一个集反犹太人、性别歧视、种族歧视等于一身的“坏孩子”,被强制下线。此外,有研究称谷歌广告服务会默认为女性用户推送比男性用户薪水更低的广告。这些事件一方面反映出现有的人工智能、机器学习技术的不成熟,另一方面,机器歧视(MachineBias)问题开始进入公众视野。
2017年,Pew研究中心曾在研究报告《算法时代》[LeeRainie,JannaAnderson:Code-Dependent:ProsandConsoftheAlgorithmAge,http://www.pewinternet.org/2017/02/08/code-dependent-pros-and-cons-of-the-algorithm-age/]中指出:“算法的客观中立仅仅是理想,创建算法的人即使尽量做到客观中立,也不可避免地受到自身成长环境、教育背景、知识结构和价值观的影响。此外,创建算法所依赖的底层数据的有限性也会导致算法偏见。”
那么,算法偏见的来源在哪里?首先,存在错误、不准确和无关的数据可能导致偏见。输入不完美、甚至有错误的数据,自然会得到错误、有偏见的结果。
其次,机器学习的过程可能是偏见的另一个重要来源。例如,一个用于纠错的机器学习模型在面对大量姓名的时候,如果某姓氏极为少见,那它在全部数据中出现的频率也极低,机器学习模型便有可能将包含这个姓氏的名字标注为错误,这对罕见姓氏拥有者和少数民族(姓氏与非少数民族不同)而言就会造成歧视[曹建峰.人工智能:机器歧视及应对之策[J].信息安全与通信保密,2016(12):15-19.]。这类歧视的来源并非程序人员有意识的选择,具有难以预料、无法估计的特点。
再者,正如Pew报告所指出的,算法可能先入为主地默认了算法创建者或者底层数据中带有的价值判断,从而产生了性别、宗教和种族方面的歧视。这类歧视主要是由于产品设计(DiscriminationbyDesign)的局限性。
种种算法偏见与机器歧视的案例让我们不禁怀疑,“公平”这一社会理念到底是否可以被操作化,成为被准确量化的算法规则。而与此同时,机器自动化决策的不透明性使得准确量化公平难上加难。机器决策是经由算法这一“黑箱”(Blackbox)完成的,也就是说,不论是普通人还是熟悉公平原则的社会学者,均无法了解算法的内在机制、原理,更无法监督机器的决策过程。因此,当算法的编程人员不清楚或者未能统一“公平”的内涵与规则时,他们自身的偏见就会在一定程度上影响算法,同时他们也可能会忽视算法可能产生的偏见,不公平的人工智能应用随之产生。
正如学者DanielleK.Citron在《技术正当程序》中所说,对于关乎个体权益的自动化决策系统、算法和人工智能,考虑到算法和代码,而非规则,日益决定各种决策工作的结果,人们需要提前构建技术公平规则,通过设计保障公平的实现,并且需要技术正当程序,来加强自动化决策系统中的透明性以及被写进代码中的规则的准确性。
日前,美国弗吉尼亚大学学者AhmedAbbasi等在《让“设计公平”成为机器学习的一部分》(Make“FairnessbyDesign”PartofMachineLearning)一文[https://hbr.org/2018/08/make-fairness-by-design-part-of-machine-learning]中指出,可以通过将数据科学家与社会科学家组队、谨慎打标签、将传统的机器学习指标与公平度量相结合、平衡代表性与群聚效应临界点(criticalmassconstraints)以及保持意识等方法减少算法形成歧视的可能性。其中,“平衡代表性与群聚效应临界点”是指在对数据进行采样时,应既考虑数据的整体特征,同时不忽略某个特定少数群体或者极端数据情况。只有这样,机器学习模型在预测一个普通人和一个特殊群体时,才能都给出更为准确的答案。
另外,谷歌也开始倡导“机会平等”,试图将反歧视纳入算法。还有学者引入“歧视指数”的概念,为设计“公平”的算法提供具体方法。我们必须清楚,人工智能总是通过一个快速且脱离人类社会与历史的学习来完成自我构建,因而一个未经完善的机器学习模型必然存在“道德缺陷”。在人工智能应用的构建中,人类与人类长久以来葆有的道德与社会规则不能缺席。
(三)人工智能应用背后的力量
“信息茧房”的形成不是由于信息广度不足,内容生产不够,而是由于信息推荐固定地集中在某一特定领域造成了信息的窄化;算法偏见的形成不是由于机器学习具有天生的弊端,而是由于人类未将公平公正的原则纳入算法考量之中。人工智能应用背后存在着的,是人的力量与符合经济社会的商业逻辑。
为了迎合消费者,信息推荐系统会将消费者的阅读“口味”作为依据。当搜索引擎通过机器学习意识到,搜索八卦新闻的人愿意在日后更多地看到八卦新闻,为了提升用户留存度,搜索引擎会相应地减少其他类型新闻推荐。
为了满足商家,人工智能产品会把更昂贵的产品卖给用户忠诚度高的用户,即“大数据杀熟”现象。同时,为了更加精准地进行广告投放,人工智能偶尔也会忽视公平原则,例如女性用户通常会收到比男性用户薪资低的推荐广告。这样的现象发人深省,未来是否有必要通过一定的法律手段,要求包括文化企业在内的商家作出“不作恶”的商业承诺。
整体而言,我们的社会正被人工智能推向一个新的发展节点。正如[金兼斌.人工智能将给传媒业带来什么?[J].中国传媒科技,2017(05):1.]学者指出,社会和传媒技术的发展,从来都不是线性和匀速的。从工业革命到信息技术革命,每一次社会巨变都伴随着这样一个临界时刻。今天,我们已经能够感受到,我们的日常生活――包括媒介生活中的许多基础性的东西,正在被人工智能应用所搅动。在这样的时刻,只有紧抓机遇、规避风险、解决弊病,才能真正实现行业和社会的跨越式发展。我国的文化产业走到了一个崭新的路口,新的机遇在等待着它。
(责编:尹峥、赵光霞)分享让更多人看到
中小学人工智能教育:学什么,怎么教
*来源:中国电化教育(ID:iChinaET),作者:方圆媛、黄旭光
一、问题的提出(一)中小学阶段开设人工智能教育的国家政策要求
自上世纪50年代中期人工智能(ArtificialIntelligence,以下简称AI)概念正式提出以来,经过60多年的发展和积淀,伴随着互联网、大数据、云计算和新型传感等技术的发展,人工智能正引发可产生链式反应的科学突破,催生一批颠覆性技术[1],对人类社会生产与生活的各个方面产生着深刻的影响。
2017年7月,中共中央、国务院印发《新一代人工智能发展规划》(以下简称“规划”)。作为抢抓人工智能发展重大战略机遇,构筑我国人工智能发展先发优势的重要战略部署,规划提出了到2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施。在保障措施有关要求中,规划指出“支持开展形式多样的人工智能科普活动”“实施全民智能教育项目,在中小学阶段设置人工智能相关课程”[2]。2018年4月,教育部印发《教育信息化2.0行动计划》,在“信息素养全面提升行动”中要求“加强学生信息素养培育……完善课程方案和课程标准,充实适应信息时代、智能时代发展需要的人工智能和编程课程内容”[3]。
其实在以上两个文件颁布之前,教育部于2003年4月颁布的《普通高中技术课程标准(实验)》中已首次在信息技术课程中设立“人工智能初步”选修模块[4]。在规划发布后,2018年1月出版的《普通高中信息技术课程标准(2017年版)》中,则更进一步地将人工智能的内容更充分地融入到信息技术课程中。最新的高中信息技术标准设计了“人工智能初步”(包含人工智能基础、简单智能系统开发、AI技术的发展与应用三部分内容)[5]作为高中课程方案选择性必修模块,明确制定了课程内容和学业标准,并对教学策略提出建议。
(二)中小学校开展人工智能教育的实践探索
与形势发展和政策要求相呼应,国内一些城市已有一批教师和专业人员开始了在中小学引入人工智能教育教学的实践探索。根据推动力量的不同,这些实践探索大致可以分为两类,一类是中小学内部,由学校和教师发展起来的实践。这一类实践又可细分为两种。一种是在STEM或创客课程中引入人工智能的内容。比如:北京第二外国语学院附属中学将人工智能的元素和技术引入学校传统的机器人课程以及机器人社团活动中,在机器人设计、编程开发等过程中渗透人工智能知识的学习与动手实践[6];此外,北京景山学校和温州中学也有教师在教学中尝试寻找编程、机器人等人工智能技术在科学课程与综合课程中的定位,试图挖掘人工智能技术带给综合课程更大的创造空间[7]。另一种是开设专门的人工智能课程。中国人民大学附属中学开发了人工智能校本课程体系,从面向全体的常规课普及教育,到部分选修的跨学科实践应用,再到少数的前沿探究,形成人工智能纵向金字塔分层课程体系[8]。此外,人大附中还开设了全国中等教育领域首个人工智能实验班,为实验班研发了“人工智能与关于心智的生物学”等研修课程[9]。北京市海淀区翠微小学、北京市十一学校[10]、华南师范大学附属中学等也开设了人工智能内容的相关课程。
另一类是中小学外部力量如高校、事业单位、科研院所等推动发展的实践。比如:北京师范大学课程与教学研究院与有关单位合作,通过组建项目团队,研发测评系统及AI教学技术平台,并在全国几十所中小学校开展教学实践探索[11]。中央电化教育馆组织力量研发了中学(包括初中和高中)人工智能课程与配套数字资源,并在全国17个省(市、自治区)组织了22所实验校开展课程教学的实验。
(三)中小学开展人工智能教育的讨论和疑问
我国尚未出台人工智能课程的国家标准,现有的信息技术国家课程标准仅涉及了人工智能的部分内容。同时,各地师资水平、软硬件环境条件差别较大,随着实践的开展,围绕中小学开展人工智能教育的讨论和疑问也越来越多,主要包括以下几个方面:第一,在教育目标上,小学、初中和高中学段人工智能教育目标的应然状态是什么,是否要在小学阶段引入人工智能的内容或开设专门的课程?有人指出,从全国范围看,“中小学对人工智能课程价值的认识有待提高”[12]。第二,在学习内容上,人工智能不仅有着非常专业的理论知识,还涉及数学、生物、控制论、信息学等多个学科领域,并划分为计算机视觉、自然语言处理、数据挖掘等子领域。如何从复杂的知识体系中抽取适合学生学习的内容,并依据课程目标设计不同层次的学习内容?有研究者指出,目前存在“把人工智能课程窄化为编程语言课程”的现象[13];还有人指出,中小学的人工智能教育多为编程教育和机器人教育,编程教育“多停留在指导学生利用程序设计语言完成具体的编程题目。机器人教育,多停留在简单的实体安装层次”,“教材大多属于产品说明书或用户指南类,缺少对学生思维能力培养的科学引导”[14]。第三,在课程设置的方式上,大部分人都提到了开设专门的人工智能课程,也有人通过分析国家课程标准后提出,小学阶段的人工智能技术教学内容可以安排在小学科学课程中,初中阶段的人工智能课程可以在综合实践活动(占初中课时总数的16%—20%)课程中做出适当安排,高中阶段可安排在信息技术和通用技术课程中[15]。第四,在有关资源上,很多人都提到了缺乏专业师资和软硬件资源。在师资方面,有人指出,“我国中小学人工智能相关内容的教学工作以信息技术教师承担为主……很多老师的知识理论储备和计算机操作技能距离专业水平还有一定的差距,专业的人工智能教师比较匮乏”[16];也有人认为,“缺乏具有知识结构和专业素养的教师来执教……没有接受过专业的培训,难以掌握课程重难点、教学目标不明确,教学经验缺乏”[17]。在教学资源方面,有人提出,“除部分发达地区之外,多数地区还没有与教学相适配的实验室”[18];有人认为“很多中小学教师拿到教材后,由于没有好的经验和做法作为参照,课堂实施存在困难”[19];还有人指出,“人工智能课程不宜采用传统的‘讲授’式教学,更适合应用情境化、基于问题、基于案例的教学模式……有较好价值的中学人工智能教育案例研究的成果很有限”[20]。
尽管我国各地教育水平不一,在中小学阶段开设人工智能相关课程困难重重,但部分地区已经开始了中小学人工智能教育教学的探索。由于各地、各学校相关的软硬件条件存在差异,课程实施的类型不同,造成质量参差不齐,在课程目标和内容的制定,课程实施策略的使用和课程资源的选择和使用等方面还处于摸索阶段,亟需有价值的借鉴和参考。
二、美国K-12人工智能教育行动解读(一)背景、任务与进展
在美国国家科学基金会的资助下,2018年5月,美国人工智能促进协会(TheAssociationfortheAdvancementofArtificialIntelligence,AAAI①)联合美国计算机科学教师协会(ComputerScienceTeachersAssociation,CSTA②)和卡耐基梅隆大学计算机科学学院组成了联合工作组,启动了美国K-12人工智能教育行动(AIforK-12Initiative,以下简称AI4K12)[21]。该行动有三项任务。第一是为在K-12阶段开展人工智能内容的教学制定国家指南。第二是为K-12教师开发一套精心策划的人工智能资源目录。第三是推动形成K-12AI资源的开发社区。卡耐基梅隆大学教授,美国人工智能领域著名研究者大卫·图雷斯基(DavidTouretzky)任工作组组长。2019年7月,AAAI在费城发布了K-12人工智能教学指南(K-12GuidelinesforArtificialIntelligence,以下简称指南),设计了基础教育从小学到高中开展人工智能教学的目标与内容。同时发布了AI教学资源目录(AIResourceDirectory),目录中提供了包括知识点讲解视频、示范软件和教学活动等类型的资源,以为教师开展教学提供支持。由于这是第一次系统地研究如何在中小学引入AI教学,工作组主要在原有的K-12国家计算机科学课程标准的基础上开展“指南”研制工作,并进行了细致充分的论证。
(二)指南内容概览
在美国,各州K-12阶段开设人工智能课程的情况不尽相同。有的州将人工智能作为计算机科学课程的一个部分,有的州开设了单独的人工智能课程作为选修课。作为对美国中小学开展人工智能内容教学的专业指导,“指南”在阐述中小学阶段学习人工智能意义的基础上,设计规划了中小学生需要掌握的人工智能知识以及各学段不同层次的学习目标。
1.中小学阶段学习人工智能的意义
AAAI认为,人工智能在当今人类社会已经扮演了非常卓越而显著的角色。对于孩子们而言,他们生活的世界里随处可见人工智能的产品,尽管他们或许没有直接使用过,但是目睹了父母或家人使用,有一定的直观经验。不难想象,随着技术的进一步发展,人工智能在未来世界将会获得更进一步的发展,而作为未来世界的主人,现在的下一代有必要对人工智能知识获得基本的认识以更好地适应未来的生活。这种必要性体现在两个方面:其一,人工智能基础知识的学习有助于提升孩子们的信息素养。作为未来的公民,当他们面临人工智能技术应用的公共决策和伦理问题时,提升的信息素养有助于他们做出理性的决策。同时,由于人工智能正在取代简单重复的底层工作,让孩子们较早地意识到这一点有助于他们更好地适应未来的就业环境。其二,通过人工智能课程的学习,培养孩子对人工智能领域、对STEM的兴趣,同时在知识和技能层面奠定一定的基础,为他们未来走上专业的职业道路做好铺垫。
2.学习内容与目标
这部分内容主要围绕学生应该知道什么和做什么展开。美国最新版K-12计算机科学课程国家标准11—12年级的课程要求中已经包含了人工智能的有关内容,分别是“能描述人工智能如何驱动各种软件和物理系统,如:数字广告投放、自动驾驶汽车和信用卡欺诈检测(3B-AP-08)”和“能使用一种人工智能的算法与人类对手一起玩游戏或解决问题。这里的游戏不需要太复杂,简单的猜谜游戏、井字棋或简单的机器人指令足矣(3B-AP-09)”[22]。在这次的“指南”中对人工智能学习内容做了更系统的规划,并根据学段设计了不同层次的课程目标。
总体来说,“指南”将K-12阶段所需学习的人工智能知识分成了5个主题(FiveBigIdeasinAI),他们分别是:感知、表示和推理、机器学习、人机交互、社会影响[23]。研制小组认为,这5个主题从性质上足以覆盖人工智能的各领域,但从数量上又是教师可以控制的。尽管5个主题的提法未必完全符合AI实践者审视AI的方式,但对于满足K-12学生的需求是合适的。因此,课程内容和目标以这5个主题为基本框架,并在此基础上设计了各主题中的主要概念和分级学习目标。
(1)感知(Perception)
计算机使用传感器来感知世界。感知是从传感器信号中提取意义的过程。AI领域迄今为止最重要的成就之一就是使计算机能够足够好地去“看”和“听”,以投入实际应用。该主题下的具体应用包括:人脸识别、语音识别、场景理解等。
a.主要概念。这一主题的主要概念包括:人类的感觉和机器传感器;从感觉到知觉;感知的类型:视觉、语音识别等;感知如何工作:算法;计算机感知的局限;智能与非智能机器。
b.分级学习目标如表1所示。
(2)表示与推理(RepresentationandReasoning)
智能代理(IntelligentAgent)(能够)通过特定的逻辑和模型表示现实世界,并用他们进行推理。表示是自然智能和人工智能的基本问题之一。计算机使用数据结构来构建表示,这些表示辅助推理算法。该主题下的具体应用包括:自动驾驶汽车的路线规划、网络搜索、智能下棋的最佳路线推理等。
a.主要概念。这一主题的主要概念包括:表示的类型;推理算法的类型;支持推理的表示:算法操纵表示;算法系统及其功能;一般推理算法的局限。
b.分级学习目标如表2所示。
(3)机器学习(MachineLearning)
计算机通过数据学习,机器学习是一种在数据中找到规律的统计推断。近年来,由于一些学习算法创造了新的表示,AI的许多领域都取得了显著进步。这种方法的成功需要大量的数据。这些“训练数据”通常必须由人们提供,但有时也可以由机器自身获取。该主题下的具体应用包括:训练手机识别人脸;训练语音识别系统;训练机器翻译系统;图片搜索等。
a.主要概念。这一主题的主要概念包括:机器学习;机器学习的方法;学习算法的类型;神经网络基本原理;神经网络架构的类型;训练数据对学习的影响;机器学习的局限。
b.分级学习目标如表3所示。
(4)人机交互(NaturalInteraction)
智能代理需要多种知识才能与人类自然交互。为了与人类自然地交互,智能代理必须能够用人类语言交谈,识别面部表情和情感,并利用文化和社会习俗的知识来推断所观察到的人类行为的意图。具体应用包括:智能代理(如Alexa、Siri),聊天机器人,提供适应性教育的智能导师系统,动作和面部表情识别等。
a.主要概念。这一主题的主要概念包括:自然语言理解;情感计算;常识推理;意识与心灵哲学;自然交互应用;人机交互;AI在自然交互方面的局限。
b.分级学习目标如表4所示。
(5)社会影响(SocietalImpact)
AI的应用对社会既有正面影响也有负面影响。由于人工智能技术正在改变我们工作、出行、沟通和相互照顾的方式,我们必须注意其所能带来的危害。例如,若用于训练人工智能系统的数据存在偏见,可能会导致部分人受到的服务质量低于其他人。因此有必要讨论AI对我们社会的影响,并根据相关系统在道德层面的设计以及应用来制定标准。
a.主要概念。这一主题的主要概念包括:AI系统正在改变商务、政务、医疗和教育;从经济层面讲,AI使得新的服务变得可能,使得商务更有效率;在开发AI系统时,人类不仅要做出技术层面的决策,也要做出道德层面的决策;AI技术通过多种不同的方式影响社区和人们;人工智能和系统需要道德标准来为人们做出决策;AI和机器人会改变人们工作的方式,创造一些工作,淘汰一些工作。
b.分级学习目标如表5所示。
3.教学活动建议
如何针对以上学习内容和学习目标开展教学,“指南”推荐了四种类型的学习活动:第一种是实验类活动,教师可以组织学生使用各种类型的AI软硬件资源,通过实验,一方面体验AI的功能,对AI形成直观认识;另一方面在实验中探索AI的基本原理。第二类活动是手工模拟AI算法的活动(或不插电活动),学生无需使用任何计算机设备,用纸和笔,通过绘图、计算来模拟AI的基本算法,理解AI解决问题的逻辑思路和技术路线。第三类活动是设计类活动,教师为学生提供支架,引导和鼓励他们使用AI开源软件或服务来开发自己的AI应用,在设计和应用中学习。第四类是案例分析类活动,教师提供与AI相关的多个社会问题的案例,引导学生从多个角度来探索其中的伦理道德问题并寻求改进的途径。
(三)K-12人工智能教学资源目录简介
为了对AI教学提供支持,AI4K12开发了一套资源目录,并在网站(https://github.com/touretzkyds/ai4k12/wiki/Resource-Directory)上公布了这套目录。目录汇集了各类AI科普资源,根据不同类型资源的教育特点进行了系统的梳理和分类,并作了统一标注。从媒体类型上,AI4K12划分了专业著作和报告、竞赛、课程材料、演示软件(Demos)、教师职业发展在线课程、K-12学生在线课程、软件包和视频七类资源。在此基础上,依据中小学AI学习特点,AI4K12进一步按照资源的教学功能进行了分类,具体如表6所示[24]。可以看到,这里的资源不仅包括软硬件资源,还包括教学活动。对资源教学功能的分析提示了何时以及如何使用这些资源,进而为教师教学策略的设计提供了支持。
三、美国AI4K12行动成果特色小结美国AI4K12行动是富有成效的。从短期看,它制定了K-12人工智能教学指南,开发了教学资源目录,对学习内容和学习目标给出了科学、专业的设计,对教学活动策略提出了具体可行的建议,对教学资源进行了系统的汇聚、梳理和分类。从长远看,行动联通了AI研究、实践和教学三个行业,促进了美国国内K-12人工智能教育专业团体的形成,为未来的发展奠定了基础。
(一)“指南”学习内容覆盖AI原理的基本方面,关注对AI技术的反思,学习目标按学段分级
在中小学开展AI教育,核心的问题就是学生学什么,达到什么水平?美国K-12AI教学指南以5个知识主题(感知、表示和推理、机器学习、人机交互、社会影响)作为框架,并在其基础上设计了从幼儿园到高中三年级的分学段目标。一方面,5个知识主题不仅涵盖了AI研究与应用的基本领域,同时还包括了AI的社会影响。这体现了不仅要求学生体验和学习AI的基本知识和技能,也要求他们能客观、全面、深刻地对这项技术进行审视和反思的目的。另一方面,所有学段均涉及5个知识主题,各学段目标的差异只在目标的层次上,而不在知识主题上,整体的学习是螺旋上升的过程。比如,“表示与推理”是一个逻辑性很强的主题,幼儿园—2年级学段的孩子和高中生都可以学习。只不过前者只需要达到较低的学习层次比如获得对有关原理体验和感性认识,如“使用决策树进行决策”;而后者则需要达到较高的学习层次如掌握底层的算法和原理,例如“描述不同类型搜索算法的差异”。
(二)“指南”教学策略与活动建议具体清晰,可操作性强,遵循学习规律
如何引导学生学习AI知识?AI4K12给出了具体清晰的建议,不仅提出了支持策略,还推荐了“实验”“手工模拟”“设计开发”“案例分析”四种类型的教学活动。这四类活动分别对应AI学习的几种学习目标:体验AI功能与理解AI基本原理,理解AI算法的原理,设计简单的AI应用与辩证地认识AI对社会的各方面影响。这些目标在5个知识主题中都有体现。教师可以根据5个主题下分级目标的类型,选择对应类型的活动进行设计和开展。值得注意的是,四类活动也分别对应AI学习从感性到理性,从理解到应用的各个阶段,遵循基本的学习规律。具体来说,除第四类活动是综合性活动,需要建立在对AI及其应用充分把握的基础上之外,第一类到第三类活动分别对应学生学习AI从感性认识(认识AI的功能)到理性认识(理解AI的基本原理),从知识理解(理解AI基本算法)到知识应用(使用AI算法模块开发应用)的学习阶段,学生的认识水平在逐步上升。
(三)K-12AI教学资源目录充分挖掘现有AI资源,分析梳理其教育价值
国内很多人担心,在中小学开展AI教育缺乏专业的师资。这个问题在美国也存在。且不说人工智能科班出身的专业人员是否会到中小学任教,抑或在师范院校增设人工智能的专业是否可行,还是在信息技术专业教师的培养中增加人工智能的课程是否更合理,通过这些方式提升师资专业能力需要一定的周期和较多的资金投入。AI4K12系统地梳理与充分地挖掘现有高质量AI科普资源的教育价值,快速而高效地为教师和学生提供了全面而丰富的学习资源与活动支持资源,不仅制作了教学资源目录,给出实例与资源链接,同时标注适用主题、年段、应用功能等,既可以用于教师自学,也可以用于教师组织学生开展学习活动。目录中的资源或是高校AI科研院所(代表研究者)开发,或是谷歌等知名高新技术企业(代表实践者)开发,资源的设计与制作都是专业而规范的。不仅有助于教师快速成长,学生也能获得专业、规范的指导,在一定程度上确保了教学的质量。
需要指出的是,目录中的资源大多是以AI科普为目的而开发的,其面向的对象广泛,并不专门为K-12的AI教育,在系统性和针对性上比较欠缺。可以说,现有资源还远远不能满足中小学AI教育的需要。AI4K12也指出了几种目前缺少的资源,并呼吁领域内的专业人士更多地关注并开发。
四、思考与启示AI4K12是在美国基础教育领域开展人工智能教学的第一个专业行动。它研制了教学指南,开发了资源目录,促成了K-12人工智能教育专业社区的形成。虽然中美两国的教育体制和文化存在差异,但AI4K12行动中有关教学内容和分级学习目标的设计,有关教学资源的梳理和资源目录的开发,有关教学活动和策略的建议对我国中小学开展人工智能教育有着很好的启示与借鉴。
其一是进一步完善中小学信息技术课程标准中有关人工智能部分的标准,在现有基础上扩展修习学段,丰富课程内容,深化课程层次。目前,我国信息技术课程的国家标准中主要是在高中阶段对人工智能知识的学习提出了要求,内容主要涉及人工智能的基本特征、核心算法、特定领域人工智能应用系统的开发以及对人工智能及其应用的反思几个方面。与美国的标准相比,内容和目标的系统性还有待进一步提升。今天的孩子成长在一个由人工智能技术驱动的世界里,绝大部分孩子已经接触了各种形式的AI技术和产品,从低年段就可以开始对孩子进行AI教育,重要的是思考如何帮助他们理解AI技术是如何工作的[25]。
从课程目标看,中小学阶段组织学生学习人工智能,不是学习使用AI产品,也不是学习AI编程技术,重要的是学习AI认识世界、理解世界和解决问题的方式和方法,帮助学生形成一定的技术思维,同时又能辩证地审视AI技术,为未来在智能环境里工作和生活,或者为走上AI研究与实践的专业道路打下基础。可以借鉴AI4K12的内容框架,在系统考量AI研究与应用基本原理的基础上形成一个系统的主题框架,并在该框架下根据不同年龄学生认知能力与特点设计具体的学习目标。可为中低年段设置更多体验类的目标,引导他们体验AI的功能,感受其解决问题的思路和方法;针对高学段学生,更多设置理解AI功能底层的原理和算法,以及系统开发的目标。在课程内容上,可根据课程目标的要求,特别是不同年龄段目标的设定,选择相应的知识内容。
其二是进一步加强AI教学策略的研究和实践。作为计算机学科的一个分支,AI知识专业、复杂而深奥,不仅需要跨学科的知识,也需要较强的抽象逻辑思维。针对抽象逻辑思维并不发达,甚至还处于前运算和具体运算阶段的学生,如何引导他们学习AI知识?国内有学者提出“应用情境化、基于问题、基于案例的教学模式”[26],也有人提出“基于项目学习的方式”[27]“应用任务驱动式、基于问题或融入游戏化机制的探究式教学”[28]。那么,AI教学策略可以有哪些?如何针对不同的教学目标设计相应的活动?
现有高中阶段信息技术课标有关人工智能部分的“教学提示”中比较笼统地给出了“案例分析”“项目学习”“小组合作”等教学策略和教学组织形式的建议,操作性有待进一步完善。同时现有研究较少,可供参考的理论或实践成果并不完善。可以借鉴AI4K12有关教学活动的建议,将教学活动和策略的选择充分建立在AI教学目标和AI知识内容特点的基础上。例如:感知AI特点,及其技术和产品功能的目标,适合开展实验类活动,通过实验操作AI软硬件资源,形成有关AI技术的直观认识;探究AI产品原理和算法原理的目标,更适合开展实验和模拟算法的活动,模拟算法的活动可以不依赖软硬件资源,通过简单的纸和笔就能探索AI解决问题的逻辑;应用AI原理和算法解决问题的目标,更适合开展设计类活动,在该活动中教师需要提供丰富的学习支架引导学生一步步达成问题的解决;辩证看待AI技术的影响的目标,适合开展案例分析的活动,通过实际例子引导学生多角度探索其中的伦理道德问题。依托以上由目标、知识内容与活动类型组成的设计框架,进一步设计和开发不同类型的活动流程与策略,并通过教育教学研究和实践进行检验和完善。
其三是进一步加强AI教学资源的挖掘和建设。在当前专业师资比较缺乏、地区差异较大的情况下,AI教学资源的建设显得尤其重要。各地可根据实际情况开展AI教育资源的建设。AI资源建设有两种方式。第一种是在基础较弱、师资缺乏的地方,可充分利用现有高质量的AI科普资源、开源软硬件等,先行开展一些以AI核心技术(如机器学习、自然语言处理等)作为教学对象的学习活动,在教学中不断检验和完善这些资源,并将其作为下一步课程开发的基础。第二种是在资源充足、软硬件条件成熟的地方,可组织有关力量开发专门针对中小学AI教育的教学资源,除了常规的教师用多媒体教学资源,还需要特别重视实验资源的开发,为学生提供富媒体资源的探究环境。各地、各校可根据具体情况在中学阶段开设AI选修课,或在科学课、综合实践课中安排AI的学习专题,使用并优化这些资源。
人工智能本身就是一个跨专业的综合领域,人工智能的教学自然也涉及多个学科。为了确保AI教学资源的科学性和规范性,需要加强人工智能领域内跨行业的合作。AI4K12行动充分体现了美国AI领域从高校研究者、知名企业实践者到教师的合作。不同行业的不同视角确保了AI中小学教育的专业性、规范性和适切性。此外,AI引入基础教育还处于初步发展阶段,特别需要高校、科研院所研究者、企业实践者和一线教师的共同努力,将AI理论知识、研究动态、实践应用与前沿发展以科学、专业、规范的方式进行组合,确保教学的质量。此外,研究者和实践者也可以作为外部的人力资源,为学生提供与AI科学家进行对话和学习的机会,提升学习兴趣,开阔视野。
参考文献:[1]吴飞,阳春华等.人工智能的回顾与展望[J].中国科学基金,2018,(3):243-250.[2]国务院.国务院关于印发新一代人工智能发展规划的通知(国发[2017]35号)[EB/OL].http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm,2019-12-09.[3]中华人民共和国教育部.教育部关于印发《教育信息化2.0行动计划》的通知[EB/OL].http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html,2019-12-09.[4]教育部.教育部关于印发《普通高中课程方案(实验)》和语文等十五个学科课程标准(实验)的通知[EB/OL].http://www.moe.gov.cn/srcsite/A26/s8001/200303/t20030331_167349.html,2019-12-09.[5]教育部.教育部关于印发《普通高中课程方案和语文等学科课程标准(2017年版)》的通知[EB/OL].http://www.moe.gov.cn/srcsite/A26/s8001/201801/t20180115_324647.html,2019-12-09.[6]李建,孟延豹.充分利用多种教学APP,开展人工智能课程——教学、社团、比赛相结合[J].中国信息技术教育,2018,(8):69-70.[7][16][18][28]陈凯泉,何瑶等.人工智能视域下的信息素养内涵转型及AI教育目标定位——兼论基础教育阶段AI课程与教学实施路径[J].远程教育杂志,2018,(1):61-71.[8]武迪,张思等.横向跨学科纵向分层次人工智能课程的设计与实施[J].中小学信息技术教育,2019,(6):21-23.[9][19]袁中果,梁霄等.中小学人工智能课程实施关键问题分析——以人大附中人工智能课程实践为例[J].中小学数字化教学,2019,(7):19-22.[10]马涛,赵峰等.海淀区中小学人工智能教育发展之路[J].中国电化教育,2019,(5):128-132.[11][13]王本陆,千京龙等.简论中小学人工智能课程的建构[J].教育研究与实验,2018,(4):37-43.[12]刘尚琴.国内中小学人工智能课程现状、问题及推进策略分析[J].中小学电教,2015,(5):37-40.[14]谢忠新,曹杨璐等.中小学人工智能课程内容设计探究[J].中国电化教育,2019,(4):17-22.[15]艾伦.中小学人工智能课程定位分析[J].中国现代教育装备,2017,(10):1-5.[17][27]韩克.高中信息技术课程中的人工智能教学[J].中国校外教育(中旬刊),2019,(10):165-168.[20]张学军,董晓辉.高中人工智能课程项目案例资源设计与开发[J].电化教育研究,2019,(8):87-95.[21]AAAI.AAAILaunches“AIforK-12”InitiativeincollaborationwiththeComputerScienceTeachersAssociation(CSTA)andAI4All[EB/OL].https://aaai.org/Pressroom/Releases/release-18-0515.pdf,2020-01-05.[22]CSTA.K-12ComputerScienceStantards,Revised2017[EB/OL].https://www.csteachers.org/page/standards,2020-01-05.[23]DavidS.Touretzky,ChristinaGardner-McCune,etal.K-12GuidelinesforArtificialIntelligence:WhatStudentsShouldKnow[EB/OL].https://ae-uploads.uoregon.edu/ISTE/ISTE2019/PROGRAM_SESSION_MODEL/HANDOUTS/112142285/ISTE2019Presentation_final.pdf,2020-07-15.[24][25]DavidS.Touretzky,ChristinaGardner-McCune,etal.EnvisioningAIforK-12:WhatShouldEveryChildKnowaboutAI?[EB/OL].https://aaai.org/ojs/index.php/AAAI/article/view/5053,2020-07-15.[26]马超,张义兵等.高中《人工智能初步》教学的三种常用模式[J].现代教育技术,2008,(8):51-53.作者简介:
方圆媛:副研究员,在读博士,研究方向为教学设计与绩效基数、基础教育信息化(fangyy@moe.edu.cn)。
黄旭光:副研究员,研究方向为基础教育信息化、基础教育数字资源的设计与开发(huangxg@moe.edu.cn)。
本文转载自微信公众号“中国电化教育”,作者方圆媛、黄旭光。文章为作者独立观点,不代表芥末堆立场,转载请联系原作者。
人工智能1、本文是芥末堆网转载文章,原文:中国电化教育;2、芥末堆不接受通过公关费、车马费等任何形式发布失实文章,只呈现有价值的内容给读者;3、如果你也从事教育,并希望被芥末堆报道,请您填写信息告诉我们。来源:中国电化教育芥末堆商务合作:010-57269867人工智能在教育中的应用,主要包含哪几个方面
国务院印发的《新一代人工智能发展规划》明确指出,人工智能成为国际竞争的新焦点,应逐步开展全民智能教育项目,在中小学阶段设置人工智能相关课程、逐步推广编程教育、建设人工智能学科,培养复合型人才,形成我国人工智能人才高地。此次规划出台,将会加快编程培训进入中小学课堂的实施进度,对于人工智能在教育中如何应用,主要包括以下几点:
师资分配
利用人工智能可以实现师资资源重新分配。传统教育模式中,存在严重的师资力量分配不均匀的问题,也导致了教育的不均衡、不平等。
当投入了人工智能教育以后,各地的教师可以将自己的资源制成课件,无论在世界哪一个地方,孩子们享受到的教育资源都是相同的。人工智能让各地师资力量取长补短。
交流平台
人工智能以及区块链技术还可以为教育工作者搭建共建平台。在人工智能教育领域中,喵爪组建开放式共建平台,供技术创新者和教育创新者共同合作,开发基于项目制学习和人工智能创新教育的学习内容。这样的内容可以在喵爪星球虚拟学习空间里,通过其注册的喵爪账号在喵爪平台上参与学习,这有利于社群里的人互相学习共同促进。而且,区块链技术也可以保证学生隐私以及学生数据的真实性。
资源迅速更新
人工智能将促进教育资源的迅速更新,更加轻便。传统教育大部分是依赖于纸质书籍的,而纸质书籍有几个重大的缺点:不易更新、非常沉重、保存困难。一旦更新,原有的书籍便相当于作废等。
如果改用人工智能教育方式,更新只需要一瞬间,服务器上传后,用户只要联网更新数据就可以获取最新版本。学生也不必再背着沉重的书包,甚至在未来可能会由机器人代替学生背负学习资料。这种轻便及时的教育方式比传统教育少了许多麻烦。
负担优化
传统教育是制式的,教师对学生能力的训练大多数只能通过作业,而且家长盲目地给孩子报各种补习班,造成孩子时间的浪费,同时也破坏了孩子的学习兴趣,造成了巨大的影响。
人工智能模式的教育中,智能教育模式会对孩子掌握的知识进行一个评测。对于孩子已经掌握的知识,除了一段时间以后的温习以外,将减少其在学习过程中的出现率,保证孩子的休息娱乐时间,减少死读书现象的发生,确保孩子是真正掌握了知识,而非死记硬背。
个性化学习
人工智能可以为每位学生提供个人专属的学习计划。喵爪教育将利用人工智能技术,根据需求为每一位在喵爪星球上注册的用户提供个人专属的学习计划。由人工智能定制的学习计划与传统教育制式学习有着本质的区别,人工智能个人专属学习计划可以更有效地开发孩子的潜力,因为每个孩子都有自己所擅长的和不擅长的。
制式教育只会强硬地让孩子学所有东西,而人工智能教育则是针对孩子的优点,进行深入开发,把孩子的潜力开发出来,让孩子的潜质不会被白白浪费。
喵爪教育已经和汉森机器人公司达成合作意向,利用人工智能技术创新教育,共同开发使用“爱因斯坦”机器人。这款机器人不仅可以编程,还可以与Scratch编程教育相结合,用于项目制学习(PBL)、人工智能认知学习。
众所周知,如果人类在学习的过程中能够拥有更多的身体感官交流,那么学习的效果将会得到大大的提高。“爱因斯坦”机器人首先就具备机器人与人之间的视听交流。在此之后,如果用户用手指触摸iPad来与机器人进行互动交流,那么它将打开人类大脑的更多区域的互动,而这也可以使人类的大脑更加快速地接收这些知识并且接受这种学习方式。用户可以通过云端下载更多的智能应用程序来与“爱因斯坦”机器人进行更多的互动。
“爱因斯坦”机器人背后所隐藏的道理就是寓教于乐,将娱乐和教育有机地结合起来。这也是“爱因斯坦”机器人诞生的初衷。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:1.人工智能时代,AI人才都有哪些特征?http://www.duozhishidai.com/article-1792-1.html2.大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html3.人工智能,机器学习和深度学习之间,主要有什么差异http://www.duozhishidai.com/article-15858-1.html4.大数据人工智能领域,如何从菜鸟晋级为大神http://www.duozhishidai.com/article-1427-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
人工智能教育应用
Q1我不是教育工作者,这门课会不会很专业,只适合相关专业和领域的人?
A1:请不要担心,我们的课程内容不仅面向师范生或中小学教师,只要您愿意学习,想要了解人工智能及其给教育实践带来的巨大变化,您都可以选修我们的课程!
Q2我对这门课程有兴趣,但我没有人工智能相关知识背景,可以选修吗?
A2:您可以跟随我们的课程,一起学习,一起成长!如果有可能的话,您也完全可以将知识融入学习和工作生活中,不断提升自己为迎接智能时代做好充分的准备。相信对您必然会有所帮助!
Q3我是教授相关课程的教师,是否可以采用这门课程开展混合式教学?
A3:欢迎各位教师应用本门MOOC开展混合式教学实践,探索利用MOOC开展高效课堂教学的模式的策略,若您实验成功,不要忘了推荐给其他的老师们,也记得和我们说一下哦。
Q4我该如何学习这门课程?
A4:1)注册中国大学MOOC或爱课程网账号;
2)根据学习流程开展学习;
3)关注课程公告,即可了解课程更新,掌握一手资源!课程公告也会发送到您注册或关联的邮箱哦!这样就不会忘记要学习啦!
Q5我在学习过程中遇到问题了,怎么解决呢?
A5:您可以通过以下几种方式获取帮助:
1)在课程讨论区寻求学习同伴或助教、老师们的帮助;
2)给课程团队发求助邮件,联系邮箱:aiedu2019@163.com;
3)在课程的QQ群中获得帮助:452637011。
Q6电子学习证书如何获得?是否收费?
A6:如果您在规定时间内完成了课程学习,并满足证书获取要求,你可以在课程结束后根据需要进行申请。请在课程结课后七天以内申请电子证书,逾期不候哦。
最后,我们希望与您一起在课程中共同进步,我们会为大家提供优质的教学服务,同时也希望您:
Ø 每周保证3-5小时的学习时间,并积极参与研讨,同伴互评等;
Ø 尊重老师、助教、同学们,不使用网络暴力,不发表不当言论;
Ø 为保证交流畅通,请尽量使用中文沟通;
Ø 不在平台发布违法信息;
Ø 课程资源版权所有,如需引用,请先征得同意,联系方式为课程团队邮箱;
Ø 严禁在互联网上发布课程的测试题答案、作业作品等,尊重课程团队知识版权,尊重同学的知识版权,谢谢配合。