博舍

人工智能伦理问题的现状分析与对策 人工智能能带来哪些伦理问题

人工智能伦理问题的现状分析与对策

中国网/中国发展门户网讯  人工智能(AI)是第四次产业革命中的核心技术,得到了世界的高度重视。我国也围绕人工智能技术制定了一系列的发展规划和战略,大力推动了我国人工智能领域的发展。然而,人工智能技术在为经济发展与社会进步带来重大发展机遇的同时,也为伦理规范和社会法治带来了深刻挑战。2017年,国务院印发的《新一代人工智能发展规划》提出“分三步走”的战略目标,掀起了人工智能新热潮,并明确提出要“加强人工智能相关法律、伦理和社会问题研究,建立保障人工智能健康发展的法律法规和伦理道德框架”。2018年,习近平总书记在主持中共中央政治局就人工智能发展现状和趋势举行的集体学习时强调,要加强人工智能发展的潜在风险研判和防范,维护人民利益和国家安全,确保人工智能安全、可靠、可控。要整合多学科力量,加强人工智能相关法律、伦理、社会问题研究,建立健全保障人工智能健康发展的法律法规、制度体系、伦理道德。2019年,我国新一代人工智能发展规划推进办公室专门成立了新一代人工智能治理专业委员会,全面负责开展人工智能治理方面政策体系、法律法规和伦理规范研究和工作推进。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中专门强调要“探索建立无人驾驶、在线医疗、金融科技、智能配送等监管框架,完善相关法律法规和伦理审查规则”。这些均体现了我国对人工智能伦理及其治理的密切关注程度和积极推进决心,同时也突出了这一问题的重要性。

当前人工智能伦理问题

伦理是处理人与人之间关系、人与社会之间关系的道理和秩序规范。人类历史上,重大的科技发展往往带来生产力、生产关系及上层建筑的显著变化,成为划分时代的一项重要标准,也带来对社会伦理的深刻反思。人类社会于20世纪中后期进入信息时代后,信息技术伦理逐渐引起了广泛关注和研究,包括个人信息泄露、信息鸿沟、信息茧房、新型权力结构规制不足等。信息技术的高速变革发展,使得人类社会迅速迈向智能时代,其突出表现在带有认知、预测和决策功能的人工智能算法被日益广泛地应用在社会各个场景之中;前沿信息技术的综合运用,正逐渐发展形成一个万物可互联、万物可计算的新型硬件和数据资源网络,能够提供海量多源异构数据供人工智能算法分析处理;人工智能算法可直接控制物理设备,亦可为个人决策、群体决策乃至国家决策提供辅助支撑;人工智能可以运用于智慧家居、智慧交通、智慧医疗、智慧工厂、智慧农业、智慧金融等众多场景,还可能被用于武器和军事之中。然而,迈向智能时代的过程如此迅速,使得我们在传统的信息技术伦理秩序尚未建立完成的情况下,又迫切需要应对更加富有挑战性的人工智能伦理问题,积极构建智能社会的秩序。

计算机伦理学创始人 Moore将伦理智能体分为4类:伦理影响智能体(对社会和环境产生伦理影响);隐式伦理智能体(通过特定软硬件内置安全等隐含的伦理设计);显示伦理智能体(能根据情势的变化及其对伦理规范的理解采取合理行动);完全伦理智能体(像人一样具有自由意志并能对各种情况做出伦理决策)。当前人工智能发展尚处在弱人工智能阶段,但也对社会和环境产生了一定的伦理影响。人们正在探索为人工智能内置伦理规则,以及通过伦理推理等使人工智能技术的实现中也包含有对伦理规则的理解。近年来,越来越多的人呼吁要赋予人工智能机器一定的道德主体地位,但机器能否成为完全伦理智能体存在巨大的争议。尽管当前人工智能在一些场景下的功能或行为与人类接近,但实则并不具有“自由意志”。从经典社会规范理论来看,是否能够成为规范意义上的“主体”来承担责任,并不取决于其功能,而是以“自由意志”为核心来构建的。黑格尔的《法哲学原理》即以自由意志为起点展开。因此,当前阶段对人工智能伦理问题的分析和解决路径构建应主要围绕着前3类伦理智能体开展,即将人工智能定性为工具而非主体。

当前阶段,人工智能既承继了之前信息技术的伦理问题,又因为深度学习等一些人工智能算法的不透明性、难解释性、自适应性、运用广泛等特征而具有新的特点,可能在基本人权、社会秩序、国家安全等诸多方面带来一系列伦理风险。例如:人工智能系统的缺陷和价值设定问题可能带来公民生命权、健康权的威胁。2018年,Uber自动驾驶汽车在美国亚利桑那州发生的致命事故并非传感器出现故障,而是由于 Uber在设计系统时出于对乘客舒适度的考虑,对人工智能算法识别为树叶、塑料袋之类的障碍物做出予以忽略的决定。人工智能算法在目标示范、算法歧视、训练数据中的偏失可能带来或扩大社会中的歧视,侵害公民的平等权。人工智能的滥用可能威胁公民隐私权、个人信息权。深度学习等复杂的人工智能算法会导致算法黑箱问题,使决策不透明或难以解释,从而影响公民知情权、程序正当及公民监督权。信息精准推送、自动化假新闻撰写和智能化定向传播、深度伪造等人工智能技术的滥用和误用可能导致信息茧房、虚假信息泛滥等问题,以及可能影响人们对重要新闻的获取和对公共议题的民主参与度;虚假新闻的精准推送还可能加大影响人们对事实的认识和观点,进而可能煽动民意、操纵商业市场和影响政治及国家政策。剑桥分析公司利用 Facebook上的数据对用户进行政治偏好分析,并据此进行定向信息推送来影响美国大选,这就是典型实例。人工智能算法可能在更不易于被察觉和证明的情况下,利用算法歧视,或通过算法合谋形成横向垄断协议或轴辐协议等方式,破坏市场竞争环境。算法决策在社会各领域的运用可能引起权力结构的变化,算法凭借其可以处理海量数据的技术优势和无所不在的信息系统中的嵌入优势,对人们的权益和自由产生显著影响。例如,银行信贷中通过算法进行信用评价将影响公民是否能获得贷款,刑事司法中通过算法进行社会危害性评估将影响是否进行审前羁押等,都是突出的体现。人工智能在工作场景中的滥用可能影响劳动者权益,并且人工智能对劳动者的替代可能引发大规模结构性失业的危机,带来劳动权或就业机会方面的风险。由于人工智能在社会生产生活的各个环节日益广泛应用,人工智能系统的漏洞、设计缺陷等安全风险,可能引发个人信息等数据泄露、工业生产线停止、交通瘫痪等社会问题,威胁金融安全、社会安全和国家安全等。人工智能武器的滥用可能在世界范围内加剧不平等,威胁人类生命与世界和平……

人工智能伦理风险治理具有复杂性,尚未形成完善的理论架构和治理体系。人工智能伦理风险的成因具有多元性,包括人工智能算法的目标失范、算法及系统缺陷、受影响主体对人工智能的信任危机、监管机制和工具欠缺、责任机制不完善、受影响主体的防御措施薄弱等。人工智能技术和产业应用的飞速发展,难以充分刻画和分析其伦理风险及提供解决方案。这要求我们必须克服传统规范体系的滞后性,而采用“面向未来”的眼光和方法论,对人工智能的设计、研发、应用和使用中的规范框架进行积极思考和构建,并从确立伦理准则等软法开始,引领和规范人工智能研发应用。

关于人工智能的发展,我们既不能盲目乐观,也不能因噎废食,要深刻认识到它可以增加社会福祉的能力。因此,在人类社会步入智能时代之际,必须趁早从宏观上引导人工智能沿着科学的道路前行,对它进行伦理反思,识别其中的伦理风险及其成因,逐步构建科学有效的治理体系,使其更好地发挥积极价值。 

人工智能伦理准则、治理原则及进路

当前全球人工智能治理还处于初期探索阶段,正从形成人工智能伦理准则的基本共识出发,向可信评估、操作指南、行业标准、政策法规等落地实践逐步深入,并在加快构建人工智能国际治理框架体系。

伦理准则

近几年来,众多国家、地区、国际和国内组织、企业均纷纷发布了人工智能伦理准则或研究报告。据不完全统计,相关人工智能伦理准则已经超过40项。除文化、地区、领域等因素引起的差异之外,可以看到目前的人工智能伦理准则已形成了一定的社会共识。

近年来,中国相关机构和行业组织也非常积极活跃参与其中。例如:2018年1月,中国电子技术标准化研究院发布了《人工智能标准化白皮书(2018版)》,提出人类利益原则和责任原则作为人工智能伦理的两个基本原则;2019年5月,《人工智能北京共识》发布,针对人工智能的研发、使用、治理 3 个方面,提出了各个参与方应该遵循的有益于人类命运共同体构建和社会发展的15条原则;2019年6月,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出了人工智能发展的8项原则,勾勒出了人工智能治理的框架和行动指南;2019年7月,上海市人工智能产业安全专家咨询委员会发布了《人工智能安全发展上海倡议》;2021年9月,中关村论坛上发布由国家新一代人工智能治理专业委员会制定的《新一代人工智能伦理规范》等。从发布内容上看,所有准则在以人为本、促进创新、保障安全、保护隐私、明晰责任等价值观上取得了高度共识,但仍有待继续加深理论研究和论证,进一步建立共识。

治理原则

美国、欧洲、日本等国家和地区在大力推动人工智能技术和产业发展的同时,高度重视人工智能的安全、健康发展,并将伦理治理纳入其人工智能战略,体现了发展与伦理安全并重的基本原则。

习近平总书记高度重视科技创新领域的法治建设问题,强调“要积极推进国家安全、科技创新、公共卫生、生物安全、生态文明、防范风险、涉外法治等重要领域立法以良法善治保障新业态新模式健康发展”。近年来,我国在应对新技术新业态的规制和监管方面,形成了“包容审慎”的总体政策。这项基本政策在2017年就已正式提出。在2020年1月1日起实施的《优化营商环境条例》第55条中更是专门规定了“包容审慎”监管原则:“政府及其有关部门应当按照鼓励创新的原则,对新技术、新产业、新业态、新模式等实行包容审慎监管,针对其性质、特点分类制定和实行相应的监管规则和标准,留足发展空间,同时确保质量和安全,不得简单化予以禁止或者不予监管。”这为当前人工智能伦理治理提供了基本原则和方法论。一方面,要注重观察,认识到新技术新事物往往有其积极的社会意义,亦有其发展完善的客观规律,应予以一定空间使其能够发展完善,并在其发展中的必要之处形成规制方法和措施。另一方面,要坚守底线,包括公民权利保护的底线、安全的底线等。对于已经形成高度社会共识、凝结在法律之中的重要权益、价值,在执法、司法过程中都要依法进行保护。这既是法律对相关技术研发者和使用者的明确要求,也是法律对于在智能时代保护公民权益、促进科技向善的郑重承诺。

治理进路

在人工智能治理整体路径选择方面,主要有两种理论:“对立论”和“系统论”。

“对立论”主要着眼于人工智能技术与人类权利和福祉之间的对立冲突,进而建立相应的审查和规制制度。在这一视角下,一些国家和机构重点关注了针对人工智能系统本身及开发应用中的一些伦理原则。例如,2020年《人工智能伦理罗马倡议》中提出7项主要原则——透明、包容、责任、公正、可靠、安全和隐私,欧盟委员会于2019年《可信赖人工智能的伦理指南》中提出人工智能系统全生命周期应遵守合法性、合伦理性和稳健性3项要求,都体现了这一进路。

“系统论”则强调人工智能技术与人类、其他人工代理、法律、非智能基础设施和社会规范之间的协调互动关系。人工智能伦理涉及一种社会技术系统,该系统在设计时必须注意其不是一项孤立的技术对象,而是需要考虑它将要在怎样的社会组织中运作。我们可以调整的不仅仅是人工智能系统,还有在系统中与之相互作用的其他要素;在了解人工智能运作特点的基础上,可以在整个系统内考虑各个要素如何进行最佳调配治理。当前在一些政策和法规中已有一定“系统论”进路的体现。例如,IEEE(电气与电子工程师协会)发布的《合伦理设计》11中提出的8项原则之一即为“资质”(competence),该原则提出系统创建者应明确对操作者的要求,并且操作者应遵守安全有效操作所需的知识和技能的原则,这体现了从对使用者要求的角度来弥补人工智能不足的系统论视角,对智能时代的教育和培训提出了新需求。我国国家新一代人工智能治理专业委员会2019年发布的《新一代人工智能治理原则——发展负责任的人工智能》中,不仅强调了人工智能系统本身应该符合怎样的伦理原则,而且从更系统的角度提出了“治理原则”,即人工智能发展相关各方应遵循的8项原则;除了和谐友好、尊重隐私、安全可控等侧重于人工智能开放和应用的原则外,还专门强调了要“改善管理方式”,“加强人工智能教育及科普,提升弱势群体适应性,努力消除数字鸿沟”,“推动国际组织、政府部门、科研机构、教育机构、企业、社会组织、公众在人工智能发展与治理中的协调互动”等重要原则,体现出包含教育改革、伦理规范、技术支撑、法律规制、国际合作等多维度治理的“系统论”思维和多元共治的思想,提供了更加综合的人工智能治理框架和行动指南。基于人工智能治理的特殊性和复杂性,我国应在习近平总书记提出的“打造共建共治共享的社会治理格局”的指导下,系统性地思考人工智能的治理维度,建设多元共治的人工智能综合治理体系。

我国人工智能伦理治理对策

人工智能伦理治理是社会治理的重要组成部分。我国应在“共建共治共享”治理理论的指导下,以“包容审慎”为监管原则,以“系统论”为治理进路,逐渐建设形成多元主体参与、多维度、综合性的治理体系。

教育改革

教育是人类知识代际传递和能力培养的重要途径。通过国务院、教育部出台的多项措施,以及联合国教科文组织发布的《教育中的人工智能:可持续发展的机遇与挑战》、《人工智能与教育的北京共识》13等报告可以看到,国内外均开始重视教育的发展改革在人工智能技术发展和应用中有着不可或缺的作用。为更好地支撑人工智能发展和治理,应从4个方面进行完善:普及人工智能等前沿技术知识,提高公众认知,使公众理性对待人工智能;在科技工作者中加强人工智能伦理教育和职业伦理培训;为劳动者提供持续的终身教育体系,应对人工智能可能引发的失业问题;研究青少年教育变革,打破工业化时代传承下来的知识化教育的局限性,回应人工智能时代对人才的需求。

伦理规范

我国《新一代人工智能发展规划》中提到,“开展人工智能行为科学和伦理等问题研究,建立伦理道德多层次判断结构及人机协作的伦理框架”。同时,还需制定人工智能产品研发设计人员及日后使用人员的道德规范和行为守则,从源头到下游进行约束和引导。当前有5项重点工作可以开展:针对人工智能的重点领域,研究细化的伦理准则,形成具有可操作性的规范和建议。在宣传教育层面进行适当引导,进一步推动人工智能伦理共识的形成。推动科研机构和企业对人工智能伦理风险的认知和实践。充分发挥国家层面伦理委员会的作用,通过制定国家层面的人工智能伦理准则和推进计划,定期针对新业态、新应用评估伦理风险,以及定期评选人工智能行业最佳实践等多种方式,促进先进伦理风险评估控制经验的推广。推动人工智能科研院所和企业建立伦理委员会,领导人工智能伦理风险评估、监控和实时应对,使人工智能伦理考量贯穿在人工智能设计、研发和应用的全流程之中。

技术支撑

通过改进技术而降低伦理风险,是人工智能伦理治理的重要维度。当前,在科研、市场、法律等驱动下,许多科研机构和企业均开展了联邦学习、隐私计算等活动,以更好地保护个人隐私的技术研发;同时,对加强安全性、可解释性、公平性的人工智能算法,以及数据集异常检测、训练样本评估等技术研究,也提出了很多不同领域的伦理智能体的模型结构。当然,还应完善专利制度,明确算法相关发明的可专利性,进一步激励技术创新,以支撑符合伦理要求的人工智能系统设计。

此外,一些重点领域的推荐性标准制定工作也不容忽视。在人工智能标准制定中,应强化对人工智能伦理准则的贯彻和支撑,注重对隐私保护、安全性、可用性、可解释性、可追溯性、可问责性、评估和监管支撑技术等方面的标准制定,鼓励企业提出和公布自己的企业标准,并积极参与相关国际标准的建立,促进我国相关专利技术纳入国际标准,帮助我国在国际人工智能伦理准则及相关标准制定中提升话语权,并为我国企业在国际竞争中奠定更好的竞争优势。

法律规制

法律规制层面需要逐步发展数字人权、明晰责任分配、建立监管体系、实现法治与技术治理有机结合。在当前阶段,应积极推动《个人信息保护法》《数据安全法》的有效实施,开展自动驾驶领域的立法工作;并对重点领域的算法监管制度加强研究,区分不同的场景,探讨人工智能伦理风险评估、算法审计、数据集缺陷检测、算法认证等措施适用的必要性和前提条件,为下一步的立法做好理论和制度建议准备。

国际合作

当前,人类社会正步入智能时代,世界范围内人工智能领域的规则秩序正处于形成期。欧盟聚焦于人工智能价值观进行了许多研究,期望通过立法等方式,将欧洲的人权传统转化为其在人工智能发展中的新优势。美国对人工智能标准也尤为重视,特朗普于2019年2月发布“美国人工智能计划”行政令,要求白宫科技政策办公室(OSTP)和美国国家标准与技术研究院(NIST)等政府机构制定标准,指导开发可靠、稳健、可信、安全、简洁和可协作的人工智能系统,并呼吁主导国际人工智能标准的制定。

我国在人工智能科技领域处于世界前列,需要更加积极主动地应对人工智能伦理问题带来的挑战,在人工智能发展中承担相应的伦理责任;积极开展国际交流,参与相关国际管理政策及标准的制定,把握科技发展话语权;在最具代表性和突破性的科技力量中占据发展的制高点,为实现人工智能的全球治理作出积极贡献。

(作者:张兆翔、谭铁牛,中国科学院自动化研究所;张吉豫中国人民大学法学院;《中国科学院院刊》供稿)

“信息茧房”、隐私外泄,如何应对人工智能带来的伦理风险

  过去十几年里,人工智能技术取得了长足进步,应用到各行各业之中,并带来生产力的大幅提升。不过,在具体实践中,人工智能的应用也暴露出侵犯数据隐私、制造“信息茧房”等种种伦理风险。

  人工智能发展带来的伦理风险需要也正在被越来越多的国家重视。我们要警惕技术带来的哪些风险?需要采取什么样的措施未雨绸缪呢?就此,阿里研究院韩冰意、苏中撰文进行了专门的论述。   

  人工智能带来的伦理挑战

  信息茧房:用户被算法圈住,受困于狭窄的信息视野:

  过滤气泡(FilterBubble):即根据用户喜好提供展示内容,网站内嵌的推荐算法会透过使用者所在地区、先前活动记录或是搜寻历史,推荐相关内容。社交媒体网站从千百万用户那里获得的使用数据,会构成无数个过滤气泡的小循环。

  回声室效应(EchoChamber):在社交媒体所构建的社群中,用户往往和与自己意见相近的人聚集在一起。因为处于一个封闭的社交环境中,这些相近意见和观点会不断被重复、加强。

  数据隐私:数据隐私引发的人工智能伦理问题,今天已经让用户非常头疼。例如,尽管很多国家政府出台过相关法案、措施保护健康隐私,但随着人工智能技术的进步,即便计步器、智能手机或手表搜集的个人身体活动数据已经去除身份信息,通过使用机器学习技术,也可以重新识别出个人信息并将其与人口统计数据相关联。

  算法透明性与信息对称:用户被区别对待的“大数据杀熟”屡次被媒体曝光。在社交网站拥有较多粉丝的“大V”,其高影响力等同于高级别会员,在客服人员处理其投诉时往往被快速识别,并因此得到更好地响应。消费频率高的老顾客,在网上所看到产品或服务的定价,反而要高于消费频率低或从未消费过的新顾客。

  歧视与偏见:人工智能技术在提供分析预测时,也曾发生过针对用户的性别歧视或是种族歧视的案例。曾经有企业使用人工智能招聘。一段时间后,招聘部门发现,对于软件开发等技术职位,人工智能推荐结果更青睐男性求职者。

  深度伪造(Deepfake):通过深度伪造技术,可以实现视频/图像内容中人脸的替换,甚至能够通过算法来操纵替换人脸的面部表情。如果结合个性化语音合成技术的应用,生成的换脸视频几乎可以达到以假乱真的程度。目前利用深度伪造技术制作假新闻、假视频所带来的社会问题越来越多。

  全球人工智能伦理法律体系建设

  现阶段,全球范围内许多国家都认识到制定人工智能治理框架的必要性,但这一框架的制定也面临着以国家间文化多样性为基础的道德多元化的挑战。

  (一)人工智能伦理设置原则

  牛津大学学者LucianoFloridi和JoshCowls在2019年哈佛数据科学评论杂志上发表的文章中提出了如今被学术界广为认可的AI伦理五原则:行善、不伤害、自治、正义以及算法可解释性。其中,前四项由传统的生物伦理原则沿用而来,最后一项则是针对人工智能算法而提出的新原则。五项总体AI核心原则后来又被衍生出更多细化的分支。

  近年来,技术界也越来越关注AI伦理问题。全球人工智能顶会IJCAI、NeurIPS、AAAI上出现了越来越多的AI伦理论文,话题范围涉及AI可解释性,安全AI,隐私与数据收集,公平与偏见等。而在近20年以来各个大型AI会议上提及伦理关键字的论文标题的数量都在逐年增加。

  (二)欧盟,人工智能伦理立法先驱

  2015年1月,欧盟议会法律事务委员会(JURI)成立专门工作小组,开始研究机器人和人工智能发展相关的法律问题;2019年4月,欧盟委员会发布了正式版的人工智能道德准则《可信赖人工智能的伦理准则》,提出了实现可信赖人工智能(TrustworthyAI)全生命周期的框架。该准则提出,可信赖AI需满足3个基本条件:合法的(lawful),即系统应该遵守所有适用的法律法规;合伦理的(ethical),即系统应该与伦理准则和价值观相一致;稳健的(robust),不管从技术还是社会的角度来看,AI系统都可能会造成伤害。所以系统中的每个组件都应该满足可信赖AI的要求。

  对于AI从业者,该准则包含四项道德原则,确保AI从业者以值得信赖的方式开发、部署和使用人工智能系统:

  尊重人的自主性:人类与人工智能系统之间的功能分配应遵循以人为本的设计原则,并为人类选择留下有意义的机会。

  预防伤害:人工智能系统及其运行的环境必须安全可靠,确保不会被恶意使用。弱势群体应得到更多关注。还必须特别注意人工智能系统可能由于权利或信息不对称而导致或加剧不利影响的情况。

  公平性:人工智能系统的开发、部署和使用必须是公平的,公平体现既有实质性的也有程序性的。

  可解释性:可解释性对于建立和维护用户对AI系统的信任至关重要,流程需要透明、人工智能系统的能力和目的需要公开沟通、并且决策(在可能的范围内)可以向直接和间接受影响的人解释。有时候,解释为什么一个模型产生了一个特定的输出或决策并不总是可能的。这些情况被称为“黑盒”算法,在这些情况下,需要其他可解释性措施,例如,系统功能的可追溯性、可审计性和透明通信等。

  之后,欧盟又陆续颁布了更多的数据相关法案。2020年2月欧盟发布《数据战略》,带来数据治理的整体规划,按照其规划,又相继于2021年末至2022年初密集发布了一系列数据法案,包括《数据治理法案(DGA)》、《数据服务法案(DSA)》、《数据法案(DA)》、《数据市场法案(DMA)》等。

  中国人工智能伦理立法稳步推进

  2017年7月,我国发布了《新一代人工智能发展规划》。规划呼吁,不仅要重视人工智能的社会伦理影响,而且要制定伦理框架和伦理规范,以确保人工智能安全、可靠、可控发展。

  2018年1月,在国家人工智能标准化总体组的成立大会上发布了《人工智能标准化白皮书2018》。白皮书论述了人工智能的安全、伦理和隐私问题,认为人工智能技术需遵循的伦理要求设定要依托于社会和公众对人工智能伦理的深入思考和广泛共识上,并遵循一些共识原则。

  2019年2月,科技部在北京召开新一代人工智能发展规划暨重大科技项目启动会,成立了新一代人工智能治理专业委员会。同年6月,国家新一代人工智能治理专业委员会发布了《新一代人工智能治理原则》。《治理原则》提出,为发展负责任的人工智能,人工智能发展相关各方应遵循以下原则:和谐友好,公平公正,包容共享,尊重隐私,安全可控,共担责任,开放协作以及敏捷治理。9月,专委会正式发布《新一代人工智能伦理规范》(以下简称《伦理规范》),细化落实《新一代人工智能治理原则》,将伦理道德融入人工智能全生命周期,为人工智能应用的相关活动提供伦理指引。这是中国发布的第一套人工智能伦理规范。

  相比于2019年《治理原则》中针对人工智能发展需遵循的原则,2021年发布的《伦理规范》中提出了更加细化与严谨的6项基本伦理要求:

  一是增进人类福祉。坚持以人为本,遵循人类共同价值观,尊重人权和人类根本利益诉求,遵守国家或地区伦理道德。坚持公共利益优先,促进人机和谐友好,改善民生,增强获得感幸福感,推动经济、社会及生态可持续发展,共建人类命运共同体。

  二是促进公平公正。坚持普惠性和包容性,切实保护各相关主体合法权益,推动全社会公平共享人工智能带来的益处,促进社会公平正义和机会均等。在提供人工智能产品和服务时,应充分尊重和帮助弱势群体、特殊群体,并根据需要提供相应替代方案。

  三是保护隐私安全。充分尊重个人信息知情、同意等权利,依照合法、正当、必要和诚信原则处理个人信息,保障个人隐私与数据安全,不得损害个人合法数据权益,不得以窃取、篡改、泄露等方式非法收集利用个人信息,不得侵害个人隐私权。

  四是确保可控可信。保障人类拥有充分自主决策权,有权选择是否接受人工智能提供的服务,有权随时退出与人工智能的交互,有权随时中止人工智能系统的运行,确保人工智能始终处于人类控制之下。

  五是强化责任担当。坚持人类是最终责任主体,明确利益相关者的责任,全面增强责任意识,在人工智能全生命周期各环节自省自律,建立人工智能问责机制,不回避责任审查,不逃避应负责任。

  六是提升伦理素养。积极学习和普及人工智能伦理知识,客观认识伦理问题,不低估不夸大伦理风险。主动开展或参与人工智能伦理问题讨论,深入推动人工智能伦理治理实践,提升应对能力。

  展望未来:人工智能应如何约束?

  (一)平衡治理监管与产业协调发展

  尽管欧盟在规范AI伦理问题上下手早,但其过度监管也给相关市场的发展带来了限制,造成欧盟在数字产业的发展上全面落后于全球。在全球技术主权激烈竞争的背景下,立法与监管政策需要保持谨慎思考,在治理与发展之间做好平衡,在方便企业满足AI伦理风险的同时,为企业、行业以及相关产业提供充分的发展空间。

  (二)针对人工智能伦理的高风险场景特别立法

  为了降低人工智能伦理执法的难度,一些国家针对特定部门和高风险应用场景单独立法。如许多国家把人工智能系统在医疗领域中应用列为需要关注的场景,在这些领域中,算法产生的结果将直接关乎人类的生命福祉。按照针对不同风险等级制定不同严苛程度的管理思路,可以通过分场景监管,做到有收有放,进而实现治理与发展的平衡。

  (三)提升科研机构和企业对人工智能伦理的认知及自律

  在规避人工智能可能产生的伦理风险上,科研机构和企业更容易在相关实践中获得第一手信息,也更应该承担起构建安全人工智能技术的主要责任。

  (四)提高全社会科技伦理意识

  伦理问题涉及到社会行为准则与规范,而治理伦理问题则需从公共管理的角度出发,在充分了解人工智能技术所带来的潜在社会影响,找到相对应的解决办法,并形成社会对人工智能伦理的共识。建议利用各种渠道广泛的进行科技伦理宣传、活动与交流,提升公众的科技伦理意识,进而加强全社会对人工智能伦理的广泛监督。

人工智能的伦理挑战

原标题:人工智能的伦理挑战

控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。

维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?

实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。

首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。

然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。

所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。

不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。

这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。

(作者:蓝江,系南京大学哲学系教授)

人工智能引发伦理争议不断,有的问题直接颠覆你的三观!

0分享至

作者:袁勇

当前,人工智能浪潮方兴未艾,在很多领域展示出巨大应用前景。然而,随着人工智能技术的不断发展,它引发的伦理争议也不断出现。

近日,中国发展研究基金会发布报告——《未来基石——人工智能的社会角色与伦理》。针对人工智能伦理问题,报告在提出一系列建议的同时,也希望推动问题的充分讨论。

对人工智能的讨论足够了吗

迄今为止,我们对人工智能可能会带来的挑战仍知之甚少,严肃的公共讨论还十分缺乏

要理解人工智能的社会影响,首先要认识人工智能在社会发展中的独特作用。在人类发展进程中,知识的增长和社会协作体系的扩展起到了重要作用,而这一切都离不开人类大脑提供的智能基础。

报告认为,人工智能的发展,将带来知识生产和利用方式的深刻变革,人工智能不仅意味着前沿科技和高端产业,未来也可以广泛用于解决人类社会面临的长期性挑战。从消除贫困到改善教育,从提供医疗到促进可持续发展,人工智能都大有用武之地。

法国生产的EZ10无人驾驶公交车已正式投入运行,随着人工智能技术不断发展,相关法律、法规亟待完善。(资料图片)

例如,人工智能可以大幅度降低医疗服务的成本,缓解医疗人才不足的局面。在教育领域,人工智能能够分析人们获取知识的方式,然后利用这些信息开发出相应模型,来预测人们的投入和理解程度。人工智能还可以改变贫困地区高水平教师不足、教学质量低下的局面,促进教育公平。

此外,人工智能可以服务于残障人士。例如,微软最近在ios应用程序商店推出了一款名为“seeingAI”的产品,帮助失明和弱视人群应对日常生活中的问题。“seeingAI”的开发团队包括一名在7岁时就失明的工程师,这一应用程序尽管还处于早期阶段,但已证明人工智能可以捕捉用户周围的图像并即时描述。比如,它可以读取菜单、清点货币等,从而帮助残障人士提高生活能力。

然而,迄今为止,我们对人工智能可能会带来的挑战仍知之甚少,严肃的公共讨论还十分缺乏。社会公众对人工智能的想象在很大程度上仍被科幻小说和影视作品所主导,而对于人工智能在未来可能产生的影响,更是缺乏认知和关切。在政策层面,对于人工智能的关注很大程度上仍集中于技术和经济层面,缺乏整体性的思考和讨论。尽管有少数哲学和社科领域的学者开始关注人工智能带来的伦理问题和社会挑战,但这些讨论并未进入公共政策视界,而且讨论的重点也多集中在超级人工智能这样仍相对遥远的议题上。

报告认为,在人工智能问题上,围绕可能出现的挑战,无知、忽视、偏狭、误解交织在一起,可能会导致真正的风险。

人工智能会带来哪些伦理挑战

从人文视角来看,人工智能带来了一些有可能撼动社会基础的根本性问题

中国发展研究基金会副理事长兼秘书长卢迈表示,人工智能发展将进一步释放社会活力,中国应积极拥抱人工智能,充分利用好它对生产力的解放效应。但是,把握机遇的前提是了解并预防风险,这需要我们在伦理学和社会治理上下功夫。

中国发展研究基金会秘书长助理、研究一部主任俞建拖认为,社会应该正视人工智能带来的挑战,并超越纯技术和经济的视角,从社会和人文视角去探讨人工智能带来的影响。

报告认为,从人文视角来看,人工智能带来了一些已经在发生或即将发生、有可能撼动我们社会基础的根本性问题。

随着人工智能的不断发展,我们对于人的理解越来越物化和去意义化,人和机器的边界越来越模糊,我们需要思考这种边界模糊的后果。我们该如何对待机器和自身的关系?人和机器应该整合吗?如果人对快乐和痛苦的感受可以通过其他物理和化学手段来满足,那么,人还有参与社会互动的需要和动力吗?

人工智能还带来了新的社会权力结构问题。借助人工智能,企业可以赋予每个用户大量的数据标签,并基于这些标签了解人的偏好和行为,甚至超过用户对自己的了解,这是巨大的权利不对称。

此外,人工智能可能会造成偏见强化。在社交媒体中,人工智能将观点相近的人相互推荐,新闻推送也常常存在路径依赖。当人们的信息来源越来越依赖于智能机器,偏见会在这种同化和路径依赖中被强化。

人工智能还使社会的信息和知识加工处理能力被极大放大,信息和知识的冗余反而使人陷入选择困境。如果人参与社会互动的次数和范围缩小,而人工智能越来越多介入到知识的生产中,知识与人的需求之间的关系将变得越来越间接,甚至会反过来支配人的需求。

尽管人工智能也会推动进一步的专业化分工和创造新的工作机会,但并非所有人都有能力迈过技术性和社会性壁垒。尤瓦尔·赫拉利在《未来简史》中警告,未来社会可能会出现“无用阶级”,这种担心并非全无道理。

人工智能也对传统的法律法规和社会规范提出了挑战。譬如,无人驾驶汽车一旦出现事故,我们究竟该归因于开发产品的企业、产品拥有者还是人工智能产品本身?

如何构建人工智能的伦理规范

考虑到人工智能的深远影响,需要全社会共同努力,制定开发和应用的伦理规范和政策方向

人工智能正帮助人类社会向充满不确定性的未来疾驰。在冲进未知之门之前,需要给它装上刹车,让它真正能行稳致远,这个刹车就是伦理规范和公共政策准则。

当前,已经有一些人工智能领先企业关注人工智能开发和应用的伦理问题。微软公司总裁施博德表示,要设计出可信赖的人工智能,必须采取体现道德原则的解决方案,因此微软提出6个道德基本准则:公平、包容、透明、负责、可靠与安全、隐私与保密。谷歌公司也表示,在人工智能开发应用中,坚持包括公平、安全、透明、隐私保护在内的7个准则,并明确列出了谷歌“不会追求的AI应用”。

报告认为,这些企业的前瞻性探索十分重要。但是,考虑到人工智能对未来社会的深远影响,还需要全社会和各国政府的共同努力,制定人工智能开发和应用的伦理规范和政策方向,为其未来健康发展奠定基础。

为此,报告提出了一系列建议:在社会层面,高校和研究机构开展前瞻性科技伦理研究,为相关规范和制度的建立提供理论支撑;各国政府、产业界、研究人员、民间组织和其他利益攸关方展开广泛对话和持续合作,通过一套切实可行的指导原则,鼓励发展以人为本的人工智能;人工智能企业应该将伦理考量纳入企业社会责任框架中;投资机构应将伦理问题纳入ESG(环境、社会和治理)框架,引导企业进行负责任的人工智能产品开发;社会组织可以通过培训、发布伦理评估报告、总结代表性案例等方式,推动人工智能伦理规范的构建。

报告建议,在公共政策层面,人工智能研发和应用的政策应该将人置于核心,满足人全面发展的需求,促进社会的公平和可持续发展;政府需要设立专项资金,支持大学和研究机构开展人工智能等前沿科技的伦理研究;政府还需要给予不同人群以学习了解人工智能的机会,推动全社会对人工智能的知识普及和公共政策讨论;优先鼓励人工智能应用于解决社会领域的突出挑战,包括减少贫困和不平等,促进弱势群体融入社会并参与社会发展进程;应组建由政府部门和行业专家组成的人工智能伦理委员会,对人工智能的开发和应用提供伦理指引,并对具有重大公共影响的人工智能产品进行伦理与合法性评估。

此外,对于人工智能的规范发展也需要更广泛的国际合作。清华大学公共管理学院院长薛澜表示,“人工智能的发展将在创新治理、可持续发展和全球安全合作3个方面对现行国际秩序产生深刻影响,需要各国政府与社会各界从人类命运共同体的高度予以关切和回应。只有加强各国之间的合作与交流,才可能真正构建起一套全球性的、共建共享、安全高效、持续发展的人工智能治理新秩序”。

报告也建议,各国政府应促进数据共享技术,为人工智能培训和测试提供共享的公共数据集。在个人信息得到保护的前提下,促进数据的自由流通;并加强国际合作,建立多层次的国际人工智能治理机制。各国政府应通过联合国、G20以及其他国际平台,将人工智能发展纳入国际合作议程,利用人工智能推动联合国2030年可持续发展目标的实现。

来源:经济日报

往期相关文章推荐

王沙飞院士:人工智能与电磁频谱战

孙正义:未来30年的人工智能和物联网

解密首批人工智能4支国家队内幕

雄安:人类历史上第一个人工智能城市正在崛起

回复关键字,获取相关主题精选文章关键字:军民融合|一带一路|电磁武器|网络战|台海局势|朝鲜半岛|南海问题|中美关系|十三五|经济|科技|科研|教育|政策|创新驱动|军工混改|重大项目|第三方评估|人工智能|颠覆性技术|无人系统|机器人|虚拟现实|3D/4D打印|生物科技|智能制造|大数据|5G通讯|量子计算|新材料|太赫兹|卫星|北斗|高性能芯片|半导体元器件|航空母舰|无人机|新型轰炸机|先进雷达|新型导弹|高超声速武器|军队改革|外军动态|综合安全|军事安全|信息安全|太空安全|发展安全|大国博弈|贸易战|习近平|DARPA|王凤岭|名家言论|政策法规|产业快讯|科技前沿应用|创新科技|人才培养其他主题文章陆续整理中,敬请期待······小蓝君微信:lhcq6666电话:17319474019

蓝海长青系列自媒体

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

人工智能的伦理问题与治理原则

第一类问题来自我们对人工智能系统对其决策结果的伦理意义缺乏判断的忧虑。人工智能往往被用来解决一个具体问题,而且只能通过已有的有限数据来作出决策,往往无法像人一样理解更广的社会和伦理语境。故此,我们对人工智能缺乏对决策后果的伦理意义的认知有恐惧,这是完全可以理解的。当人工智能决策的后果涉及一个结果和另外一个结果之间的比较时,往往造成难以预料的后果。例如,人可能给人工智能系统一个获取食物的指令,结果这个系统却杀死了人的宠物。这是因为人工智能对某个结果的伦理意义无法完全理解,以致于错误地执行了指令。我们对人工智能对决策结果的伦理判断能力不足的忧虑,在人工智能技术本身缺乏透明度(黑箱问题)时就更加严重了。人工智能采纳的机器学习往往因为算法(例如机器学习)和算力限制的原因,无法回溯机器作出决定的具体机制。无法回溯会带来我们在事先预测后果和事后作出纠正的能力的局限,导致我们在决定是否应用人工智能技术的问题上踌躇不决。

第二类问题来自我们对人工智能的潜力的忧虑。人工智能可能成为人类全部决定的参与和影响者,但我们尚且不知道没有任何已知的伦理准则能指引上述行为。人类创造的“上帝”无力护理这个世界,这让我们恐惧震惊。我们担心随着人工智能的发展,它会导致已有的社会问题进一步恶化,同时可能带来新的社会问题。

从上述前提出发,笔者从目的、手段两个层面提出思考人工智能伦理(嵌入机器的伦理)的两个基本方向:技术必须促进人类的善(体现在人的根本利益原则);在越来越发达的机器的自主性背景下确认人的主体性(体现在责任原则)。换言之,认识到新的技术本身的特征和它的潜在社会影响,我们看到人工智能伦理要强调:(1)人可以利用人工智能得到更大的能力(行善/伤害),因此有更大的责任,所以应当更加强调归责性;(2)人工智能则必须服从人类设定的伦理规则。这也是《人工智能标准化白皮书(2018)》中提出了人工智能设计和应用中应遵循的两个基本原则的基本依据。违反人的根本利益原则的人工智能,无论是用来欺诈顾客的营销算法、用于司法造成歧视部分公民的司法决策系统,还是对个人信息的过度收集和滥用,都违反人工智能伦理原则。

根据人工智能伦理风险的具体性质与特征,可从算法、数据和应用三个方面度来梳理人工智能的风险。对伦理风险的治理,需要立法和政策明确各相关主体的责任,包括信息提供者、信息处理者和系统协调者。此外,人工智能还可能对社会产生远期发展的风险,如对既有的就业、市场竞争秩序、产权等法律制度的挑战,甚至生产方式的根本变革,这些我们将其归入长期和间接的伦理风险之中。

算法方面

算法方面的风险主要包括算法安全问题、算法可解释性问题、算法歧视问题和算法决策困境问题。算法安全问题产生于算法漏洞被黑客攻击和恶意利用的挑战,同时算法从设计、训练到使用中面临可信赖性问题和算法随时可用对可靠性带来挑战。

算法可解释性涉及人类的知情利益和主体地位,对人工智能的长远发展意义重大。国务院颁布《新一代人工智能发展规划》,同时,潘云鹤院士提到人工智能应用的一个需要关注的问题是算法的不可解释性。算法可解释性问题在国外也引起媒体和公众的关注。例如,电气和电子工程师协会(IEEE)在2016年和2017年连续推出的《人工智能设计的伦理准则》白皮书,在多个部分都提出了对人工智能和自动化系统应有解释能力的要求。美国计算机协会美国公共政策委员会在2017年年初发布了《算法透明性和可问责性声明》,提出了七项基本原则,其中一项即为“解释”,希望鼓励使用算法决策的系统和机构,对算法的过程和特定的决策提供解释。2017年,美国加州大学伯克利分校发布了《对人工智能系统挑战的伯克利观点》,从人工智能的发展趋势出发,总结了九项挑战和研究方向。其中之一,即第三项,就是要发展可解释的决策,使人们可以识别人工智能算法输入的哪些特性引起了某个特定的输出结果。

与可解释性问题常常同时出现的是算法歧视问题,即在看似中立的算法中,由于算法的设计者的认知存在某种偏见,或者训练算法使用了有问题的数据集等原因,带来了人工智能系统决策出现带有歧视性的结果。这类例子媒体时有报道,例如在金融领域“降低弱势群体的信贷得分”、“拒绝向‘有色人种’贷款”、“广告商更倾向于将高息贷款信息向低收入群体展示”等。

算法歧视主要分为“人为造成的歧视”“数据驱动的歧视”与“机器自我学习造成的歧视”三类。人为造成的歧视,是指由于人为原因而使算法将歧视或偏见引入决策过程中。数据驱动造成的歧视,是指由于原始训练数据存在偏见性,而导致算法执行时将歧视带入决策过程中。算法本身不会质疑其所接收到的数据,只是单纯地寻找、挖掘数据背后隐含的模式或者结构。如果数据一开始就存在某种选择上的偏见或喜好,那么算法会获得类似于人类偏见的输出结果。机器自我学习造成的歧视,是指机器在学习的过程中会自我学习到数据的多维不同特征,即便不是人为地赋予数据集某些特征,或者程序员或科学家刻意避免输入一些敏感的数据,但是机器在自我学习的过程中,仍然会学习到输入数据的其它特征,从而将某些偏见引入到决策过程中,这就是机器自我学习造成的歧视。

算法决策困境源于人工智能自学习能力导致的算法结果的不可预见性。为此要减少或杜绝算法决策困境,除了提高算法的可解释性,还可以引入相应的算法终结机制。

数据方面

数据方面的风险主要包括侵犯隐私的风险和个人敏感信息识别与保护的风险。在现代社会,隐私保护是信任和个人自由的根本,同时也是人工智能时代维持文明与尊严的基本方式。人工智能时代下侵犯隐私的风险更大,受害者也更多。

传统法律规范对隐私的保护集中于对个人在私人领域、私人空间活动的保护,以及个人私密的、非公开的信息保护。在个人信息的基础之上,法律规范区分普通个人信息和个人敏感信息。法律通常对个人敏感信息予以更高的保护,例如对个人敏感信息的处理需要基于个人信息主体的明示同意,或重大合法利益或公共利益的需要等,严格限制对个人敏感信息的自动化处理,并要求对其进行加密存储或采取更为严格的访问控制等安全保护措施。个人敏感信息在授权同意范围外扩散,或者个人信息的扩散超出收集、使用个人信息的组织和机构控制范围,以及使用者超出授权使用(如变更处理目的、扩大处理范围等),都可能对个人信息主体权益带来重大风险。

人工智能技术的应用极大地扩展了个人信息收集的场景、范围和数量。图像识别、语音识别、语义理解等人工智能技术实现海量非结构化数据的采集,而人工智能与物联网设备的结合丰富了线下数据采集的场景。例如,家用机器人、智能冰箱、智能音箱等各种智能家居设备走进人们的客厅、卧室,实时地收集人们的生活习惯、消费偏好、语音交互、视频影像等信息;各类智能助手在为用户提供更加便捷服务的同时,也在全方位地获取和分析用户的浏览、搜索、位置、行程、邮件、语音交互等信息;支持面部识别的监控摄像头,可以在公共场合且个人毫不知情的情况下,识别个人身份并实现对个人的持续跟踪。这些都需要法律进一步地规范。

社会方面

与社会相关的伦理问题主要包括算法滥用和误用。算法滥用和误用是指人们利用算法进行分析、决策、协调、组织等一系列活动中,其使用目的、使用方式、使用范围等出现偏差并引发不良影响或不利后果的情况。例如,人脸识别算法能够提高治安水平、加快发现犯罪嫌疑人的速度等,但是如果把人脸识别算法应用于发现潜在犯罪人或者根据脸型判别某人是否存在犯罪潜质,就属于典型的算法滥用。由于人工智能系统的自动化属性,算法滥用将放大算法所产生的错误效果,并不断强化成为一个系统的重要特征。

算法滥用主要由算法设计者出于经济利益或者其他动机的操纵行为、平台和使用者过度依赖算法、将算法的应用盲目拓展到算法设计未曾考虑的领域等。电商平台算法设计者推荐不符合用户利益的产品,或者娱乐平台为了自身的商业利益对用户的娱乐或信息消费行为进行诱导、导致用户沉迷等,都是算法设计者操纵行为的展现。在医疗领域过度依赖人工智能平台的读图诊断,导致误诊,以及在安防领域和犯罪误判导致的问题,都直接关系到公民的人身安全与自由。

应当注意的是,与社会相关的伦理问题有如下特性:其一,它们与个人切身利益密切相关,如算法应用在犯罪评估、信用贷款、雇佣评估等关切人身利益的场合,对个人切身利益的影响广泛。其二,它们带来的问题通常难以短时间应对,例如深度学习是一个典型的“黑箱”算法,如果深度学习为基础建立的模型存在歧视,应对时难以查清原因。其三,在商业应用中出现这类问题时,由于资本的逐利性,公众权益容易受到侵害。

人工智能治理原则与实践

人工智能技术的特质及其伦理挑战,给社会的治理带来了问题。传统上,治理所预设能够遵循规则的主体(Agent),也就是人本身。今天我们认识到人工智能的特征在于其高度的自主性,即其决策不再需要操控者进一步的指令,考虑到这种决策可能会产生人类预料不到的结果,人工智能技术的设计者和应用者必须在人工智能技术研发、应用的各个环节贯彻伦理原则,以实现对人工智能的有效治理。

在传统技术领域,常见的防止损害的方式是在造成伤害之后进行干预。但是,等待人工智能系统造成伤害之时才考虑干预,很多时候为时已晚。一个更好的方法是将即时和持续的伦理风险评估和合规体系建设作为系统运行的一个组成部分,即时和持续评估人工智能系统是否存在伦理风险、并在损害产生之前以及损害不大的时候就通过合规体系进行处理。即时和持续的风险评估对于人工智能系统的保障要比按下“紧急按钮”要有效得多。

故此,我们在讨论人工智能治理应遵循的思路和逻辑时,必须警醒行业自律的有限性和立法的滞后性。如阿西莫夫等科技伦理的思想者所意识到的,必须将伦理在技术层面就进行明确,才能保证治理的有效性。构建人工智能的伦理标准是治理不可或缺的一面。此外,根据法律和政策本身的特征来制定法律、完善政策、设立管制机构,也是治理必须执行的方法。

国内外人工智能治理方面的探索值得我们关注和借鉴。例如,欧盟通过对机器人规制体现了依据人工智能伦理来设计治理体系的前沿探索。美国于2016年出台的战略文件就提出要理解并解决人工智能的伦理、法律和社会影响。英国政府曾在其发布的多份人工智能报告中提出应对人工智能的法律、伦理和社会影响,最为典型的是英国议会于2018年4月发出的长达180页的报告《英国人工智能发展的计划、能力与志向》。

联合国于2017年9月发布《机器人伦理报告》,建议制定国家和国际层面的伦理准则。电气和电子工程师协会(InstituteofElectricalandElectronicsEngineers,IEEE)于2016年启动“关于自主/智能系统伦理的全球倡议”,并开始组织人工智能设计的伦理准则。在未来生命研究所(futureoflifeinstitute,FLI)主持下,近4000名各界专家签署支持23条人工智能基本原则。

我国也在这个方面开展了探索与实践。2017年发布的《新一代人工智能发展规划》提出了中国的人工智能战略,制定促进人工智能发展的法律法规和伦理规范作为重要的保证措施被提了出来。2018年1月18日,在国家人工智能标准化总体组、专家咨询组的成立大会上发布了《人工智能标准化白皮书(2018)》。白皮书论述了人工智能的安全、伦理和隐私问题,认为设定人工智能技术的伦理要求,要依托于社会和公众对人工智能伦理的深入思考和广泛共识,并遵循一些共识原则。

人工智能技术的开发和应用深刻地改变着人类的生活,不可避免地会冲击现有的伦理与社会秩序,引发一系列问题。这些问题可能表现为直观的短期风险,如算法漏洞存在安全隐患、算法偏见导致歧视性政策的制定等,也可能相对间接和长期,如对产权、竞争、就业甚至社会结构的影响。尽管短期风险更具体可感,但长期风险所带来的社会影响更为广泛而深远,同样应予重视。

人工智能技术的日新月异与治理体系相对稳定性之间不可避免地存在矛盾,这需要我们明确应对人工智能的基本原则。在国际范围内比较,人工智能伦理基本原则以2017年1月在阿西洛马召开的“有益的人工智能”(BeneficialAI)会议提出的“阿西洛马人工智能原则”(AsilomarAIPrinciples),以及电气和电子工程师协会(IEEE)组织开展的人工智能伦理标准的工作受到了最多的关注。此前,各国也提出了机器人原则与伦理标准。作者认为,我国人工智能的研究和应用应遵循两个人工智能伦理基本原则,即人的根本利益原则和责任原则。

人的根本利益原则

人的根本利益原则,即人工智能应以实现人的根本利益为终极目标。这一原则体现对人权的尊重、对人类和自然环境利益最大化以及降低技术风险和对社会的负面影响。人的根本利益原则要求:

(1)在对社会的影响方面,人工智能的研发与应用以促进人类向善为目的(AIforgood),这也包括和平利用人工智能及相关技术,避免致命性人工智能武器的军备竞赛。

(2)在人工智能算法方面,人工智能的研发与应用应符合人的尊严,保障人的基本权利与自由;确保算法决策的透明性,确保算法设定避免歧视;推动人工智能的效益在世界范围内公平分配,缩小数字鸿沟。

(3)在数据使用方面,人工智能的研发与应用要关注隐私保护,加强个人数据的控制,防止数据滥用。

责任原则

责任原则,即在人工智能相关的技术开发和应用两方面都建立明确的责任体系,以便在人工智能应用结果导致人类伦理或法律的冲突问题时,人们能够从技术层面对人工智能技术开发人员或设计部门问责,并在人工智能应用层面建立合理的责任体系。在责任原则下,在人工智能技术开发方面应遵循透明度原则;在人工智能技术应用方面则应当遵循权责一致原则。

透明度原则

透明度原则要求人工智能的设计中,保证人类了解自主决策系统的工作原理,从而预测其输出结果,即人类应当知道人工智能如何以及为何做出特定决定。透明度原则的实现有赖于人工智能算法的可解释性(explicability)、可验证性(verifiability)和可预测性(predictability)。

权责一致原则

权责一致原则,是指在人工智能的设计和应用中应当保证问责的实现,这包括:在人工智能的设计和使用中留存相关的算法、数据和决策的准确记录,以便在产生损害结果时能够进行审查并查明责任归属。权责一致原则的实现需要建立人工智能算法的公共审查制度。公共审查能提高相关政府、科研和商业机构采纳的人工智能算法被纠错的可能性。合理的公共审查能够保证一方面必要的商业数据应被合理记录、相应算法应受到监督、商业应用应受到合理审查,另一方面商业主体仍可利用合理的知识产权或者商业秘密来保护本企业的利益。

应当明确,我们所说的人工智能伦理原则,不仅应当由人工智能系统的研发和应用的人类主体遵守(包括在研究机构、行业领域的科技企业和科技工作者),而且这些原则应当嵌入人工智能系统本身。机器如何遵循伦理规则这一点,有人仍有质疑。典型的看法是,伦理规则只是给人的,没有可能给人工智能系统(包括机器人)设定伦理规则。的确,传统上伦理原则所针对的是能够遵循这些原则的主体(Agent)也就是人本身。但是,考虑到人工智能的特征在于机器对人的智能的“模拟、延伸和扩展”,即其决策不需要操控者一步步的指令,同时这种决策可能会产生人类预料不到的结果,人工智能系统也应当受到伦理规则的规制。

结论

社会必须信任人工智能技术能够给人带来的利益大于伤害,才有可能支持继续发展人工智能。而这种信任,需要我们认识和探讨人工智能领域的伦理和治理问题,并且在发展人工智能技术发展的早期就有意识地加以运用。今天学者、科技工作者和社会已经有基本共识,就是负责人工智能系统的研发和应用的人类主体,包括在研究机构、行业领域的科技企业和科技工作者,应当服从一些基本的伦理原则。本文提出的两个基本伦理原则,是国内在这方面思考的总结和升华。除了人工智能的基本伦理原则,前人给我们的另一个启发是人工智能伦理应该嵌入系统本身。当我们越来越依赖于机器人代替我们作出决策时,我们应当在这个决策过程中嵌入伦理思考,而不是等待决策结果已经给我们带来负面影响之后再去纠正。

本文希望用一种更清醒的眼光去看待人工智能伦理和治理问题。学者和公众需要一起探讨:我们有没有可能防止人工智能给个人和社会带来的损害?只有在这个问题得到更深入的思考和妥善解决的时候,人工智能的发展才有真正的基础。

转自丨法理杂志返回搜狐,查看更多

人工智能的安全、伦理和隐私问题

人工智能的安全、伦理和隐私问题

一、人工智能的安全问题1.人工智能网络安全问题众所周知,很多行业在应用入工智能这项技术以及相关的知识的时候都是依附于计算机网络来进行的,而计算机网络这个行业是错综复杂的,很多计算机网络的安全问题也是目前我国面临的很严重的问题之一,相应的人工智能的网络安全问题也是还存在问题的,比如机器人在为人类服务的过程中,操作系统可能遭到黑客的控制,机器人的管理权限被黑客拿到,使机器人任由黑客摆布;亦或突然源代码遭受到攻击,人工智能的信息基本通过网络进行传输,在此过程中,信息有可能遇到黑客的篡改和控制,这就会导致机器人产生违背主人命令的行为,会有给主人造成安全问题的可能性。不仅如此,在人工智能的发展过程中,大量的人工智能训练师需要对现有的人类大数据进行分析和统计,如何防止信息的泄漏和保护个人信息的隐私也是人工智能领域需要关注的问题。

2.人工智能应用范围限定的问题对一些发展不成熟、会有引起安全问题的可能性的领域以及技术的应用范围给出一定的限定,这是保障人类与社会和谐发展的一种手段,也是不能或缺的一个步骤。目前,人工智能的发展也是如此的,这也是人工智能目前安全问题所面临的问题之一。目前各行各业都有人工智能的应用,比如无人驾驶、各类机器人等,很多行业都会看到人工智能的存在,小到购物APP中的客服机器人,大到国际比赛中机器人的应用,在许多危险的领域,如核电、爆破等危及人类生命安全的场景,发挥了至关重要的作用。这些领域的应用如果应用的成功那没什么问题,一旦出现问题就会产生很严重的安全性问题。对于人工智能应用的范围,目前并没有给出明确的界定,也没有明确的法律依据,这就需要相关组织和机构,尽快对人工智能的适用场景进行梳理,加快人工智能标准和法律的建设步伐,防止一些不法分子,利用法律漏洞将人工智能运用到非法的范围中,造成全人类不可估量的损失。

3.人工智能本身的安全标准人工智能的产生以及应用的本身目的并不是为了赶超人类或者达到人类的智力水平,它本身存在的价值是服务于人类,可以成为人类生活的更好的一种工具,人类需要对其有着一定的控制的能力。但是近几年来,很多人工智能的存在是为了与人类的智力水平以及人类为标准,忽略了部分人类伦理的问题,甚至涉及到部分人权问题,这就偏离了人工智能本身存在的目的,而这种的偏离会产生一定的安全问题,从而影响人工智能的发展。所以人们应对机器人的道德和行为判断力进行判定,确保其在人类的道德伦理范围中,避免人工智能产物做出危害人类安全的行为。人类必须对人工智能的行为进行严格的监管,也要大力发展人工智能自身的伦理监督机制,使其为人类所用。

二、人工智能的伦理问题1.人工智能算法的正义问题依托于深度学习、算法等技术,从个性化推荐到信用评估、雇佣评估、企业管理再到自动驾驶、犯罪评估、治安巡逻,越来越多的决策工作正在被人工智能所取代,越来越多的人类决策主要依托于人工智能的决策。由此产生的一个主要问题是公平正义如何保障?人工智能的正义问题可以解构为两个方面:第一,如何确保算法决策不会出现歧视、不公正等问题。这主要涉及算法模型和所使用的数据。第二,当个人被牵扯到此类决策中,如何向其提供申诉机制并向算法和人工智能问责,从而实现对个人的救济,这涉及透明性、可责性等问题。在人工智能的大背景下,算法歧视已经是一个不容忽视的问题,正是由于自动化决策系统日益被广泛应用在诸如教育、就业、信用、贷款、保险、广告、医疗、治安、刑事司法程序等诸多领域。从语音助手的种族歧视、性别歧视问题,到美国犯罪评估软件对黑人的歧视,人工智能系统决策的不公正性问题已经蔓延到了很多领域,而且由于其“黑箱”性质、不透明性等问题,难以对当事人进行有效救济。

2.人工智能的透明性和可解释性问题人工智能系统进入人类社会,必然需要遵守人类社会的法律、道德等规范和价值,做出合法、合道德的行为。或者说,被设计、被研发出来的人工智能系统需要成为道德机器。在实践层面,人工智能系统做出的行为需要和人类社会的各种规范和价值保持一致,即价值一致性或者说价值相符性。由于人工智能系统是研发人员的主观设计,这一问题最终归结到人工智能设计和研发中的伦理问题,即一方面需要以一种有效的技术上可行的方式将各种规范和价值代码化,植入人工智能系统,使系统在运行时能够做出合伦理的行为;另一方A面需要避免研发人员在人工智能系统研发过程中,将其主观的偏见、好恶、歧视等带入人工智能系统。算法歧视与算法本身的构建和其基于的数据样本数量及样本性质密不可分。算法歧视问题其实取决于底层数据的积累,数据积累越多算法计算就越准确,对某一人群的算法描述就越精准。同时,随着算法复杂性的增加和机器学习的普及导致算法黑箱问题越来越突出。美国计算机协会公共政策委员会在《算法透明性和可问责性声明》中提出七项基本原则,第一项基本原则即为解释,其含义是鼓励使用算法决策系统对算法过程和特定决策提供解释,并认为促进算法的可解释性和透明性在公共政策中尤为重要。未来人工智能系统将会更加紧密地融入社会生活的方方面面,如何避免诸如性别歧视、种族歧视、弱势群体歧视等问题,确保人工智能合伦理行为的实现,这需要在当前注重数学和技术等基本算法研究之外,更多地思考伦理算法的现实必要性和可行性。

三、人工智能的隐私问题1.个人隐私的过度收集互联网的发展以及人工智能技术的应用在很大程度上降低了大数据在分析应用方面的成本,摄像头已经遍布我们生活的大部分角落,走在街上我们的一行一动,都随时随地在电子监控的掌控之中;计算机被广泛利用来准确地记录人们的浏览记录:移动通信设备随时跟踪人们的通话记录,聊天记录等。在人工智能时代,在收集个人信息面前,人们面对无处可逃的命运。在人工智能的应用中,监控发生了根本性的变化,融合了各种类型的监控手段,监控的力度也变的越来越强大。以CCTV视频监控为例,它不再是单一的视频监控或图像记录和存储,其与智能识别和动态识别相结合,大量的视频监控信息构成了大数据,在此基础上通过其他技术的智能分析就能进行身份的识别,或是与个人的消费、信用等的情况进行关联,构成一个人完整的数字化的人格。人工智能应用中的数据米源于许多方面,既包括政府部门也有工商业企业所收集的个人数据资料,还包含着用户个人在智能应用软件中输入和提供的数据资料,比如在可穿戴设备中产生的大量个人数据资料,以及智能手机使用所产生的大量数据资料都可能成为人工智能应用中被监控的部分,它在不改变原有形态的前提下对个人的信息进行关联,将碎片化的数据进行整合,构成对用户自身完整的行为勾勒和心理描绘,用户很难在此情况下保护自己的个人隐私。视频监控还可能借助无线网络通信,使隐私遭遇同步直播成为现实,一些非法的同步录像行为,具有侵犯隐私利益的可能性。此类人工智能技术的广泛应用,让我们隐私无处安放,不仅超出了公众所能容忍的限度,也是对整个社会隐私保护发起的挑战。

2.个人隐私的非法泄露在人工智能不断发展,应用领域不断拓展,人工智能技术在各行各业中都发挥着越来越重要的作用,渗透在各大领域之中,带动着产业的发展,同时我们也必须承认该项技术的发展和应用无法避免的隐患。很多情况下,我们在不自知或不能自知的状态下向智能应用的运营商或者服务提供商提供我们的数据信息,每个人的数据都可能被标记,被犯罪分子窃取并转卖。以“Facebook”数据泄露为例,2018年3月17日,美国《纽约时报》曝光Facebook造成5000多万的用户隐私信息数据被名为“剑桥分析(CambridgeAnalytica)”的一家公司泄露,这些泄露的数据中包含用户的手机号码和姓名、身份信息、教育背景、征信情况等,被用来定向投放广告。“而在此次事件中,一方面是由于使用智能应用的普通用户对自身隐私数据缺乏危机意识和安全保护的措施,另一方面Facebook应用中规定只需要用户的单独授权就能收集到关联用户的相关信息,其将隐私设置为默认公开的选项给第三方抓取数据提供了可乘之机。同样Facebook之所以受到谴责的一个重要原因就是未能保护好用户的隐私数据,欠缺对第三方获取数据目的的必要性审查,对第三方有效使用数据缺乏必要的监控,使个人数据被利益方所滥用,欠缺网络安全事件的信息公开和紧急处理的经验,不仅会侵害网络用户个人的合法权利,也会对社会的发展进步产生消极的影响。Facebook在对数据使用和流转中,并未对个用户数据提起重视、履行责任。在向第三方提供数据共享的便利同时并没有充分考虑到用户隐私保护的重要性和必要性,以及没有采取必要的预防策略,极易对平台数据造成滥用的风险。不难看出,从分析用户的隐私数据来定向投放广告追求商业价值和经济利益,到一再发生的泄密事件使得用户隐私数据信息泄露变得更加“有利可图”。一方面,人工智能应用由于在技术上占有优势,在获得、利用、窃取用户的隐私数据时有技术和数据库的支撑,可以轻松实现自动化、大批量的信息传输,并在后台将这些数据信息进行相应的整合和分析;另一方面,后台窃取隐私数据时,我们普通的用户根本无法感知到,在签订隐私条款时很难对冗长的条文进行仔细的阅读,往往难以发现智能应用中隐藏着的深层动机。在此次数据泄露事件中,该平台本身并没有将用户的数据直接泄露出去,而是第三方机构滥用了这些数据,这种平台授权、第三方滥用数据的行为更加快了隐私泄露的进程。

3.个人隐私的非法交易在人工智能时代,个人信息交易已形成完整的产业链,在这个空间中,一个人的重要隐私信息几乎全部暴露在外,包括身份证号,家庭住址,车牌号,手机号码和住宿记录,所有这些的信息都成为待出售的对象。在人工智能技术广泛应用的同时,人们常用的智能手机、电脑以及社交媒体平台都在无时无刻的记录着我们的生活轨迹,各种垃圾广告和邮件可以实现精准的推送,推销电话、诈骗短信等成为经常光顾的对象,尽管我们没有购买理财产品,没有购房需求,没有保险服务等,也没有向这些公司提供过自己的隐私数据信息,但无法避免而且能经常接到理财公司、房地产商、保险公司等的推销电话。探究这些公司对用户偏好和兴趣精准了解的缘由,那便是人工智能应用中个人隐私的非法交易行为,我们保留在网站或企业中的个人信息,除了由该企业本身使用外,这些企业还经常与其他的个人和企业共同分享、非法交易,而忽略了公民的个人隐私安全。目前,人们的个人数据,如电话号码,银行卡信息,购车记录,收入状况,网站注册信息等,已成为私人非法交易的严重灾区,这些个人信息被不法分子通过非法交易获得并通过循环使用来获利。现阶段,这类专门进行个人信息买卖的公司在国内不计其数,大大小小的分布在各种隐蔽的角落,甚至有一些正规的大型企业也免不了买卖个人信息的行为。当今社会,公民的很多日常行为都不得不提供自己的私人信息,如应聘工作、参加考试、购买保险、购买车票、寻医看病等等。这些信息提供给企业商家后,他们就有义务对用户的信息进行保密,而目前对用户信息保密的相关法律规定还比较欠缺,因此往往寄希望于企业商家通过自律行为来保护用户的隐私。但是目前的现状是大多数企业的自身素质不高,单纯将对隐私保护寄希望于商家企业的自律是不现实的,这些数据往往会被企业商家非法买卖,甚至将这些非法买卖的个人信息用于诈骗、传销。

隐私、事故和权责,智能汽车发展带来的伦理问题

如果一辆车在自动驾驶的过程中造成其他车辆的损失,这个责任应该有谁来承担?目前已经有相关的法规适用于这种情况,在此姑且不去探讨那些细则,首先法令的出现,就意味着这类问题发生的普遍性,其次也意味着未来可能会出现更多此类甚至更广泛的问题。

智能驾驶技术,可能是人类历史上,第一次如此大规模的迎来最高等级的智能机械设备在日常的应用。除了技术适用性以及发展上面的问题外,人们也是首次切切实实的感受到,可以被统称为“人工智能”所可能带来的“伦理问题”。

在此用伦理来形容这些问题,而不是社会或法律,因为所涉及的范围并没有大到影响全部社会生活,但也没有小到仅仅是可以用法律来规范。在社会所有的行为当中只有一小部分会触犯到法律,大量的不当的行为处在包含了法律但又大于法律的伦理范畴之内。

就当前的发展来看,智能汽车所带来的问题既有在法律界定上的责任问题,也有诸多关于隐私、平权的内容,所以讲这些统称为智能汽车所引发的伦理问题并不为过。在此紧从几个具有代表性的问题入手,来即开未来人们将会由于智能汽车所带来的巨大的伦理问题的一角。

最先显露的问题,是来自于智能汽车的一个主要的功能,即从外部来看,它是一个全身长满了摄像头的可移动计算机,在巨大电池的支撑下,这台性能机器可以在它能够去到的任何地点、任何时候对周围甚至车内的环境进行图像以及声音的采集。同时在移动网络的加持下,这些音画内容可以被上传到任何一个指定的网络空间内。

不用多说,被互联网多次洗礼人都有着很敏感的隐私嗅觉,所以智能汽车所面对的第一个大的伦理问题就是车外以及车内环境的隐私。

实际上,环境的隐私仅仅是智能汽车隐私问题的一个集中显现,在这背后,更大的隐私可能以不同的方式在空中传输着。最明显的就是驾驶者所使用的那辆智能汽车内部的所有传感器所产生的,关于车辆运行状况的数据。

如果说监测车辆情况可以提供安全性的话,那么在这个安全性的保护伞之下,驾驶者的驾驶习惯也会被智能汽车记录在案,如果未来智能汽车厂商插手汽车保险业务的话,那么他们就会有更充足数据来分析任何一个车主在其操作习惯之下的驾驶风险。

这也并不是隐私问题的全部,在人们使用智能汽车的时候,他们也在被智能汽车的制造商使用着,在数据不断的交换中,智能汽车厂商可以将这辆车转化为一个感知原件、一个计算中心、一个驾驶情况的模拟器,从而“偷偷”地在驾驶者使用的同时,进行着某种算力的窃取。

当然,随着隐私法规的不断出台,对于智能汽车能采集什么样数据、能传输什么样数据将会不断明晰,但在此之前,就非常有必要在伦理层面去全面的理解智能汽车所带来的利弊,以及规范好它的工作界限。

如果说隐私问题还不是性命攸关的话,那么关于智能驾驶的伦理问题,大多涉及到了财物的损失、甚至人员的伤亡,这时就需要法律的明确介入。一个最直接的挑战就是,当驾驶员开启了具有足够自主决策权的智能驾驶的时候,如果发生了由于智能驾驶操作所带来的车辆、道路、行人的损失,责任该如何界定?

对于简单的工具,制造方往往不需要承担过多的责任,只要他们生产的是法律范围内允许销售的产品。不会有人因为被刀砍伤就去起诉刀的生产厂商,责任只会追究到行为的发起者,即刀的使用者身上。

这在传统汽车范围内也是适用的,没有智能驾驶的汽车发生事故所能追究的第一责任人很明显就是某辆车的驾驶者,有很大一部分是由于其错误的决策导致了车祸的产生。但是如果是由于车辆的质量问题,比如刹车失灵,那么驾驶者还可以通过法律的手段去追究制造商的责任。

但是在智能汽车领域,这个问题变得稍微复杂了点,即大多数时候都是人在拿着刀,可一旦开启了智能驾驶,刀也有可能有自己的“意识”,决定自己去砍人。在这种情况下主观意愿的发出者并不是驾驶者,而是车辆本身。虽然目前已经出台的一些法律,还是倾向于将责任归于驾驶者,而驾驶者也可以酌情向制造商追责,但这个问题一定还会在相当长的一段时间内,伴随着智能驾驶级别不断的发展提高而被反复提及。

如果深入这一点,就会发现,即便是不发生事故,也会产生另外一个问题,我们姑且把它称为“道路权”的问题。试想一下,在一个开放的路段,仅从车外的角度是难以分辨哪一辆车是正在进行智能驾驶,哪一辆车是由人来驾驶的。(虽然智能驾驶汽车可以设置一些警示的标志,但这不足以在根本上进行分辨)

这时,在同时行驶的车辆当中,由人驾驶车辆的“道路权”是否会因为“智能驾驶”的参与而受到侵犯。这么说似乎有些矫情,但通过对权责以及理性驾驶能力的分析,就会察觉到不对劲的地方。

对于人工驾驶来说,驾驶者拥有道路权,同时他也要为自己的驾驶行为负责,这毋庸置疑,权责非常清晰。但是对于智能驾驶来说,驾驶者开启智能驾驶功能后,就会出现一个奇怪的情况,智能汽车而非驾驶者拥有道路权,即相关的驾驶行为是智能汽车发出的,而目前来看,智能汽车本身(因为它不是个法人)不需要为其驾驶行为负责,驾驶员必须要为最终的行为负责。

表面上看起来似乎问题不大,终归都是驾驶员在负责,但这仅仅是在发生事故的情况下,责任可以落实到人。如果将视线定格在路上行驶的某一个片段,人工驾驶的驾驶员就会发现,跟他在道路上竞争的,竟然有很多是并不需要为自己的驾驶行为负责的“人工智能”。

这就好比我们在路上发现一个没有民事能力的孩子,在有家长相伴的情况下开车一样,作为跟他们同路的人,难免会产生担忧,不管是这个孩子的驾驶水平如何。这并不是一个关于技术的问题,也不是一个关于法律的问题,而是一个关于权责分配的伦理问题。

这个背后,也就隐藏着所有人工智能发展最终都会遇到的问题——人工智能产品,在多大程度上,可以被当作一个法人来看待。

这个问题的本质是不同于其他的商品,人工智能产品具有独立做决策的能力,并在此基础上发出跟人类似的动作,这些动作可能伤及到其他人。那么这个人工智能是否有能力承担这个责任。

但是更进一步的是,如果“人工智能”不具有反思意识,即不具备反思责任的能力,那么它就会是处于没有道德或伦理压力的控制下,即便是有足够聪明的程序来指导它,也无法让他称为一个像人一样的能因为责任问题而改变行为的一个主体。

这不免让人联想起阿西莫夫的机器人三定律:

第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险而袖手不管;第二定律:机器人必须服从人给予它的命令,当该命令与第一定律冲突时例外;第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存;

即便是有着绝对的命令,机器也无法作为一个法人主体,因为控制他们的是指令而不是他们自己对道德的反思,即对责任的认识。也许现在说这个问题还很遥远,但如今一辆智能汽车在路上“自动”行驶的时候,就一定会给其他人工驾驶的车辆,带来一种权责的扭曲影响,在这种影响之下,人工驾驶的驾驶员都会发出一个自然而然的追问,如果这台机器不能像我一样负责,那就请他不要做决定,这是对我为自己行为负责这个规则的严重侵犯。

如果在一个充分自由的法制社会里,可能只要有一个人坚持人工驾驶,他就有权利去起诉所有的自动驾驶,要他们证明智能汽车可以为其行为负责,否则就可以禁止它们上路。但这只是一种理想情况的假设,现实社会也许人们都会慢慢的拥抱新技术、新产品,不过这也提醒我们,新技术新产品不仅带来了便利,也会带来相当复杂、甚至从来没有过的伦理问题,也只有解决了这些,新的东西才会真的落地,称为日常生活的一部分。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇