博舍

人工智能是从什么时候开始发展的AI的起源 人工智能诞生在什么时期开始

人工智能是从什么时候开始发展的AI的起源

如今人工智能已然成为香饽饽,在各行业都开始得到应用。然而大家可能不知道的是,人工智能并非近些年才兴起的,它经历了两次低谷和三次崛起,才发展成当下热门的技术。因此人工智能简史其实也是看做一段励志的崛起史。

人工智能的起源:

人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MITAILAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。

人工智能的第一次高峰在1956年的这次会议之后,人工智能迎来了属于它的第一段HappyTime。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”

人工智能第一次低谷:70年代,人工智能进入了一段痛苦而艰难岁月。由于科研人员在人工智能的研究中对项目难度预估不足,不仅导致与美国国防高级研究计划署的合作计划失败,还让大家对人工智能的前景蒙上了一层阴影。与此同时,社会舆论的压力也开始慢慢压向人工智能这边,导致很多研究经费被转移到了其他项目上。

在当时,人工智能面临的技术瓶颈主要是三个方面,第一,计算机性能不足,导致早期很多程序无法在人工智能领域得到应用;第二,问题的复杂性,早期人工智能程序主要是解决特定的问题,因为特定的问题对象少,复杂性低,可一旦问题上升维度,程序立马就不堪重负了;第三,数据量严重缺失,在当时不可能找到足够大的数据库来支撑程序进行深度学习,这很容易导致机器无法读取足够量的数据进行智能化。

因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

人工智能的崛起1980年,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。这是一种,采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。这套系统在1986年之前能为公司每年节省下来超过四千美元经费。有了这种商业模式后,衍生出了像Symbolics、LispMachines等和IntelliCorp、Aion等这样的硬件,软件公司。在这个时期,仅专家系统产业的价值就高达5亿美元。

人工智能第二次低谷:可怜的是,命运的车轮再一次碾过人工智能,让其回到原点。仅仅在维持了7年之后,这个曾经轰动一时的人工智能系统就宣告结束历史进程。到1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。

人工智能再次崛起:上世纪九十年代中期开始,随着AI技术尤其是神经网络技术的逐步发展,以及人们对AI开始抱有客观理性的认知,人工智能技术开始进入平稳发展时期。1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个重要里程。

2006年,Hinton在神经网络的深度学习领域取得突破,人类又一次看到机器赶超人类的希望,也是标志性的技术进步。

2016年,Google的AlphaGo赢了韩国棋手李世石,再度引发AI热潮。

AI不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从70年代personal计算机的兴起到2010年GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。

同时,互联网及移动互联网的发展也带来了一系列数据能力,使人工智能能力得以提高。而且,运算能力也从传统的以CPU为主导到以GPU为主导,这对AI有很大变革。算法技术的更新助力于人工智能的兴起,最早期的算法一般是传统的统计算法,如80年代的神经网络,90年代的浅层,2000年左右的SBM、Boosting、convex的methods等等。随着数据量增大,计算能力变强,深度学习的影响也越来越大。2011年之后,深度学习的兴起,带动了现今人工智能发展的高潮。

人工智能从两次低谷到三次崛起充分证明了,是金子总会发光。也许当时的技术还不足以支撑人工智能这个想法的实现,但是通过历代IT人的努力,属于人工智能的时代终究是来了。这次,人工智能的浪潮终将把你我卷入其中,让我们张开双手,去拥抱这一天吧!

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面展示部分截图,点击此处免费下载文中资料。

一、人工智能课程及项目

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

有需要的小伙伴,点击此处免费下载文中资料。

人工智能的起源

原标题:人工智能的起源

人工智能(ArtificialIntelligence),英文缩写为AI,是一门由计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性新学科。自问世以来AI经过波波折折,但终于作为一门边缘新学科得到世界的承认并且日益引起人们的兴趣和关注。不仅许多其他学科开始引入或借用AI技术,而且AI中的专家系统、自然语言处理和图象识别已成为新兴的知识产业的三大突破口。

人工智能的思想萌芽可以追溯到十七世纪的帕斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德.摩尔根提出了“思维定律“,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器“,它被认为是计算机硬件,也是人工智能硬件的前身。电子计算机的问世,使人工智能的研究真正成为可能。

作为一门学科,人工智能于1956年问世,是由“人工智能之父“McCarthy及一批数学家、信息学家、心理学家、神经生理学家、计算机科学家在Dartmouth大学召开的会议上,首次提出。对人工智能的研究,由于研究角度的不同,形成了不同的研究学派。这就是:符号主义学派、连接主义学派和行为主义学派。

传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。主要工作是“通用问题求解程序“(GeneralProblemSolver,GPS):通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。

连接主义学派是从人的大脑神经系统结构出发,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,研究大量简单的神经元的集团信息处理能力及其动态行为。人们也称之为神经计算。研究重点是侧重于模拟和实现人的认识过程中的感觉、知觉过程、形象思维、分布式记忆和自学习、自组织过程。

行为主义学派是从行为心理学出发,认为智能只是在与环境的交互作用中表现出来。

人工智能的研究经历了以下几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮

DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展

展开全文

日本1982年开始了“第五代计算机研制计划“,即“知识信息处理计算机系统KIPS“,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

IBM公司“深蓝“电脑击败了人类的世界国际象棋冠军,美国制定了以多Agent系统应用为重要研究内容的信息高速公路计划,基于Agent技术的Softbot(软机器人)在软件领域和网络搜索引擎中得到了充分应用,同时,美国Sandia实验室建立了国际上最庞大的“虚拟现实“实验室,拟通过数据头盔和数据手套实现更友好的人机交互,建立更好的智能用户接口。图像处理和图像识别,声音处理和声音识别取得了较好的发展,IBM公司推出了ViaVoice声音识别软件,以使声音作为重要的信息输入媒体。国际各大计算机公司又开始将“人工智能“作为其研究内容。人们普遍认为,计算机将会向网络化、智能化、并行化方向发展。二十一世纪的信息技术领域将会以智能信息处理为中心。

目前人工智能主要研究内容是:分布式人工智能与多智能主体系统、人工思维模型、知识系统(包括专家系统、知识库系统和智能决策系统)、知识发现与数据挖掘(从大量的、不完全的、模糊的、有噪声的数据中挖掘出对我们有用的知识)、遗传与演化计算(通过对生物遗传与进化理论的模拟,揭示出人的智能进化规律)、人工生命(通过构造简单的人工生命系统(如:机器虫)并观察其行为,探讨初级智能的奥秘)、人工智能应用(如:模糊控制、智能大厦、智能人机接口、智能机器人等)等等。

人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。未来人工智能的研究方向主要有:人工智能理论、机器学习模型和理论、不精确知识表示及其推理、常识知识及其推理、人工思维模型、智能人机接口、多智能主体系统、知识发现与知识获取、人工智能应用基础等。返回搜狐,查看更多

责任编辑:

国内和国际人工智能起源于什么时候

导读:人工智能诞生至今,已有几十年的发展历史,经过几十年的发展,人工智能已广泛渗透到人们生活的经济、政治、文化、社会和生态发展的各个领域,为实现人工智能时代美好生活创造条件。了解人工智能发展历史,有助于理解人工智能时代人们美好生活追求的向往,...

人工智能诞生至今,已有几十年的发展历史,经过几十年的发展,人工智能已广泛渗透到人们生活的经济、政治、文化、社会和生态发展的各个领域,为实现人工智能时代美好生活创造条件。了解人工智能发展历史,有助于理解人工智能时代人们美好生活追求的向往,为人工智能时代实现人类美好生活提供追寻目标。

一、人工智能发展概述

1.国外人工智能研究

人工智能技术的发展具有革命性的历史意义,它极大地解放了人类的体力和智力劳动,使社会得以持续性地革新。1956年,美国学者JohnMcCarthy等人在一次学术会议上,首次提出人工智能一词。此后,国外学者开始兴起“人工智能”研究热潮,国外人工智能研究逐渐进入实质性的操作阶段,大致经历人工智能研究的早期、低谷期和高速发展期,人工智能的影响力逐步扩大,受到社会各界的广泛关注与肯定。

20世界50年代末至70年代初,人工智能在推理证明的发展又取得了进一步的进展,如JohnMcCarthy提出的构建属于人工智能的语言,纽厄尔等人的发表了GPS等问题数学求解程序等,推动了国际上人工智能研究领域第一次高潮的出现。但紧接着,人们却在人机翻译和语音识别等领域遭遇了不小的挫折,导致人工智能领域多年没有实质性突破和进展,因此,20世界70年代,该领域的研究逐渐转冷。

直至20世纪80年代,人们将知识系统引入人工智能领域,人工智能研究出现了新的高潮。在近几年的发展中,人工智能在文本翻译、语言识别、计算机视觉、强化学习等方面取得了新的发展,如人们日常所用的小孩早教智能机器人、扫地机器人、语音文字转换器、文字识别装置、人脸识别、指纹识别等都是人工智能在文本翻译、语音识别等方面的应用。

目前,经济学、计算机科学、伦理学、哲学等都密切关注着人工智能技术的发展,带来了人工智能发展史上新的飞跃。人工智能的发展是技术革命的结果,人工智能的发展反过来又会促进技术的发展,二者相互影响,共同推动人类美好生活的实现。人工智能技术的应用已经渗透到经济、政治、文化和社会等各个方面。

人工智能给经济带来的效益不言而喻,智能机器给经济的发展节约了大量的人力、物力和财力。如智能交通灯,既省电,不用人每天进行操作;智能城市、智能社区建设给人们的社会生活影响巨大,为人们营造了一个生存和发展的舒适空间,改变着人们的生产生活方式和思维方式,影响着人的发展。

人工智能的研究发展经历了早期、低谷期和高速发展期,人工智能技术在机器感知、机器思维、学习和行为、智能系统和智能机器人等方面取得了显著的成绩,形成了符号主义、连接主义和行为主义三大派别。

目前,人工智能可以代替人类的简单劳动,在日常生活中,人工智能成为人类解决问题的重要工具。在许多领域人工智能已经呈现趋于完美的智能载体。人工智能技术的应用,使得人们的体力劳动和简单的脑力劳动得到解放,人类有了更多自由安排的时间与空间。

2.人工智能在中国的发展历程

我国人工智能研究起步相对较晚,20世纪70年代末我国逐步开始人工智能的研究。我国人工智能研究大致经历起步期(20世纪70年代末至80年代)、稳步发展期(20世纪90年代至2015年)和高速发展期(2016年至今)三个研究阶段。

我国从20世纪70年代末开始研究人工智能,如陈步在《人工智能问题的哲学探讨》中对人脑的模拟方法和模拟对象的人脑进行探讨,丁珍珠围绕人工智能和人类智能进行了初步分析。从此人工智能研究开始慢慢兴起,1981年成立了中国人工智能学会,1986年我国政府开始正式将智能机器人、智能计算机体系等项目列入国家高、精、尖技术开发研究计划。

1993年,将智能自动化和智能控制等项目列入国家系统,我国的人工智能研究开始进入稳定发展阶段,这一阶段学界对人工智能的研究主要集中于计算机专家系统、定理证明、机器人、机器人伦理等各个领域,并取得一些研究成果,但是尚未形成完整的体系。

2006年,计算机浪潮天梭战胜了五名特级象棋大师,这是我国人工智能在人机博弈取得的重要成果。2015年,国务院颁布了《“互联网+”人工智能三年行动的实施方案》,在政府的支持下,服务机器人、智能医疗等智能产业快速兴起,全面提高了人民的生活水平和生活质量。2016年,以阿尔法狗战胜李世石为标志,我国人工智能研究进入高潮期。

人工智能成为哲学、伦理学、医学、法学等多学科的研究对象,很多研究机构和高校也陆续跟进,开设人工智能研究课程。经过几十年的发展,我国人工智能技术广泛应用于人们的日常生活,普及程度显著提高,人民的体力劳动和智力劳动得到一定程度的解放,智能控制多元化,智能开发呈现以尖端科学技术为主,以低端产品为辅的特点,社会向人工智能数字化社会转型。

二、人工智能发展对社会的作用

1.人工智能助力社会公平正义

随着人工智能技术的发展,数字化、信息化、网络化、智能化已经渗透到人类社会的各个领域。我们要把人工智能与人民的社会生活结合起来,解决人民群众关心的教育、医疗、养老等民生问题,实现人民对美好社会生活的向往。

第一,人工智能促进新型基础设施的发展与完善,提高人民群众的生活质量。以推荐算法、新型网络通信和数据中心为代表的人工智能信息基础设施,使人民群众普遍享受人工智能产品的服务。对水利、电网、燃气系统等传统基础社会的智能化改造,对司法、行政和城市进行智能化管理,有利于管理者和决策者借助人工智能实现快速反应、科学决策和精细管理,完善新型基础设施,提升人民群众的社会生活质量。

第二,“人工智能+…”服务体系,解决关系民生问题,提升公共服务质量。“人工智能+教育”“人工智能+医疗”“人工智能+健康”“互联网+智慧养老”等人工智能服务系统的广泛运用,将采集到的环境数据输送至“云端”,有利于借助数据分析,系统地解决人民群众关心的上学难、看病难、养老难等突出问题,切实改善和保障民生,不断提升公共服务质量,实现全民共享发展成果,使人们的社会生活更加美好。

第三,人工智能助力扶贫和社会资源分配,促进各种信息资源的相对公平化分配,解决当前的发展不平衡问题。利用人工智能助力贫困工作,对症施策,实现对贫困数据进行实时更新、随时查看和观测,精准研判,有效记录与评估,人工智能为扶贫工作的决策提供大量有效数据支持,同时还能有效推动扶贫工作的创新,从多渠道改善民生,解决发展不平衡不充分的社会问题,实现社会公共利益的均等化。

2.人工智能助力环境保护

人工智能以信息、智能的开发取代了对自然的掠夺,推动社会各方面健康可持续发展。在新兴的人工智能文明中,知识和信息成为人类社会发展的重要资源,数据湖、雾计算等概念从理论走向现实,生态文明建设获得人工智能技术的支持。利用人工智能驱动生态发展,有利于破解生态难题,重构环境治理模式,满足人们美好生活的环境向往。

第一,人工智能助力资源开发、配置和利用,有利于破解资源过度消耗与浪费的难题。自然界的生态平衡对人类实现美好生活有着直接影响,人工智能以对信息、智能的开发取代了对自然的掠夺,对破解过的消耗和浪费的难题,建设美丽中国,实现美好生活具有不可替代的作用。

第二,人工智能使环境治理手段多样化,有效提升环境治理能力。大数据、云计算、互联网、人工智能等先进技术手段的应用,有效提升了对环境信息的采集、分析与处理的能力。环境相关部门管理者可以及时捕捉环境的动态变化,并对环境风险进行提前预测和量化,可以科学有效地评估环境治理政策和措施实施的效果,及时优化环境治理解决方案,形成可持续的智能化环境治理机制。

三、总结

近年来,人工智能技术发展极大地解放了人类的体力和智力,为实现美好生活创造了有利条件。美好生活是人实现自由全面发展的一个重要方面。人工智能不管对社会的基础设施建设,还是环境的保护都有促进作用,未来人工智能也将在多个社会领域和各个学科中发挥更大的作用。

赞助本站

相关热词:国内国际人工智能起源于什么时候人工智能诞生至今

人工智能发展的三个热潮

随着AlphaGo和Master横扫棋坛,人工智能再次进入公众的视野。但追根溯源,人工智能并不是新鲜事物,早在1956年的达特茅斯会议被公认为是人工智能的起源。而50年后当年的会议者们重聚,看着照片中白发苍苍的人工智能开拓者与奠基者,不禁感慨万千。

20世纪50年代到60年代第一次热潮:理论的革新这是电子计算机刚刚诞生的时代,当时的计算机更多的被视为运算速度特别快的数学计算工具,图灵在思想上走到了所有研究者的最前沿,琢磨计算机是否能像人一样思考,即开始在理论高度思考“人工智能”的存在。1950年10月,艾伦图灵发表了一篇名为《计算机械和智能》的论文,提出了著名的图灵测试,影响深远,直到今天仍被计算机科学家乃至普罗大众所重视。以图灵测试为标志,数学证明系统,知识推理系统,专家系统等里程碑式的技术和应用在研究者中掀起了第一次热潮。在当时,人们对人工智能普遍持过分乐观的态度,人们认为看到了几年内计算机通过图灵测试的希望曙光。然而受到计算机性能和算法理论的局限,接踵而来的失败似乎渐渐消灭了人们的热情,人工智能的热度迅速消退。至2017年的今天,仍未有计算机真正意义上通过图灵测试。

20世纪80年代到90年代第二次热潮:思维的转变在第二次AI热潮中,语音识别是最具代表性的突破性进展之一,而这个突破依赖的是思维的转变。过去的语音识别更多的是专家系统,即根据的是语言学的知识,总结出语音和英文音素,再把每个字打开成音节与音素,让计算机用人类学习语言的方式来学习语言。在研发过程中,计算机工程师与科学家围绕着语言学家进行工作。而新的方法是基于数据的统计建模,抛弃了模仿人类思维方式总结思维规则的老路,研发过程中没有或极少语言学家的参与,更多的是计算机科学家与数学家的合作。这其中的转变看似容易,其实面临着人类既有观念和经验的极大阻力。最终,专家系统寿终正寝,基于数据统计模型的思想开始广泛传播。

事实证明,计算机的“思维”方法与人类的思维方法之间,似乎存在着非常微妙的差异,以至于在计算机科学的实践中,越是抛弃人类既有的经验知识,依赖于问题本身的数据特征,越是容易得到更好的结果。——李开复

2006年至今第三次热潮:技术的融合今天的人工智能研究中,深度学习无人不谈,无人不识。从知名的AlphaGo,到不那么知名但在2014年ImageNet竞赛中第一次超越人眼的图像识别算法,都是深度学习的产物。从根本上说,深度学习是一种用数学模型对真实世界中的特定问题进行建模,以解决该领域内相似问题的过程。但不为人所知的是,深度学习的历史几乎和人工智能一样长,只是一直默默无闻,直到它等到了时代的机遇。首先,计算机的计算性能和处理能力大幅提高。符合摩尔定律而指数级增长的计算机性能最终跨过了门槛。其次,互联网的蓬勃发展为搜索引擎等公司带来了高质量的大数据。并且正是因计算机性能的提高人们得以储存和利用这些数据。可以说在第三次热潮中,深度学习+大规模计算+大数据=人工智能

看到这里,似乎三次热潮只是如同下图所示:在一次又一次的震荡中往复。

然而事实或许并非如此,可能我们已经走到了从量变到质变的风口。

这条曲线概括了绝大多数高新技术的发展历程。我们很可能正处于第四个阶段。第三次热潮仍未结束。

第三次热潮有何不同?对比:前两次:学术研究主导市场宣传层面学术界在劝说和游说政府和投资人投钱更多的是提出问题第三次:商业需求主导商业模式层面投资人主动向热点领域的学术和创业项目投钱更多的是解决问题

如今的人工智能可以说真正和产业相结合,走进了人们的日常生活当中。搜索引擎的背后是以深度学习为基础的算法;美图秀秀的背后是机器视觉和AI艺术的结合;网络地图的背后是AI对大数据的挖掘和处理;……

今天的人工智能,是有用的人工智能。——李开复《人工智能》

最后以维基百科使用的综合定义作结:AI就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。

人工智能的三次浪潮与三种模式

■史爱武

谈到人工智能,人工智能的定义到底是什么?

达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。

百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。

2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

人工智能的三次浪潮

自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。

第一次浪潮(1956-1976年,20年),最核心的是逻辑主义

逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。

早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。

在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。

虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。

第二次浪潮(1976—2006年,30年),联结主义盛行

在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。

在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。

这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。

第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破

如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。

若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。

经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。

为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。

伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。

深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。

深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。

人工智能的3种模式

人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。

(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。

(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。

(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。

我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!

医学人工智能的发展

强大的医疗健康需求、丰厚的数据技术积累,让“AI+医疗”一直以来备受各界关注。

人工智能是当今科技界最热门的领域,而医学人工智能更是热门中的热门。谷歌、微软、IBM、百度等科技巨头都积极布局智能医疗产业,美国麻省理工学院、斯坦福大学、卡内基梅隆大学以及我国的清华大学等知名学府均把医学人工智能作为未来发展重点,美国、中国、日本、英国等世界各国人工智能计划也都把医疗作为重要的应用领域。

专家系统与智能诊断

专家系统(ExpertSystem,ES)是人工智能一个重要的分支学科,是一种根据专家专业知识和工作经验,用于求解专门问题的计算机系统。医疗诊断正是一项典型的专家任务。因此,医学专家系统是应用较早、使用广泛、卓有成效的人工智能技术。

●专家系统的发展

专家系统的发展曾红极一时,如今却沉寂无闻。专家系统一般包含6个部分:知识库、数据库、推理机、用户交互层、解释器和知识获取模块,因需求的不同而具有不同的结构。其中,知识库和推理机是系统结构的核心部分。知识库是将专家的知识准确、简明、有效地转换成机器理解的语言,常用的方法主要有产生式表示法、框架表示法和语义网络表示法。推理机是专家系统的“思考”结构,通过模拟专家思维过程进行问题求解,主要方式分正向推理、反向推理以及正反向混合推理。

专家系统技术上经历了孕育、产生、成熟和发展等4个阶段。1956年,美国达特摩斯(Dartmouth)学术会议召开,“人工智能(ArtificialIntelligence)”术语首次采用,标志着人工智能学科正式诞生。其后,人工智能分别在3个方向上迅速得到发展:一是机器思维,如机器证明、机器学习等启发程序,以及化学分析、医疗诊断等专家系统;二是机器感知,如机器视觉、机器听觉等文字、图像识别、自然语言理解,以及感知机、神经网络等;三是机器行为,如具有自学习、自适应、自组织特性的智能控制系统、控制论动物和智能机器人。1965年,美国斯坦福大学计算机科学家费根鲍姆(EdwardFeigenbaum)开始研制世界上第一个用于推断化学分子结构的专家系统DENDRAL,标志着人工智能学科中“专家系统”分支学科即将孕育而生。1968年,DENDRAL成功问世开启人工智能一个新的分支“专家系统”。

20世纪70年代,专家系统技术已经成熟,并广泛用于其他领域。斯坦福大学的肖特利夫(EdwardH.Shortliffe)等人自1971年开始。1976年完成了第一个用于血液感染病的诊断、治疗和咨询服务的医疗专家系统MYCIN。斯坦福研究所的杜达(RichardO.Duda)等人自1976年开始。1981年完成地质勘探专家系统PROSPECTOR。1977年,费根鲍姆提出“知识工程”概念,大大推动了基于知识的专家系统及其开发工具的发展,如骨架型专家系统开发工作EMYCN、KAS等,知识获取辅助工具TEIRESIES、SEEK等,通用知识表达语言LISP、PROLOG等。

20世纪80年代,专家系统开始走出实验室进入市场。1981年,英国赫特福德大学教授克洛克森(WilliamF.Clocksin)出版了《PROLOG语言编程》。1982年,第一个商用专家系统R1在数据设备公司(DEC)成功运行。1983年,美国斯坦福大学教授海斯罗思(BarbaraHayes-Roth)出版了《建立专家系统》。1985年,美国加利福尼亚大学教授哈蒙(PaulHarmon)出版了《专家系统:人工智能业务》。据统计,差不多1星期就会有一个这方面的公司诞生,专家系统及其工具在越来越商品化的过程中形成一门旨在生产和加工知识的知识产业,专家系统迎来了自己的“黄金时代”。

但是,由于专家系统应用领域过于狭窄,知识获取“瓶颈”和不确定性常识推理等困难,20世纪80年代后期商业需求锐减,以专家系统所代表的人工智能迎来历史最寒冷的“冬天”。20世纪90年代,专家系统开始进入缓慢发展时期,研究转向了与知识工程、模糊技术、实时操作技术、神经网络技术和数据库技术等相结合的发展方向。

●专家系统在医学领域的应用

医学一直是专家系统应用最有效的领域。人工智能几乎一诞生就应用于医学领域。1954年,美国华人科学家钱家其就使用计算机计算剂量分布、进行放射治疗。1959年,美国乔治敦大学教授莱德利(RobertS.Ledley)首次应用布尔代数和贝叶斯定理建立了计算机诊断的数学模型,并成功诊断了一组肺癌病例,开创了计算机辅助诊断的先河。1966年,莱德利正式提出了“计算机辅助诊断”的概念(ComputerAidedDiagnosis,CAD)。1968年,DENDRAL专家系统诞生。不久,MYCIN医学专家系统就研制成功。该系统首次采用知识库、推理机系统结构,引入“可信度”概念,进行非确定性推理,对用户咨询提问进行解释回答,并给出答案的可信度估计,形成了一整套专家系统的开发理论,为其他专家系统的研究与开发提供了范例和经验。

其后,医学专家系统逐渐成为医学领域内的一个重要分支领域,并在20世纪80年代达到高潮,出现了大量的综合医学专家系统。1977年,美国拉特格尔斯大学的韦斯(SholomWeiss)等人最早提出一个专家系统可用于多个领域,并把开发出的专家系统命名为CASNET,用于治疗青光眼疾病。1982年,美国匹兹堡大学的米勒(RandolphA.Miller)等人发明了著名的Internist-I内科计算机辅助诊断系统,其知识库包括了572种疾病,约4500种症状,以及10万种疾病与疾病表现之间的联系,拥有当时最大知识库。1991年,美国哈佛医学院的巴尼特(OctoBarnett)研制了DXplain软件,包含了2200种疾病和5000种症状。

20世纪90年代,医学专家系统逐步发展成为针对某一种或一类的疾病的专项专家系统。1990年,美国南伊利诺伊大学的乌姆博(ScottE.Umbaugh)开发的皮肤癌辅助诊断系统,使用自动感应工具产生规则来确定多变的皮肤颜色。1993年,美国哈佛医学院的研究人员构建了动态影响图的实时系统,用于诊断急性腹痛疾病。1994年,英国普利茅斯医学院的基思(RobertD.F.Keith)采用人工神经网络技术开发了智能胎心率宫缩描记图(Car-diotocography,CTG)计算机辅助分析系统,获得满意的效果。1995年,美国俄勒冈健康与科学大学伯恩多夫(NormanI.Birndorf)等人将规则和人工神经网络理论相结合,构建一个混合的专家系统用于评估小红血细胞性贫血疾病。1996年,美国巴特勒大学的林恩(LynnLing)建立了一个典型的艾滋病专家诊断系统。这些专家系统促进了医学科学的发展。进入21世纪后,专家系统进展缓慢,医学专家系统取得的成果也不多。

我国医学专家系统研究始于20世纪70年代末期。1978年,北京中医医院的关幼波与电子计算机室的科研人员,根据自己的辨证施治经验,研发出肝病诊疗程序,在国内率先把中医学与电子计算机技术结合起来,开创了我国第一个医学专家系统。1981年,中国科学院成都计算机应用研究所和成都中医学院共同研制成功了中医痹症计算机诊疗系统,完全符合率达96.88%。但是,以上两个系统没有明确的知识库和推理机概念,更多的是直接模拟诊断,缺乏灵活性。

20世纪80年代,专家系统在中医领域得到迅速的推广。1982年,宇文贤设计实现了基于滋养细胞疾病的诊治的一种计算机诊断医疗专家咨询系统。1983年,张志华利用计算机辅助实现基于医学上常见的盆腔子宫内膜异位症的诊断。此后,各种名称的中医专家系统如雨后春笋般涌现,达到鼎盛时期,据统计有140多个。

20世纪90年代,我国专家系统应用进入西医领域,发展渐缓。1990年,华西医科大学口腔医学院的魏世成等人开发出颞颌关节紊乱综合征专家系统。1997年,李雪荣等组建了一个儿童心理障碍标准化诊断与治疗的人工智能专家系统。1998年,张玉璞设计并实现了基于波形分析的心血管疾病诊断的专家系统。2000年,哈尔滨工程大学的刘长征等人研发神经内科疾病诊断与治疗专家系统,用于神经内科疾病诊断与治疗。2001年,南京大学生物医学物理研究所与江苏省人民医院的石晓东、仲远明等研发耳穴信息智能识别系统,通过识别人体耳穴电学特征量筛检上消化道癌。2002年,武汉理工大学的吴钊等人研发了模糊口腔癌症诊疗专家系统,用于口腔癌症诊断与治疗。2003年,山西医科大学的吕晓燕、郭建军等研发了胃癌诊断专家系统,用于胃癌的临床诊断。2005年,中国科学院沈阳自动化研究所与中国科学院研究生院的曾文、刘尚辉等人开发了结核病诊断专家系统。2006年,山西医科大学与中北大学的葛学军、李冰等人开发了口腔牙周病诊断专家系统,集合口腔牙科专家知识,用于口腔牙周疾病诊断。2008年,深圳市人民医院开发出了用于对于人体血气中酸碱度的检测分析计算机辅助专家系统。至此,短短30年,除西藏、宁夏、海南、香港、澳门之外,我国其他29个省区市都先后开展或涉足了中医专家系统的研究,开发了多种多样多功能的医学辅助诊断治疗系统,先后研制出220个中医专家系统和开发工具。但是,真正能够为医生所接受并且投入临床使用的医学专家系统少之又少。

机器学习与智能影像

机器学习与专家系统一样,都是人工智能机器思维研究进路的一个分支,主要是模仿人类学习的思维过程而实现自主学习,并做出判断与决策。医学影像数据的日益丰富、医学影像人员的极端匮乏以及数据分析的单调枯燥,使医学影像成为人工智能最热门的方向之一。

●机器学习的发展

机器学习的发展几经沉浮、如今再成热点。逻辑推理和类比联想是人类学习性思维的典型特点。模拟人的思维进行自主学习成为人工智能专家一直努力的方向。1949年,加拿大心理学家赫布(DonaldHebb)在其著作《行为的组织》中首次提出了基于神经心理的学习理论,标志着机器学习领域迈出了第一步。1952年,被誉为“机器学习之父”的塞缪尔(ArthurSamuel)设计了一款西洋跳棋程序,通过模拟塞缪尔本人及其他高手的下棋策略与方法,积累经验和教训,向高明的对手或通过棋谱进行学习,不断提高人工智能水平,终于在1959年击败了它的设计者,并在1962年战胜了美国一个州的跳棋冠军,在世界上引起了不小的轰动。1957年,美国康奈尔航空实验室的罗森布拉特(FrankRosenblatt)利用赫布理论模拟人脑的运作方式,创造了“感知机(Perceptron)”,能够进行简单的文字、图像和声音识别。感知机在20世纪60年代初期曾经盛行一时,据估计至少有近百个研究机构和公司从事感知机的研究与开发工作。

然而,无论是以“跳棋程序”为代表的逻辑符号主义学派,还是以“感知机”为代表的神经联结主义学派,都遇到了各自的技术瓶颈,并受到电子技术水平的限制,不仅使机器学习止步不前,而且使人工智能在20世纪60年代中期至70年末遭遇了第一次寒冬。感知机最大的问题就是对复杂图像的感知能力低、对非线性分类识别问题缺乏有效学习方法。1986年,美国科学家鲁姆哈特(DavidRumelhart)和维伯斯(PaulWerbos)研制出被称为“反向传播”神经网络(BackPropagation,BP)的多层感知机,解决了非线性感知与复杂模式识别的问题,给机器学习带来了新的希望,掀起了基于统计模型的机器学习热潮。

到了20世纪90年代,以BP为代表的浅层学习算法模型进入了黄金时代,各种各样的学习模型被相继提出,并得到实际运用。1990年,美国计算机科学家夏皮雷(RobertE.Schapire)最先构造出一种多项式级的Boosting框架算法。1995,俄罗斯统计学家瓦皮尼科(VladimirVapnik)和丹麦计算机科学家科尔特斯(CorinnaCortes)提出支持向量机算法(SupportVectorMachines,SVM)。1997年,IBM公司的超级计算机深蓝(DeepBlue)战胜堪称国际象棋棋坛神话的加里?卡斯帕罗夫,震惊世界。2001年,美国统计学家布赖曼(LeoBreiman)提出决策树模型(RandomForests,RF)。但是,BP算法也存在着随着神经网络层数的增加而梯度逐渐消失的严重缺陷。2006年,“神经网络之父”欣顿(GeoffreyHinton)提出神经网络深度学习(DeepLearning)算法,解决了这一问题,使图像、视频、语音和音频的处理带来了突破,引燃了深度学习在学术界和工业界的浪潮。2011年,微软公司首次将深度学习方法应用在语音识别领域中,取得了较好的效果。2012年,谷歌的X实验室开发了一种机器学习算法,可以自动浏览和找到包含猫的视频。2014年,Facebook公司开发了一种名为DeepFace的算法,能够识别或验证照片中的个人,其准确度与人类相当。2016年,谷歌旗下的DeepMind公司基于深度学习的算法开发研制了AlphaGo程序,战胜了围棋冠军李世石,掀起了机器学习发展和应用的浪潮。

●AI与医学影像的结合

AI与医学影像的结合起步很早却难有大的突破。医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。自第一张X光片出现后,随着20世纪科学技术的发展,逐渐形成了以X射线、CT、磁共振成像、超声和核医学等为代表的多种医学影像技术设备,成为医疗绝大多数数据的来源。

人工处理的困难与枯燥,使人们很早就想利用AI解决这些问题。1963年,美国放射学家洛德威克(GwilymS.Lodwick)等人提出X光片数字化的方法。1966年,莱德利正式提出了“计算机辅助诊断”的概念(CAD),希望通过计算机来减轻医生的工作负担。1972年,CT的临床使用开创了医学影像数字化的先河。之后,MRI、CR、DR、ECT等数字化医疗设备的产生,推动了医学图像资料的存储、传输系统(PictureArchivingandCommunicationSystem,PACS)的发展。因此,1982年,美国放射学会(ACR)和电气制造商协会(NEMA)决定共同成立一个称为ACR-NEMA的委员会,致力于制订医学影像设备间共同的通信交流规范。1985年和1988年,ACR-NEMA发布了两套规范(ACR-NEMA1.0和ACR-NEMA2.0),并于1993年发布了一套统一的规范,正式命名为DICOM3.0,详细地规定了医学图像及其相关信息的传输协议。

虽然图像存储与传输标准有所发展,但是AI与医学影像的结合仍然困难重重。例如,医学专家系统在诞生后,虽然在20世纪80年代红极一时,但一直难于应用在医学影像领域。造成AI与医学影像难以结合的主要原因是视觉系统成像模糊、人体组织结构或功能的复杂性及传统算法的局限性。2006年,深度算法的出现为图像识别带来突破性的进展。2012年,欣顿使用多层卷积神经网络结构,将图像识别错误率突破性地从26.2%降低到了3%,让深度机器学习进入工业和医疗的领域。2014年,国际知名的医学影像公司Enlitic成立,并开发出从X光照片和CT扫描图像识别恶性肿瘤的软件。2015年,美国西奈山医院使用的一种名为DeepPatient的AI技术,分析该院70万名患者的病历数据,表现十分优异。2017年,美国食品药品管理局(FDA)批准了第一款心脏磁共振成像人工智能分析软件CardioDL。2018年,FDA批准了全球第一款人工智能医疗设备IDx-DR。目前,中国有超过100家医疗人工智能公司,其中约有40家企业属于医学影像AI公司,近千家医院部署的人工智能系统中超过一半是医学影像人工智能系统。

智能机器人与智慧医疗

智能机器人是指具有视、听、触等机器感觉,行动、规划、决策等机器思维,机械手、脚的智能控制结构的机器人,是人工智能的又一个重要研究方向。作为一种新型的人工智能技术,会对整个医疗行业产生深远影响。

●机器人的技术发展

机器人从技术成长的视角看可分为3代:第一代为示教再现型机器人,第二代为具备感觉的机器人,第三代为智能机器人。1959年,第一台工业机器人诞生。1965年,世界上第一个带有视觉传感器的机器人诞生。1968年,美国斯坦福研究所研制的机器人Shakey具备了一定的人工智能,能够进行感知、环境建模、行为规划并执行任务,成为第一台智能机器人。1974年,美国辛辛那提?米拉克龙(CincinnatiMilacron)公司成功开发了多关节机器人。1979年,美国Unimation公司推出了PUMA机器人,它是一种多关节、全电机驱动、多CPU二级控制的机器人,采用VAL专用语言,可配视觉、触觉、力觉传感器,是当时技术最先进的工业机器人。

20世纪80年代,不同结构、不同控制方法和不同用途的工业机器人在发达国家进入了实用化普及阶段,日本把1980年称之为“机器人普及元年”,开始在各个领域推广使用机器人,传感技术和智能技术被广泛应用,智能机器人概念日渐深入人心。1985年以后在日本称为“智能机器人的时代”。短短20年时间,机器人实现了从第一代到第三代的大幅跨越。因此,第三次科技革命也可称为机器人技术发展的“黄金时代”。20世纪90年代,日本泡沫经济破灭、经济萧条,日本机器人市场逐步向全球市场转移,成为拉动日本机器人产业增长的重要力量。进入21世纪后,智能机器人、仿生机器人等新一代机器人纷纷亮相。2010年,日本发那科公司推出了第一台学习控制机器人。2014年,日本推出了高仿真人形机器人等。智能机器人技术和产业进入快速发展阶段。

●医疗机器人

医疗机器人是智慧医疗的重要特征之一。根据用途,医疗机器人大致可以分为外科手术机器人、康复机器人、医疗服务类机器人。智能机器人应用于医疗领域肇始于20世纪80年代。1985年,美国加利福尼亚州放射医学中心研制成功能自主定位的手术机器人(Puma560),协助外科医生完成脑组织活检。1992年,美国IBM公司和加利福尼亚大学联合推出名为Robodoc的机器人系统,协助完成了人工骸关节和膝关节置换手术。1994年,美国ComputerMotion公司研制出第一台商业化手术机器人AESOP,并于1997年完成了世界首例腹腔镜下胆囊切除手术。1999年,美国IntuitiveSurgical公司开发出达?芬奇(DaVinci)外科手术机器人,被广泛应用于普通外科、胸外科、泌尿外科、妇产科、头颈外科以及心脏外科,成为目前国际上技术最为成熟和完备的外科机器人,几乎垄断了外科机器人市场。我国手术机器人的发展较晚。2010年,天津大学、南开大学和天津医科大学总医院联合研制的首台外科手术机器人“妙手A”系统成功问世,有望打破西方国家的垄断。

康复机器人主要用来帮助老年人和残疾人更好地适应日常的工作和生活,主要集中在康复机械手臂、智能轮椅、假肢和康复治疗机器人等方面。1987年,英国MikeTopping公司研制出了一款康复机器人,命名为Handy1,用以帮助一名11岁患有脑瘫的小男孩独立地用餐。2013年,我国上海交通大学成功研制出第一台智能轮椅机器人ROBOY,能对周围环境做出准确判断、自动规划最佳路径。

医疗服务类机器人主要包括救援机器人、转运机器人、医院办公机器人、护士机器人等。1985年,美国TRC公司研制出世界首个服务机器人“护士助手”,不仅能运送医疗器材、药品等,还能为患者提供送饭和送病历、报表及信件等服务,目前已在全球几十家医院投入使用。

此外,人工智能在健康和慢性病管理、急诊流程、就医流程引导等方面有着广泛的应用。随着大数据、物联网、人工智能的发展,人工智能无疑会对人类的未来医疗提供莫大帮助,产生越来越广泛深入的影响,有可能改变医疗模式、重塑医疗产业。生病还要不要看医生?未来医院是什么样的?医疗人工智能事故责任如何认定?这些也同样带给我们无限的想象和深度的思考。

作者:王国强,中国科协创新战略研究院研究员,博士,主要研究方向为科技史、科技政策和科技传播

 

本文来自《张江科技评论》杂志

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇