加快推动人工智能产业高质量发展
原标题:加快推动人工智能产业高质量发展人工智能产业为中国经济发展提供战略新动能,是引领中国经济发展的重要战略抓手。2018年9月17日,习近平总书记在致2018世界人工智能大会的贺信中指出,新一代人工智能正在全球范围内蓬勃兴起,为经济社会发展注入了新动能,正在深刻改变人们的生产生活方式。习近平总书记强调,中国正致力于实现高质量发展,人工智能的发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。习近平总书记的重要论述,为人工智能产业实现高质量发展,更好服务于人民的美好生活指明了方向。
推动高质量发展是“十四五”时期的主题
党的十九届五中全会明确指出,我国经济已转向高质量发展阶段。以推动高质量发展为主题,是“十四五”时期以习近平同志为核心的党中央根据我国发展阶段、发展环境和发展条件变化对我国经济做出的新的重大科学判断。习近平总书记指出,高质量发展就是体现新发展理念的发展,是创新成为第一动力、协调成为内生特点、绿色成为普遍形态、开放成为必由之路、共享成为根本目的的发展。高质量的发展意味着在中高端产品消费、创新引领、绿色低碳、共享经济、现代供应链、人力资本服务等领域需要培育经济新增长点、形成发展新动能。新时代新阶段的发展必须贯彻新发展理念,必须是高质量发展。而推动经济高质量发展,关键在于以创新为驱动、高质量供给为引领,加快建立科技创新体系,构建现代产业体系,推动质量变革、效率变革、动力变革,建立中高端产业链、价值链,使发展成果更好惠及全体人民,不断实现人民对美好生活的新需求。
当前新一轮科技革命和产业革命正在发生变革,这与我国高质量发展形成历史性交汇。“十四五”时期我国经济发展应抢抓这一重要变革机遇,为高质量发展“动力换挡”导入强劲引擎。伴随移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术的驱动,以人工智能技术为代表的新一轮科技革命蓬勃发展,以前所未有的速度和方式改变着经济发展,成为高质量发展的重要引擎。习近平总书记在十九届中央政治局第九次集体学习时的讲话中指出,“人工智能是引领这一轮科技革命和产业变革的战略性技术,是新一轮科技革命和产业变革的重要驱动力量,具有溢出带动性很强的‘头雁’效应”。加快发展新一代人工智能不仅“事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题”,而且是“我们赢得全球科技竞争主动权的重要战略抓手”,更是“推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源”。在推动经济高质量发展的过程中,人工智能产业的高质量,可以为中国经济发展添薪续力。
党的十九届五中全会审议通过的《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》指出,“在当前和今后一个时期,我国发展仍然处于重要战略机遇期”,要紧扣重要战略机遇新变化,“坚持把发展经济着力点放在实体经济上,坚定不移建设制造强国、质量强国、网络强国、数字强国,推进产业基础高级化、产业链现代化,提高经济质量效益和核心竞争力”。在推动经济高质量发展阶段,人工智能正在为中国新旧动能转换和国民经济高质量发展提供有力支撑,它是推动工业变革的核心驱动力量,也是最能体现知识要素贡献和打造经济社会发展新动能的基础设施产业,加快推进人工智能产业优化升级,成为未来科技创新的一个“超级风口”。近年来,中国人工智能产业化发展迅速,技术发展日益成熟、应用场景日益丰富,企业数量、融资规模均居全球第二,成为人工智能产业化大国之一。与此同时,我国人工智能产业的发展在基础理论研究、关键核心技术、人才培养等方面存在一些短板,这在一定程度上限制了人工智能产业创新发展潜能的充分释放。对此,习近平总书记强调,要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,创新技术,促进其同经济社会发展深度融合,推动我国新一代人工智能实现高质量的发展。
以人才、技术促进人工智能产业实现高质量发展
我国人工智能产业迅速发展,在智能芯片、智能算法、知识图谱、计算机视觉、自然语言处理等技术方面不断取得突破,为人工智能产业的创新发展奠定了一定基础。但中国智能产业在芯片硬件等关键性核心技术上仍然比较薄弱,这成为制约人工智能产业实现高质量发展的重要隐患。对此,习近平总书记指出,人工智能具有多学科综合、高度复杂的特征。我们必须加强研判,统筹谋划,协同创新,稳步推进,把增强原创能力作为重点,以关键核心技术为主攻方向,促进人工智能实现高质量发展。
重视产业人才培养,构建“引才、留才、用才”新格局。人工智能产业要实现高质量发展,培养人工智能人才是关键。因此,要强化多层次人才的培养和引入。一是培养人工智能产业所需的复合型人才。一方面,构建以技能为本的劳动力市场,鼓励企业和各类机构为员工提供人工智能技能培训,培育一批专业技能扎实、科学素养高、动手实践能力强、具备开阔产业应用视角和国际前瞻视野的人才,确保关键工种拥有充分数量的人才储备;另一方面,完善高校人工智能学科体系建设和布局,深化“产学研”融合发展,鼓励高校、科研院所与企业合作,通过校企共建人工智能专业和课程,培育更多符合人工智能产业高质量发展所需的复合型人才。二是坚持“走出去+引进来”,加大全球高端人才的培养和引入。一方面,选派人工智能领域优秀科研人员赴海外学习交流,扩大国际化视野;另一方面,充分利用海南自由贸易港、自由贸易区、粤港澳大湾区等历史性战略机遇,鼓励人工智能产业人才引入。
加快完善数字基础设施,增强人工智能科技创新能力。人工智能产业要实现高质量发展,技术的完善和突破是重点,这就要求在技术上既要加快完善基本数字基础设施,也要坚持核心技术的攻坚克难。一是要完善数字基础设施,推动传统产业智能化转型。一方面,充分利用新基建机遇,加强人工智能基础研究和技术研发,协调推进各类数据中心、5G网络部署,全面提升端侧的数据计算、采集及传输能力,为传统产业全面向数字化转型打造坚实广泛的计算基础。另一方面,充分发挥国家新一代人工智能开放创新平台赋能作用,加强传统产业与科技公司合作力度,共同突破工业数字化壁垒,实现双赢。二是要加大基础研究力度,加快突破一批人工智能产业化关键技术。国家要调整人工智能投入结构,提高基础研究经费投入比重和投入力度,支持科学家勇闯人工智能科技前沿的“无人区”,鼓励校企开展深度合作,建立协同创新联盟,努力在人工智能发展方向和理论、方法等方面取得变革性突破,确保我国在人工智能重要领域的理论研究走在前面。同时,要以问题为导向,重点突破自主芯片技术和算法技术,加快建立新一代人工智能关键共性技术体系,确保人工智能关键核心技术牢牢掌握在自己手里。
融合实体经济,推动人工智能产业高质量发展
人工智能是具有极强渗透性的技术。当前人工智能产业化应用正加速从娱乐、消费等领域开始向制造、医疗、能源、交通等更大范围的实体经济进军,这给人工智能产业提供了庞大的市场和丰富的场景。人工智能在我国交通、医疗、教育等传统行业中的发展和应用仍然处于较低水平,无法满足人民对美好生活的需要。因此,要实现人工智能产业高质量发展,就要发挥人工智能在产业升级、产品开发、服务创新等方面的技术优势,推动人工智能与实体经济深度融合,以人工智能技术推动各产业变革,加快产业对接,聚焦重点领域,形成以场景应用为导向的发展模式。
搭建智能平台,发挥人工智能技术应用功能。人工智能不仅能创新产品和服务,而且也能在相当程度上改进或优化传统产业的生产流程,重构传统产业的业务模式。当前,以人脸识别、车辆特征识别、手写识别、文字识别等为代表的计算机视觉相关技术基本成熟,“机器视觉”在制造业中已经逐渐推广应用,加强计算机视觉技术与传统汽车制造等产业的深度融合,用机器代替人力劳动,不仅能节约人力投入,还能提高产品品质。人工智能还能对生产过程的数据进行分析并加以改进。工业生产线在运行过程中会生出大量实时数据(比如温度、压力等等),利用人工智能技术对数据进行分析,能提前预测可能出现的机器故障、残次品率等等,进而对生产流程进行优化,以达到节约成本、提高效率的目标。因此,要大力推广应用人工智能在促进制造业转型升级中的支撑和引领作用,使其成为推动高新技术产业创新发展中的“头雁”和区域发展的“增长极”。
聚焦重点领域,助推人工智能应用场景落地。如果说人工智能产业是供给侧,那么传统行业则是需求侧。推进人工智能应用场景落地,就要处理好供给侧和需求侧的关系。随着人工智能加速向医疗、交通、智慧城市等多领域的渗透,应聚焦这些涉及民生的领域,提升人工智能产业与实体经济的融合度,为人民群众提供更优质、丰富、便利的新产品和新服务,满足人民群众对美好生活的需要。因此,人工智能技术要着眼于我国庞大的市场和丰富的场景,围绕社会发展需求领域布局,探索出一条充分发挥我国市场和场景资源优势的高质量人工智能产业发展路径。
(作者单位:北京科技大学马克思主义学院)
人工智能产业迎来发展新机遇
习近平总书记强调,人工智能是新一轮科技革命和产业变革的重要驱动力量,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,促进其同经济社会发展深度融合,推动我国新一代人工智能健康发展。
近年来,我国人工智能产业在技术创新、产业生态、融合应用等方面取得积极进展,已进入全球第一梯队。中国信通院测算,2022年我国人工智能核心产业规模达5080亿元,同比增长18%。
我国人工智能产业的发展现状与发展趋势如何?面临着哪些机遇?今后产业发展有哪些着力点?最近,记者采访了工业和信息化部相关负责人及业内多家企业。
核心技术取得突破,创新能力显著提升
无保护左转、行人车辆避让、自动变道、自动转向、红绿灯识别、窄路及拥堵路段通行、自动绕障……北京轻舟智航科技有限公司不久前推出的基于地平线征程5芯片的“轻舟乘风高阶辅助驾驶解决方案”,支持城市多场景、高速公路、快速路多种复杂路况的点到点辅助驾驶,让开车变得轻松。
包括18个智能水位站、5个流量站、100套森林火灾地表火探测器在内,200余个前端感知点位,将实时数据输送至云从科技主导搭建的综合枢纽数字孪生平台——“天府大脑”,并在数字孪生世界完美复原成都天府新区的生态现状。水体抬升、水质反演、污染等城市应急事件,在AI(人工智能)赋能下完成高效能治理。
六轴机器人轻柔地抓起几十公斤重的电池模组,精准放置到电池包底座上,在AI视觉和100%扭矩监控下完成自动拧紧,安装精度达到0.2毫米……在上汽通用汽车武汉奥特能超级工厂电池车间模组上线工位,由上汽通用工程制造团队与国内顶尖人工智能企业共同开发的“机器人、3D点云视觉、力控感知”技术融合应用,在业内成功落地。
“智能视觉技术在装配工艺中的应用,有效避免了模组在组装过程中由于磕碰造成的潜在安全风险,确保了装配过程电池零损伤。”据工厂负责人介绍,后续的电池包涂胶、合盖、拧紧工艺,也全部基于数字孪生技术的机器人自动完成。通过采用深度学习算法的视觉技术进行多重质量保证,安装工艺实现测量精度小于0.1毫米,确保电池包满足最高密封等级要求。
不仅如此,在武汉奥特能工厂,数字孪生技术已广泛运用于产线规划、设备制造、安装调试、生产运营监测、设备预维护等领域,节省设备建造、调试时间约50%,项目实际投产比规划提前了5个月。
以上事例,是我国人工智能创新能力显著提升的缩影。总体看,有四个方面主要进展:
——人工智能专利申请量居世界首位。据中国信通院测算,2013年至2022年11月,全球累计人工智能发明专利申请量达72.9万项,我国累计申请量达38.9万项,占53.4%;全球累计人工智能发明专利授权量达24.4万项,我国累计授权量达10.2万项,占41.7%。
——创新载体建设取得新进展。一批新型研发机构在人工智能大模型、人工智能计算芯片等领域取得了技术突破。算力基础设施达到世界领先水平。全国一体化大数据中心体系基本构建,“东数西算”工程加快实施;建成一批国家新一代人工智能公共算力开放创新平台。
——关键核心技术局部突破,部分关键应用技术居世界先进水平。我国企业在应用算法、智能芯片、开源框架等关键核心技术上已取得重要突破,图像识别、语音识别等应用技术进入国际先进行列,智能传感器、智能网联汽车等标志性产品有效落地应用。
——产业生态初步形成。目前,我国已有超过400所学校开办人工智能专业,高端人才居全球第二。截至2022年底,全球人工智能代表企业数量27255家,其中我国企业数量4227家,约占全球企业总数的16%。我国人工智能产业已形成长三角、京津冀、珠三角三大集聚发展区。百度、阿里、华为、腾讯、科大讯飞、云从科技、京东等一批AI开放平台初步具备支撑产业快速发展的能力。
融合应用步伐加快,赋能效果持续显现
“春节后,早高峰等车时间变短了,车上也不那么挤了。”2月23日7时40分,李先生在深圳桃源村东72路公交车站登车。他并不知道,车队根据智能排班,车辆周转率提升10%,乘车舒适度也提高了25%。
深圳巴士集团安托山公交车队调度组长陈晓岚告诉记者,去年车队6条线路、72辆公交车安装智能系统后,借助人工智能算法,车队可以通过精准匹配的动态飞线图,全面了解线路客流信息,如哪个时段、哪个区间客流量大,进而调整线路早晚高峰时段的发车频次,增发72路、M500路区间车,提升了线路运营效率,方便了乘客出行。
据了解,目前,深圳已经有6000辆公交车安装了该系统。构建城市级公交大脑不仅帮助公交公司降本增效,还有效推动城市智慧出行。
“伴随着人工智能在智慧城市领域的应用加速落地,我们对智慧城市的理解越来越深,战略也越来越清晰,那就是做自进化城市智能体。”云天励飞副总裁郑文先说,云天励飞拥有算法、芯片、大数据全栈式AI能力,基于对行业场景需求的深刻理解,通过自定义指令集、处理器架构及工具链的协同设计,实现了算法芯片化,进而打造具备多维敏捷感知、海量数据分析、全局实时洞察、持续迭代进化的城市超级大脑,助力智慧城市建设。目前,一系列示范应用已在北京、上海、深圳、青岛、成都等多个城市实现项目落地。
中国电子信息产业发展研究院副总工程师安晖表示,当前,人工智能与一、二、三产业融合成效初显,正在从医疗、交通、制造等先导产业领域向旅游业、农业等领域拓展;智能金融、智能医疗、智能安防、智能交通等领域已经成为人工智能技术产业化落地的热点应用场景;制造业研发设计、工艺仿真、生产制造、产品检测等重点环节智能化水平全面提升。
推动关键核心技术攻关,培育良好发展生态
“作为国内首款可量产的百TOPS级大算力AI芯片,地平线征程5已经获得比亚迪、上汽、一汽等多家主流车企的量产合作项目,首款量产车型已于今年2月落地。”业内专家表示,实现大算力车规级芯片量产,国内芯片企业仍需突破一些关键技术,如先进封装技术、自主IP技术、高算力芯片系统架构,以及功能安全流程、功能安全产品认证、车规可靠性认证等。
车规级智驾和智舱芯片,只是我国人工智能产业链短板之一。安晖认为,总体看,我国人工智能基础理论、核心关键技术积累不足,核心算法、AI框架、芯片及基础元器件与国外差距较大,重大原创科技成果还需要进一步研发。
“实现人工智能产业高水平自主可控,国内企业要加强产学研用协同创新,推动关键核心技术攻关。”安晖列举道,一是大力推进人工智能基础软硬件开发,加强小样本学习、迁移学习等基础技术研究,提升原始创新能力。二是加快智能芯片、深度学习框架及关键算法等共性技术迭代升级与产业化,发展感存算一体化的智能传感器。三是强化知识计算引擎、跨媒体智能、自然语言处理、自主无人系统等技术攻关与应用,加快人工智能安全技术创新。四是加速语音、图像文字等多媒体技术向跨媒体技术提升,推动感知智能向认知智能演进,发展超大规模预训练模型。五是加快人工智能与5G大数据、云计算、区块链等技术的融合创新,鼓励开发融技术产品并加速商业化落地。六是推动类脑智能等前沿技术,前瞻布局人工智能与量子信息、脑机接口等前沿领域探索。
在云从科技副总裁王仲勋看来,我国人工智能企业和初创公司在获得资金支持方面仍存在一定困难,有时无法承担训练大型语言模型的高昂成本,“此外,一些财力雄厚的大企业,项目投资更多关注短期的投资回报率,对长期规划且产出成果不明确的项目存在一定程度的重视不足。”
工信部有关负责人表示,“十四五”期间,我国将加快壮大人工智能产业,培育良好发展生态,具体举措包括:组织由大中小企业联合、产学研共同参与的创新联合体,推动人工智能关键核心技术突破,提升我国智能芯片、开发框架、典型智能产品等水平;加快人工智能在制造、交通、能源等领域的应用,推动重点领域智能化转型;打造产业集群,培育一批具有国际竞争力的人工智能龙头企业,发展一批专精特新企业,依托先导区打造产业集聚发展高地。
以技术突破和应用拓展为主攻方向,依托我国超大规模市场优势吸引全球资源要素,我国人工智能产业正在与实体经济深度融合,成为经济社会发展新的增长引擎。据预测,到2030年,我国人工智能产业规模将达到1万亿元。(王政)
[责编:姜楠]人工智能的发展方向与机遇
AI中国网https://www.cnaiplus.com
原标题:人工智能的发展方向与机遇编辑导读:近几年人工智能大热,几乎所有人都在讨论关于人工智能相关的话题,同时各个领域的突破也不少。本文作者对当前人工智能的目前发展情况进行了梳理,并分享了自己对人工智能未来的一些猜测与看法,与大家分享。
01现阶段人工智能的瓶颈
现在人工智能有很多突破,尤其在应用上有大量突破,但是实际上人工智能底层的技术研究的进展其实并不多。最近值得说的进展就一项,就是曾经研制出了AlphaGo,战胜了李世石的公司DeepMind。DeepMind在前段时间研究了一个系统,战胜了人类的德州扑克选手。
玩过德州扑克的朋友是可以感受到的,德州扑克要比玩围棋复杂得多。因为围棋所有的信息都是充分信息,是已知的;而德州扑克,你对面的玩家肯定不会让你知道他手里的牌,所以是不充分信息。在不充分信息的情况下能战胜人类选手,某种程度上说明人工智能又进了一步。
不过这种进步只是弱人工智能。正如《前哨》中所说:弱人工智能比人强,强人工智能比人弱。迄今为止在强人工智能方面还没有任何进展。
美国著名的计算机专家、图灵奖的获得者JudeaPearl的在去年的新书《为什么》中,就提到了一个很有趣的,甚至让人工智能专家都有点尴尬的事实:“人工智能评价这个系统的好坏,并不能从结构上或者理论上来评价,比如你的结构更优或者理论更好,只能从结果来评价。”人工智能算是一门科学吗?答案成疑。所以Pearl就很毒舌地说:“人工智能现在已经变成了炼金术。”
所以人工智能在现阶段最大的瓶颈,就是理论上和实际底层技术的发展。
下面是笔者在读《为什么》时的笔记导图,强烈建议对人工智能感兴趣的朋友读下原书。
02人工智能的三大发展方向
虽然面临着理论和底层发展的瓶颈,人工智能终究还是有进展的,根据王煜全老师在2019年的报告中的阐述,结合笔者对人工智能领域的理解,可以总结为以下三个发展方向。
1.大数据向小数据过渡
过去机器学习要用海量数据做训练,现在希望用尽可能少的数据做训练。
小数据不等于没数据,因为人工智能迄今还是基于归纳总结原理做出来的,也就是说在人工智能系统里面其实统计学更有意义。
但人工智能绝不能满足于此,人类是会推理的,可以在没有数据的情况之下判断事情该怎么做,小数据也不能真实模拟人类的这种判断。
我们可以想象这样一个场景:在一个雨夜里,你在一个崎岖的山路上开车,前面路中间有一堆土,土堆边上有一个看似穿着警服的人在挥手,摇着一个旗子让你下来,你下还是不下?如果你不下,勉强可以冲得过去,但如果你下来才是遵守指令。这种时候,我们普通人会有很复杂的推导,比如这附近治安好不好?晚上天很黑的时候附近治安会不会有问题?另外我们人会看这个警察,他身上的装扮是不是真正的警察制服?周围的交通疏导装置是不是都安上了?如果只有一个人站在那,而没有相应的交通疏导装置,很多人会认为这是假的,就会想办法冲过去。
这些所有背后的复杂判断,不只是一个路面的问题,而且涉及到了社会安全,以及很多其它和交通无关的问题。这些问题是迄今为止自动驾驶都无法判断的。
这也就是五级自动驾驶几乎接近于永远无法推向市场实现商业化的原因。除非下一次人工智能的突破到来,使得人工智能真正具备智力分析能力。虽然现在人工智能的一个方向是小数据,但依然不是没数据,依然是基于统计,而不是基于推理和因果关系,这也是《为什么》这本书质疑人工智能的地方。
2.边缘计算
笔者不是技术出身,对计算能力上的概念理解也是有限,简单描述下该方面的发展方向。
从计算能力上来说,一方面,我们要有充分的计算能力;另一方面,5G的来临使得我们的云端计算能力也可以得到极大的加强。而且因为响应速度提升了,所以云端计算能力可以对局端、对边缘的计算能力实现更好的补充,使得云端和终端形成一体化的人工智能计算能力。
这其实对整体来讲是锦上添花,而并不是一个革命性的变化。
3.终身学习
现在机器也可以终身学习了。
机器一旦有了终身学习能力,就会使得我们整个人类或者说企业,尤其是行业里面采用人工智能的策略产生本质性变化。如果机器不能终身学习,我们在引入人工智能的时候就不用太着急,等到人工智能系统足够好的时候再引入即可。但是如果机器能够终身学习,最好的策略是第一时间引入人工智能,因为虽然引入的时候它可能还不那么智能,但是它不断学习、不断完善自己,就会比引入晚的竞争对手领先一大截,这个时候甚至和硬件都没有那么大的关联。
所以,各个行业都需要去看人工智能能否更快、更好地引入到自己的行业领域里面来。因为人工智能确实是像互联网一样,所以很多人都说人工智能是互联网的下一代,就是因为它有广泛的适用性,所有的行业都有可能因为人工智能而获益。
03人工智能技术在哪些应用上有优势?
现在采用人工智能还是有一些障碍的,尤其是对于不是这个行业领域的公司。一些传统领域的公司通常认为,建立了人工智能部门,也招了很多做人工智能的人,就是在做人工智能了。但实际上迄今为止,人工智能专家依然是稀缺的,人工智能专家在未来五年之后可能就不再稀缺了,但是现在依然是稀缺的。
稀缺的一个主要的特征,就是很多大IT公司都在喊:现在和我们抢夺人工智能人才的,主要的竞争对手是华尔街。为什么呢?因为人工智能技术基本上到顶了以后,你就可以判断它在单项上有很强的优势。这种单项优势就会被各个行业领域采用,最早采用的一定是利用这个优势获得大量收入利润的行业,金融无疑是最理想的行业,所以用人工智能炒股已经几乎变成华尔街的标配了。
虽然独立的人工智能炒股的基金公司并不多,但实际上,大多数的基金公司都储备了人工智能的人才。判断短时的涨跌,用人工智能做短期操作一定比人强,这已经是事实了。当然,这并不代表人没有机会,因为现在单项上人工智能比人强,但是多项综合人就显著地占有优势。
如果你判断短期的股票交易,基本上就根据以前的交易行为来判断,那一定是机器比人强;但是如果判断一个企业的长期发展,尤其是判断一个企业未来的科技产品有没有可能在未来的科技市场当中占优,机器就不一定比人强。
因为这些判断是非常综合的事情,涉及到了科研发展的趋势,包括研发的进展、技术能力的变化,包括产业格局的变化,甚至包括企业经营特点的变化,还包括市场的接受程度、用户的变化。
从这个意义上讲,人工智能相对来说是判断不清晰的。也就是说,你问人工智能明天可不可以买一个股票,它的回答一定比问一个人要好,但是你问一个公司五年之后发展得好不好,你最好去问人类的专家。这说明人还是有机会的,不要和人工智能去争夺单项的长短,而要在综合上面取得优势,甚至每个单项上都用人工智能辅助我们,但是在整体上我们可以超越人工智能。
这是一个相对来说比较特例的地方,因为人工智能能为企业带来大量的钱,所以整个华尔街现在非常欢迎人工智能专家,以至于现在很多IT公司都把华尔街当成竞争对手,这个竞争指的不是市场的竞争,而是指人才的竞争。而随之而来的,大多数情况之下,人工智能专家不太愿意去传统行业的企业,因为传统行业往往有很长的研发周期,它不像短线炒股,研发周期很短,迅速就有结果。
04人工智能独角兽着临着巨大的压力
现在中国的人工智能有一个很大的问题,就是过热了以后产生了一批人工智能独角兽。
独角兽就是还没有上市,但是估值已经超过了10亿美金的公司。我们都知道很多公司其实估值不到10亿美金就可以上市了。但是这些独角兽之所以没有上市,是因为收入利润并没有清晰地显示出来,也就是说其实它还不符合上市指标。但是因为市场热捧,所以它的估值非常高,这样的话这些企业就会有特别强大的压力。
压力体现在两方面:
一方面,它必须要持续不断地从市场网罗人才。因为它是独角兽,它给期权的时候会显示期权的价值特别高。虽然这个期权显示很高,不代表员工真正获取了这个价值。但是市场承认这个价值,所以它就会对人才形成很强的吸引,造成现在很多的人工智能人才愿意去独角兽,因为有高薪又有高期权,而不愿意去传统行业。传统行业的薪水没那么高,而研发又需要一个周期,不能立竿见影看到效果,回报产生了落差,因此大多数人会选择去独角兽企业。
独角兽企业有另一个致命的问题,因为它估值过高了以后,就要尽快地在收入利润上兑现它的承诺。这就意味着这些独角兽企业在长期研发上投入不足,同样是盯着那些眼前最能赚钱的业务,人工智能现在最能赚钱的业务是什么呢?这其实也是大家普遍关注的一个话题。
因为人工智能在去年、前年就在喊这样一个话题了,今年甚至还会再继续喊,就是所谓人工智能叫好不叫座。虽然人工智能非常热,各种新的应用层出不穷,但是你去看人工智能企业,似乎它们收入利润的增长没有那么令人满意。
05在人工智能细分领域的机会1.硬件层
该层级主要是涉及人工智能相关的硬件企业。这些企业坦白讲其实未来还很难预测,做这种专业领域的研发(FPGA)的公司机会相对还大一些,现在做类脑计算芯片、人工智能计算芯片,通用性相对强一点,压力会比较大。因为实际上这种芯片是需要构筑生态的,这种芯片的一个领军企业就是NVIDIA(英伟达)。
英伟达有几千个工程师,去帮它的芯片做各种应用的场景开发,或者是应用的支持,加强了英伟达的生态的健全。例如,同样做自动驾驶解决方案,英伟达更看重的是,我如何能让客户得到全面的服务。基于此,英伟达做了一套虚拟的试车系统。这套虚拟系统,让自动驾驶系统在虚拟路面去跑,可以把速度倍速。另外,可以同时在多个虚拟环境跑,显示好像是有100辆车、1000辆车同时跑,很快地积累到了足够的里程,由此人工智能系统就足够地强壮、足够地智能了。
这就是它对环境的构建,这是非常重要的。而国内大多数芯片企业,只是盲目地强调自己计算能力的优越,没有这种生态构建的能力,其实是很难跟英伟达竞争的。当然英伟达也有一个缓慢的苦尽甘来的过程,其实在两三年以前黄仁勋在演讲时,他还在畅想人工智能在各个行业领域的突破,非常地发散,但是到去年的时候业务已经非常地聚焦,一定能实现足够大的收入利润。
2.基础服务层
这个层级主要聚集着在基础平台和基础应用上发力的企业,比如云计算提供者。
在美国几乎所有的IT巨头都花巨资去建立大的云计算平台,而且都要有强大的人工智能的支撑能力,其中最领先的就是亚马逊的AWS和谷歌这两家公司。所以这几乎变成了一个业内共识,未来云计算+人工智能,甚至到了5G以后,使得云计算+人工智能无所不在,成为标配,很快就会发现人工智能会像自来水一样,随处都可以获得。
中国也是一样,现在比较领先的就是阿里云,腾讯、百度也在发力,但是现在看起来阿里还是比较领先的。当然华为也在做自己的云。中国也会诞生几朵大云,也有很大的市场空间,因为中国的IT市场不比海外小多少。
所以这一层会发展起来。而这一层的核心就是除了提供基础的云计算能力以外,一定要提供一些附加的人工智能能力。而这种人工智能能力就会使得人工智能的基础应用,不是由人工智能提供商来提供,而是由云平台直接提供。
什么是基础应用呢?现在其实没有明确的定义,在此笔者举出几个例子,供大家了解与讨论。
视觉识别,包括面部识别会变成基础应用。因为在更多公共场所的监控加上视觉识别之后,可以快速抓捕逃犯,有助于社会治安。这就形成了一个巨大的市场,现在大量独角兽都在追逐该市场。
但从长期来看,这个市场对于独角兽们恐怕不是很友好:一方面,政府会形成统一的大市场,未来应该是打通的,就从全国到处都是客户变成一个客户,这个市场也就某种程度上不存在了;另一方面,不管是几个客户,提供者很可能都不是今天的这些独角兽们,而是由基础云平台直接提供,比如阿里、腾讯或者是华为这个量级的企业。
主要原因就是这个能力并不复杂,尤其有了云以后,从云上直接提供是最简单的,未来各地只要有摄像头,就可以利用云端的能力实现智能的面部识别或者是图像识别的功能。
除了面部识别以外,现在一个大热点就是动作的识别,甚至把它叫做动作指纹。我们每个人的步态、动作、姿态都有自己的特定规律,经过人工智能的分析,可以只通过我们的动作就知道这个人是谁。现在还有一个特点,就是跨摄像头、跨领域的连续分析。也就是说通过动作捕捉,你可以跨多个摄像头,这就可以了解一个人的行为轨迹。虽然这个人的脸并没有被识别,但是通过动作就可以识别出来。虽然今天人工智能还是作为科研任务在搞,但是很快就会变成一种基础能力,通过云计算提供出来。
除此以外,还有一些基本的图形识别能力,包括另一个热门的市场,就是医学的图像识别。医学里面X光或者B超这样的图像识别,未来很有可能也会被整合到云端,提供者可能是第三方公司,也可能是云端的大IT服务商,但是未来都会由云端来提供,这也变成基础服务了。
最后,语音语义识别和翻译未来很有可能也变成云端的基础服务。今天如果你要翻译的话,还需要随身带翻译机,但是其为什么不是整合到手机里呢?据搜狗的CEO王小川介绍,搜狗的翻译机里有6个GPU,这样使得它翻译的时候计算能力能够跟得上。但是未来如果云端的处理能力加强了,所有这些语音全部送到云端去处理,然后把结果返送回来,这种时候我们每个人的手机就可以是翻译机了,而不需要一个单独的设备。
3.行业结合层
根据上文,很多基础能力未来很可能都会变成一个云端提供能力,而真正的应用能力应该是不那么基础、不那么通用,而且和行业要有充分结合。虽然它也会用到很多基础能力,甚至是云端的基础能力,但是因为它有行业特异性,所以不是云端这个云提供者能够提供的。
比如,因为语音语义识别的成熟,包括翻译能力的成熟,结合行业所组成了一个已经启动的市场,那就是智能客服。呼叫中心小企业虽然不像大企业一样有呼叫中心,但是其实有呼叫中心的需求。现在如果用人工智能来做呼叫中心,回答用户问题的并不是一个人,而是一个人工智能系统,小企业也可以通过租借或者购买这个SaaS系统来满足自身需求。所以这个市场会迅速地崛起,甚至呼叫中心市场会繁荣,但是呼叫中心那些接电话的人会失业,这是冷冰冰的事实。
其实很多人工智能系统都是这样的,自动驾驶会繁荣,意味着车可能会更多,而不是更少,但是司机可能会失业。
这个层次会有大量的人工智能相关的应用公司繁荣起来。这些应用公司很明确,一定要有自己本行业的特色,因为、人工智能这个技术本身没有办法形成壁垒,真正能够形成壁垒的地方一定是行业,也就是说行业数据、行业经验和行业准入会是你的壁垒。这需要我们去找到这个壁垒,从而把业务做起来。
所以任何先进领域不代表只要领先就好,还必须找到自己的壁垒和竞争优势,才能够做得好。
本文由@Pete原创发布于人人都是产品经理,未经许可,禁止转载。
题图来自Unsplash,基于CC0协议
AI中国网https://www.cnaiplus.com
本文网址:
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]黄金新十年来临,人工智能面临哪些机遇与挑战
原标题:黄金新十年来临,人工智能面临哪些机遇与挑战?
编者按:本文系专栏作者投稿,作者智能相对论。3月11日,全国两会闭幕,“人工智能”依然是热议话题,不过今年意义却大不一样,十三届全国人大四次会议表决通过十四五规划纲要,智能经济被寄予厚望。2021年很可能会是智能经济的一道分水岭。2021年,智能经济分水岭自2016年以来,两会上关于人工智能的声音就越来越多。2017年两会上,百度CEO李彦宏提交的三份提案就均与AI相关,科大讯飞CEO董事长刘庆峰则提议将“智能+”上升为国家战略……今年两会上“人工智能”依然是高频词汇。李彦宏提交的5份提案涉及自动驾驶和智能交通、智慧养老进社区等方面,均与AI相关;联想杨元庆则提出“新IT”即IntelligentTransformation(智能转型)的概念;小米雷军的建议涉及智能制造等三个方面;360周鸿祎则建议要尽快加强智能汽车网络安全……在两会上被表决通过的十四五规划纲要中,“科技”出现36次,“数字”出现17次,“智能”出现7次。“加快数字发展”与“发展战略性新兴产业”均拥有自己的独立篇章。规划纲要指出:“发展数字经济,推进数字产业化和产业数字化,推动数字经济和实体经济深度融合,打造具有国际竞争力的数字产业集群。加强数字社会、数字政府建设,提升公共服务、社会治理等数字化智能化水平。”规划纲要明确要“推动互联网、大数据、人工智能等同各产业深度融合,推动先进制造业集群发展,构建一批各具特色、优势互补、结构合理的战略性新兴产业增长引擎,培育新技术、新产品、新业态、新模式。”今年两会上,代表们都在强调两个字:“应用”,更关注AI在产业经济、社会民生与城市治理等领域的落地。十四五规划纲要指出要大力发展智能经济,2021年是十四五开局年,对中国人工智能产业来说,也将是至关重要的年份。“十三五”期间,我国全社会研发经费支出从1.42万亿元增至2.21万亿元,着力加强基础研究和关键核心技术攻关,科技实力进一步增强。人工智能是我国科技自主创新的关键领域之一,我国AI产业取得了全球瞩目的成就,人才、算法、算力等基础已完善。2020年疫情不约而至,AI在防疫中贡献了力量,全社会对智能化达成高度共识。疫情期间我国提出“新基建”战略,人工智能是其重要组成部分之一。已经结束的地方两会也表明,全国多地正加速建设数字经济、发展人工智能产业、加快产业智能化升级。天时地利人和,2021年人工智能将从小范围应用走向大规模落地。新十年,智能经济面临哪些新机遇?1、AI基础技术进一步突破。AI经历“革命性十年”的大发展,底层算法以深度学习为核心。随着AI的大规模应用,AI技术已出现瓶颈。科学家与工程师们在现有技术框架下克服瓶颈,但却很难将其消除。算法层面,人工智能目前处于初级阶段,从被动感知向主动感知、认知和决策还需要技术全面提升;算力层面,人工智能对计算提出更高要求,当前的计算体系在成本、性能与能耗上均不堪重负。新十年,AI基础技术或再度跃迁。递归神经网络LSTM之父JürgenSchmidhuber在2020年就曾撰文指出,自然语言处理(NLP)、计算机视觉与强化学习是AI前十年的技术主线,下一个十年,量子计算、无监督学习、浅层学习网络与算力vs深度学习进展,被寄予厚望。量子计算如果能够取得突破性进展,AI将是另外一番景象:“自1975年摩尔定律提出以来一直颠扑不破,但近10年来我们的发展慢了下来。因此,很多人相信技术进步即将到来,很可能就是我们前文讨论的量子计算。这将有助于推动深度学习的重大进步。”我国已在战略布局下一代AI技术。十四五规划纲要指出,要瞄准人工智能、量子信息、集成电路、生命健康、脑科学、生物育种、空天科技、深地深海等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。2、智能云将成社会“水电煤”。越来越多企业意识到AI价值,然而AI技术门槛颇高,企业自行研发并不现实,也无必要。基于“云服务”模式,企业可快速基于云端AI技术能力开发AI应用。2020年底,IDC报告预测到2021年至少有65%的中国1000强企业将利用自然语言处理、机器学习和深度学习等AI工具,赋能60%在客户体验、安全、运营管理和采购等业务领域的用例。IDC在《中国人工智能云服务市场研究报告(2020H1)》报告中指出,企业智能化转型是驱动AICloud市场规模增长的重要因素,AI云服务厂商在整体AI软件及应用市场中将获得越来越高的市场份额。云计算巨头纷纷在名字中加入“智能”背后,反映出它们对AI云服务的日益重视。前十年,云计算是社会数字化基础设施;新十年,AI将成为云计算市场的一大增量,智能云则将成为智能社会的水电煤。3、服务机器人迎来黄金发展期。前十年,大规模爆发的AI应用却不多。在消费市场,智能音箱、智能汽车、智能家居等少数产品实现智能化并大规模销售;在行业市场,在防疫、教育、金融、物流等少数行业,AI开始逐步应用。新十年有望爆发式增长的AI应用则是服务机器人。服务机器人是指除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,主要包括个人/家庭用服务机器人和公共服务机器人。人口老龄化加剧、劳动力成本上升,服务机器人市场需求更加强劲。StrategyAnalytics数据显示,继2020年的年销量增长24%之后,服务机器人销量将在2021年加速增长31%。2020年Covid-19疫情推动服务机器人增长,它们帮助家庭清洁地板、陪伴孩子,帮助企业分拣送货,通过紫外光对环境进行消毒。疫情期间,服务机器人明星公司优必选的防疫机器人就在16个国家/地区被应用;华住旗下将近6000家酒店皆推行了无接触智能服务,酒店机器人每月送物超过20万次,成为疫情期间的一道亮丽“风景线”。《2020全球机器人统计报告》显示,全球专业服务机器人销售额增长32%,在2019年达到112亿美元。优必选科技创始人周剑提出,过去十年是服务机器人的10年储备期,未来10年则是黄金发展期,越来越多服务机器人解决方案将在垂直领域落地应用,“未来10年,也许会有一家万亿级的服务机器人公司出现。”服务机器人是我国AI战略的一部分,2017年12月《促进新一代人工智能产业发展三年行动计划(2018-2020年)》提出到2020年,智能家庭服务机器人、智能公共服务机器人实现批量生产及应用。前瞻产业研究院预测,我国服务机器人至2023年销量将超过50万台,销售额预计达277亿美元。4、AI进一步“下沉”到传统行业。前十年,AI在一些行业率先落地,主要集中在金融、教育、娱乐、信息等相对新兴的第三产业。新十年,AI则会进一步“下沉”到千行百业,包括制造业、医疗、养老业以及古老的农业。比如农业,互联网巨头纷纷布局“养猪”业务,落地数字农业战略。AI与IoT设备、农机、无人机、无人车等技术结合,可用于提高农作物产量、优化灌溉系统、保护农田、治理虫害、监测牲畜健康,提升农业效益。有数据显示,农业领域人工智能技术和解决方案方面的支出预计将从2020年的10亿美元增长到2026年的40亿美元。比如医疗,AI与生物科技、医疗科技等技术结合,将会对医疗健康产业产生深刻影响。DeepMind的AlphaFold应用深度学习技术在数十年来的蛋白质折叠生物学挑战中获得重大突破,科学家们用机器学习模型来学习化学分子的表示,以便制定更有效的化学合成计划;再比如养老,今年两会关注老人面临的数字鸿沟,科技企业界代表们纷纷建言献策,助老养老正是服务机器人的重点场景。中国老龄人口已有两亿六千万,老龄产业成为“一个巨大的朝阳产业”,康养养老行业均有大量服务机器人应用场景。在两会上,广东移动党委书记、董事长、总经理魏明表示,发展养老机器人产业既能有效破解养老资源紧缺问题,还能促进智慧养老产业蓬勃发展。优必选科技则对外透露其正在研发康养机器人及智慧康养解决方案,通过5G、物联网和人工智能技术,建设软硬一体化的智慧康养平台。在2020年的世界人工智能大会上,李彦宏有一个判断:AI发展会经历技术智能化、经济智能化、社会智能化三个历史阶段,他认为AI正处在“从经济智能化的前半段向后半段过渡的时期,具体表现在AI能力从逐步向平台化,正在朝向产业化方向演进。”现在看来,李彦宏的判断或许有些悲观,新十年,“社会智能化阶段”已全面来临。收割季,AI产业化依然面临三道老坎技术驱动的产业发展,一般都逃离不了高德纳(Gartner)的“技术成熟度曲线”模型(GartnerHypeCycle),该模型认为,一门技术的发展要经历五个阶段。启动期:概念,媒体有所报道,引起外界兴趣。泡沫期:个别成功案例,一些激进的公司开始跟进。媒体大肆报道,各种非理性的渲染。低谷期:该技术的局限和缺点逐步暴露,对它的兴趣开始减弱。基于它的产品,大部分被市场淘汰或者失败,只有那些找到早期用户的公司艰难地活了下来。爬升期:该技术的优缺点越来越明显,细节逐渐清晰,越来越多的人开始理解它。基于它的第二代和第三代产品出现,更多的企业开始尝试,可复制的成功使用模式出现。媒体重新认识它,业界这一次给予了高度的理性的关注。高原期:经过不断发展,该技术慢慢成为了主流。技术标准得到了清晰定义,使用起来越发方便好用,市场占有率越来越高,进入稳定应用阶段。配合它的工具和最佳实践,经过数代的演进,也变得非常成熟了。业界对它有了公认的一致的评价。AI一路走来,经历了最初被高度看好、泡沫化严重后被广泛唱衰,再到泡沫去掉后成熟稳健发展等阶段。今天AI进入高原期,成为主流技术,将被大规模应用。不过,AI产业依然有一些客观问题有待行业给出答案,这些问题都是老问题,只不过当下更加紧迫。第一个是AI商业化能力有待证明。AI创业公司最有名的当属“CV四兽”,即专注于机器视觉技术服务的四大独角兽公司:商汤、旷视、依图与云从。2020年旷视科技冲击港股IPO未果,3月12日再度冲刺科创板;此前不久依图与语音AI企业云知声IPO折戟,多家AI公司上市遇阻,核心原因在于商业化能力有待证明。《财经》披露的数据显示,商汤2019年营收超过50亿元,而云从和依图分别才刚刚超过8亿元、7亿元。2017年至2019年,旷视营收规模逐年增长,营业收入从3亿元增长至12.6亿元。这些AI独角兽公司都有一些共同特征:营收增长快但整体规模较小,但烧钱规模却很可观,大都已完成数亿甚至数十亿美元融资,却一直亏损,招股书显示,报告期内(2017年、2018年、2019年、2020年9月),旷视科技净亏损达到7.7亿元、28亿元、66.4亿元与28.5亿元,因此有媒体将它们称为“吞金兽”。不只是CV四兽。截至目前,不论是消费端的智能音箱/智能驾驶等AI产品,还是产业端的AI行业服务,普遍都存在“亏损换规模”的现状。对此,一方面,AI企业要积极探寻商业模式,在技术研发外对市场高度重视,强化现金流能力,让AI赚取真金白银,比如可以让AI深度融合场景,对产品做减法,从应用场景的单点和单应用切入,从单点产品到解决方案,再到面,不断壮大AI应用生态。AI企业也要从解决社会重大问题和满足社会重大需求进行突破;另一方面,投资者要给AI公司更多耐心,要有放长线钓大鱼的长期思维,毕竟AI大规模爆发时点才刚刚到来。市场已经证明AI不是技术泡沫,资本应该放宽心,给予AI创业者更多耐心。第二个是AI人才荒依然有待缓解。前些年AI快速爆发,导致AI人才一度供不应求,企业年薪百万招聘AI专业大学毕业生、高价挖角高校AI专家的新闻不少。后来,国家重视AI教育、高校开设AI专业、产学研共同培育AI人才,AI人才荒得到一定程度解决,仅仅是百度就宣称自己已给行业培养100万AI人才;优必选科技则宣称在全球40多个国家,有约150万名学生通过优必选科技学习人工智能。然而,AI人才供给依然跟不上AI产业化进程,新十年AI人才依然供不应求。高端AI人才依然稀缺,根据美国保森基金会旗下智库的统计显示,截至2019年底,全球顶尖AI人才中的近60%定居美国,在中国接受本科教育的顶尖AI人才占比最高,达到29%,就是说,很多中国AI人才出国深造后留在了美国工作,导致中国本土高端AI人才匮乏。中国是AI大国,但领英大数据却显示,中国顶级人工智能人才仅排第六名。细分领域AI人才同样短缺,比如服务机器人领域,AI人才荒更严峻,因为这是一个复杂系统,牵涉到多学科,厂商需求大量复合型技术人才、市场人才以及产品人才;应用场景则需要懂服务机器人和人工智能的人才。然而,复合型研发人才和应用人才太少,直接制约了产品研发和行业应用。2020年国内人工智能人才缺口达500多万,供需比例严重失衡。2021年加强人工智能人才,特别是高端人工智能人才、细分AI领域人才的培养,已迫在眉睫。第三个则是AI伦理问题变成燃眉之急。类似于AI换脸、“基于人脸识别的教室监控”这样的AI应用出现,让人们意识到,AI技术爆发,人类并未完全准备好。任何技术都是双刃剑,AI也不例外。AI技术会给网络欺诈提供便利,让“造假”变得更加容易,且难以辨别;AI技术会让很多人失业,尤其是重复性强的工作,比如收银、客服、监测、软件测试工程师;AI算法是被人训练出来的,人的偏见会被AI继承,比如性别歧视、种族歧视、地域歧视;AI技术被黑客掌握,黑客的攻击手段会全面升级。随着服务机器人、无人车等看得见、摸得着的AI应用爆发,AI伦理变得更重要。服务机器人在服务人类时,可能会跟人或者环境发生冲突/冲撞,责任该如何划分?无人车在马路上出现事故,责任又该如何划分?很多问题都有待解决。我们不能因噎废食限制AI发展,唯有AI伦理与法规双管齐下。AI伦理是人与机器以及AI时代人与人相处的道德准则,“阿莫西夫机器人三原则”就属于机器人伦理。除了道德准则外,法律法规也亟待完善,比如针对自动驾驶的法律法规正在形成。亚马逊、微软、谷歌、IBM、Facebook、苹果等公司已联合成立非营利性人工智能合作组织以解决AI伦理问题;2017年微软在内部成立人工智能伦理委员会(AETHER);2018年Facebook宣布已成立专门伦理团队防止人工智能的偏见。国内,百度李彦宏多次提交关于AI伦理的提案,2019年马化腾就指出“AI治理的紧迫性越来越高”,应以“科技向善”引领AI全方位治理,确保AI“可知”、“可控”、“可用”、“可靠”。我国监管部门则从顶层设计上决定了AI伦理的规范和执行。2019年6月国家新一代人工智能治理专业委员会发布报告,提出发展“负责任的人工智能”,这是我国首次发布人工智能治理原则,当年7月24日,《国家科技伦理委员会组建方案》被通过,根据《国家科技伦理委员会组建方案》要求,组建国家科技伦理委员会,会议指出:科技伦理是科技活动必须遵守的价值准则。AI新十年来临,我们有理由相信,智慧的人类既可以发展利用AI,让AI给国家、社会、企业与人民创造更多价值,也一定可以驾驭AI,与AI和平共处。本文为专栏作者授权创业邦发表,版权归原作者所有。文章系作者个人观点,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系editor@cyzone.cn。人工智能发展历程及未来发展趋势
4
低迷发展期:20世纪80年代中—90年代中
随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
5
稳步发展期:20世纪90年代中—2010年
由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化
6
蓬勃发展期:2011年至今
随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长新高潮
02
人工智能发展现状
全球各国充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷着重发展,抢滩布局人工智能创新生态。
国际形势
世界主要发达国家把发展人工智能作为提升国家竞争力,维护国家安全的重大战略,各国人工智能战略与政策各有着重点。
2013年以来,美、德、英、法、日、中等国都纷纷出台人工智能战略和政策。各国人工智能战略各有侧重,美国重视人工智能对经济发展、科技领先和国家安全的影响;欧盟国家关注人工智能带来的安全、隐私、尊严等方面的伦理风险;日本希望人工智能推进其超智能社会的建设;中国人工智能政策聚焦于实现人工智能领域的产业化,助力中国的制造强国战略。
因各国科学技术水平和实际国情存在重大差异,因此各个国家人工智能政策在研发重点和重点应用领域存在极大不同。
国内形势
近年来,中国人工智能产业发展迅速,语音识别和计算机视觉成为国内人工智能市场最成熟的两个领域。自2015年开始,中国人工智能产业规模逐年上升,据中国信通院数据,2015年到2018年复合平均增长率为54.6%,高于全球平均水平(约36%)。
下面从多个方面描绘中国人工智能的发展面貌:
01
论文产出:中国人工智能论文总量和高被引论文数均世界第一,人工智能领域论文的全球占比从1997年4.26%增长至2017年的27.68%,遥遥领先其他国家;高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国的高被引论文呈现出快速增长趋势,并在2013年超过美国成为世界第一
02
专利申请:中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的74%。专利技术集中在数据处理系统和数字信息传输等领域,其中图像处理分析的相关专利占总发明件数的16%。电力工程也已成为中国人工智能专利布局的重要领域
03
人才投入:中国人工智能人才总量居世界第二,但是杰出人才占比偏低。截至2017年,中国的人工智能人才拥有量达到18232人,占世界总量的8.9%,仅次于美国(13.9%);高校和科研机构是人工智能人才的主要载体。但按高H因子(又称H指数,用于评价科学家的科研绩效)衡量的中国杰出人才只有977人,不及美国的五分之一,排名世界第六
04
企业规模:中国人工智能企业数量为全球第二,北京是全球人工智能企业最集中的城市。截至2018年6月,全球共监测到人工智能企业总数达4925家,其中美国人工智能企业数2028家,位列全球第一
05
风险投资:中国已成为全球人工智能投融资规模最大的国家;根据2013年到2018年第一季度全球的投融资数据,中国已在人工智能融资规模上超越美国成为全球最“吸金”国家,但是在投融资笔数上,美国仍然在全球处于领先地位
06
产品应用:中国人工智能市场增长迅速,计算机视觉市场规模最大;应用范围广泛,语音和视觉类产品最为成熟。伴随着算法、算力的不断演进和提升,基于语音、自然语言处理和视觉技术,有越来越多的应用和产品落地
03
人工智能发展趋势
人工智能总体将向着规模化、安全化、健康化趋势发展;从全球层面来看,新一代人工智能产业将呈现四个发展趋势。
产业规模趋势
各国政府和产业界投入日益增长,人工智能技术的进一步成熟将带来更多的新产品、新服务,人工智能驱动的自动化将提升全要素生产率增长,产业规模将爆发式增长。
国际竞争趋势
近年来,世界各国紧密出台人工智能规划、政策和投资计划,从国家战略层面强化人工智能布局,在新一轮国际科技竞争将展现出新局面。中国未来将更加深度参与全球人工智能产业合作竞争,成为人工智能的重要推动者。
技术趋势
类脑智能蓄势待发,目前已有多国开始了“脑科学研究”;量子智能也将加快孕育,已成为全球公认下一代计算技术,将为人工智能带来革命性发展机遇。
风险趋势
随着人工智能逐渐普惠社会,人工智能安全风险和社会治理等问题将逐步提上日程。
亿欧智库发布“2018年中国人工智能产业发展城市排行榜”,从城市的企业规模、政策基础、学术基础、产业基础、资本环境五个层面测评城市发展人工智能的实力和前景
北上深杭牢牢占据AI城市实力第一梯队的位置,其他城市在企业规模、资本环境等方面远不及第一梯队城市,但已处于起步发展阶段,在AI商用化阶段有机会快速提升自身实力。返回搜狐,查看更多