博舍

AI人工智能专业词汇集 人工智能的词汇库有哪些类型

AI人工智能专业词汇集

机器之心原创,机器之心编辑部,转自机器之心公众号。

作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客、论文、专家观点等内容上已经积累了超过两年多的经验。期间,从无到有,机器之心的编译团队一直在积累专业词汇。虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步、一直在积累、一直在提高自己的专业性。

两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典。而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区、跨专业等等原因造成的。举个例子,DeepMind 的一篇论文中有个词汇为 differentiable boundary tree,当时机器之心的翻译为可微分界树,但后来有读者表示这样的译法如果不保留英文很难明白表达的意思且建议翻译为可微分边界树。

因此,我们想把机器之心内部积累的人工智能专业词汇中英对照表开放给大家,希望为大家写论文、中文博客、阅读文章提供帮助。同时,这也是一份开放的表单,希望越来越多的人能够提供增添、修改建议,为人工智能的传播助力。

项目地址:https://github.com/jiqizhixin/Artificial-Intelligence-Terminology

组织形式

读者在此项目中,可通过以上表盘查看自己想要了解的专业词汇。在单个首字母中,表格的组织形式为:英文/缩写、汉语、来源&扩展。

来源&扩展是对该词汇的注解,内容为机器之心往期的相关文章。例如下图所示的「算法」,我们关联到的三篇文章是《回归、分类与聚类:三大方向剖解机器学习算法的优缺点》和《机器学习算法附速查表》和《深度学习算法全景图:从理论证明其正确性》。因此,我们希望不仅能提供相对应的术语,同时还希望能为读者提供每一个术语的来源和概念上的扩展。但由于这一部分工作量较大,我们还将与读者共同推进这一部分扩展的进程。

准确性

本项目中所有英文专业词汇对照的中文都来自机器之心编译的文章和系列机器学习教科书(如周志华的《机器学习》和李航的《统计学习方法》等),我们力求在提供准确翻译的同时保留最常用的形式。同时,为了保证词汇翻译的准确性,我们将此项目向读者开源,并希望能与读者共同迭代术语的准确度。除此之外,我们还将为每一个词汇提供来源与扩展进一步提升词汇的置信度。

机器之心术语编译标准

因为该项目很多术语都是机器之心平常编译文章所积累的,所以我们首先需要向读者说明机器之心术语编译的标准。

1. 常见术语的编译标准

机器之心常见术语的编译首先会确保术语的正确性,其次再考虑术语的传播广度。例如常见术语。logistic regression,首先机器之心会保证该术语的准确度。我们常见 logistic regression 会翻译为逻辑回归,但中文「逻辑」与 logistic 的含义还是有些差别,因此我们并不太倾向于采用这种译法。在准确度的基础上,我们会考虑术语的传播广度。例如有学者建议可以将 logistic regression 译为对数几率回归,但鉴于该译法的传播度不广,看到中文并不会马上检索到对应英文和概念,所以我们最终在常见术语编译标准下将 logistic regression 译为 logistical 回归。机器之心在对常见术语编译时并不会保留英文,也不会做进一步说明。

2. 非常见术语的编译标准

机器之心在编译技术文章或论文时,常常会遇到非常见的术语。因为像论文那样的文章是在特定领域下为解决特定问题而规范化书写的,所以就会存在较多的非常见的术语。而机器之心在编译非常见术语时,唯一的标准就是准确性,通常我们也会保留英文。因为非常见术语通常是数学、神经科学和物理学等领域上的专业术语,机器之心会尽可能地借鉴其他领域内的译法和意义而确定如何编译。例如 fixed-point theorem,在参考数学的情况下,我们会更倾向于译为不动点定理,fixed-point 译为不动点而不是定点。

3. 歧义术语的编译标准

还有很多术语其实是有歧义的,而对于这一类词,机器之心的编译标准会根据语义进行确定,因此也会有一些误差。例如 bias 在描述神经网络层级单元时可以译为偏置项。而在描述训练误差和与叉验证误差间的关系或学习曲线时,bias 可以译为偏差。这样的例子还有很多,比如 Stationary 在马尔可夫模型中可译为稳态分布(Stationary distribution),在最优化问题中可译为驻点(Stationary point),而在涉及博弈论或对抗性训练时,其又可能表达为静态。

以上是机器之心大概编译术语的标准,虽然我们在常用术语的编译上错误率相对较少,但在非常见术语和歧义术语上仍然会出现一些错误。尤其是在非常见术语的编译上,没有特定的背景知识很容易在编译上出现误差。因此我们希望能与读者共同加强术语的编译质量。

词汇更新

本词汇库目前拥有的专业词汇共计 500 个,主要为机器学习基础概念和术语,同时也是该项目的基本词汇。机器之心将继续完善术语的收录和扩展阅读的构建。词汇更新主要分为两个阶段,第一阶段机器之心将继续完善基础词汇的构建,即通过权威教科书或其它有公信力的资料抽取常见术语。第二阶段机器之心将持续性地把编译论文或其他资料所出现的非常见术语更新到词汇表中。

读者的反馈意见和更新建议将贯穿整个阶段,并且我们将在项目致谢页中展示对该项目起积极作用的读者。因为我们希望术语的更新更具准确度和置信度,所以我们希望读者能附上该术语的来源地址与扩展地址。因此,我们能更客观地更新词汇,并附上可信的来源与扩展。

LetterA

Accumulatederrorbackpropagation累积误差逆传播ActivationFunction激活函数AdaptiveResonanceTheory/ART自适应谐振理论Addictivemodel加性学习AdversarialNetworks对抗网络AffineLayer仿射层Affinitymatrix亲和矩阵Agent代理/智能体Algorithm算法Alpha-betapruningα-β剪枝Anomalydetection异常检测Approximation近似AreaUnderROCCurve/AUCRoc曲线下面积ArtificialGeneralIntelligence/AGI通用人工智能ArtificialIntelligence/AI人工智能Associationanalysis关联分析Attentionmechanism注意力机制Attributeconditionalindependenceassumption属性条件独立性假设Attributespace属性空间Attributevalue属性值Autoencoder自编码器Automaticspeechrecognition自动语音识别Automaticsummarization自动摘要Averagegradient平均梯度Average-Pooling平均池化

LetterB

BackpropagationThroughTime通过时间的反向传播Backpropagation/BP反向传播Baselearner基学习器Baselearningalgorithm基学习算法BatchNormalization/BN批量归一化Bayesdecisionrule贝叶斯判定准则BayesModelAveraging/BMA贝叶斯模型平均Bayesoptimalclassifier贝叶斯最优分类器Bayesiandecisiontheory贝叶斯决策论Bayesiannetwork贝叶斯网络Between-classscattermatrix类间散度矩阵Bias偏置/偏差Bias-variancedecomposition偏差-方差分解Bias-VarianceDilemma偏差–方差困境Bi-directionalLong-ShortTermMemory/Bi-LSTM双向长短期记忆Binaryclassification二分类Binomialtest二项检验Bi-partition二分法Boltzmannmachine玻尔兹曼机Bootstrapsampling自助采样法/可重复采样/有放回采样Bootstrapping自助法Break-EventPoint/BEP平衡点

LetterC

Calibration校准Cascade-Correlation级联相关Categoricalattribute离散属性Class-conditionalprobability类条件概率Classificationandregressiontree/CART分类与回归树Classifier分类器Class-imbalance类别不平衡Closed-form闭式Cluster簇/类/集群Clusteranalysis聚类分析Clustering聚类Clusteringensemble聚类集成Co-adapting共适应Codingmatrix编码矩阵COLT国际学习理论会议Committee-basedlearning基于委员会的学习Competitivelearning竞争型学习Componentlearner组件学习器Comprehensibility可解释性ComputationCost计算成本ComputationalLinguistics计算语言学Computervision计算机视觉Conceptdrift概念漂移ConceptLearningSystem/CLS概念学习系统Conditionalentropy条件熵Conditionalmutualinformation条件互信息ConditionalProbabilityTable/CPT条件概率表Conditionalrandomfield/CRF条件随机场Conditionalrisk条件风险Confidence置信度Confusionmatrix混淆矩阵Connectionweight连接权Connectionism连结主义Consistency一致性/相合性Contingencytable列联表Continuousattribute连续属性Convergence收敛Conversationalagent会话智能体Convexquadraticprogramming凸二次规划Convexity凸性Convolutionalneuralnetwork/CNN卷积神经网络Co-occurrence同现Correlationcoefficient相关系数Cosinesimilarity余弦相似度Costcurve成本曲线CostFunction成本函数Costmatrix成本矩阵Cost-sensitive成本敏感Crossentropy交叉熵Crossvalidation交叉验证Crowdsourcing众包Curseofdimensionality维数灾难Cutpoint截断点Cuttingplanealgorithm割平面法

LetterD

Datamining数据挖掘Dataset数据集DecisionBoundary决策边界Decisionstump决策树桩Decisiontree决策树/判定树Deduction演绎DeepBeliefNetwork深度信念网络DeepConvolutionalGenerativeAdversarialNetwork/DCGAN深度卷积生成对抗网络Deeplearning深度学习Deepneuralnetwork/DNN深度神经网络DeepQ-Learning深度Q学习DeepQ-Network深度Q网络Densityestimation密度估计Density-basedclustering密度聚类Differentiableneuralcomputer可微分神经计算机Dimensionalityreductionalgorithm降维算法Directededge有向边Disagreementmeasure不合度量Discriminativemodel判别模型Discriminator判别器Distancemeasure距离度量Distancemetriclearning距离度量学习Distribution分布Divergence散度Diversitymeasure多样性度量/差异性度量Domainadaption领域自适应Downsampling下采样D-separation(Directedseparation)有向分离Dualproblem对偶问题Dummynode哑结点DynamicFusion动态融合Dynamicprogramming动态规划

LetterE

Eigenvaluedecomposition特征值分解Embedding嵌入Emotionalanalysis情绪分析Empiricalconditionalentropy经验条件熵Empiricalentropy经验熵Empiricalerror经验误差Empiricalrisk经验风险End-to-End端到端Energy-basedmodel基于能量的模型Ensemblelearning集成学习Ensemblepruning集成修剪ErrorCorrectingOutputCodes/ECOC纠错输出码Errorrate错误率Error-ambiguitydecomposition误差-分歧分解Euclideandistance欧氏距离Evolutionarycomputation演化计算Expectation-Maximization期望最大化Expectedloss期望损失ExplodingGradientProblem梯度爆炸问题Exponentiallossfunction指数损失函数ExtremeLearningMachine/ELM超限学习机

LetterF

Factorization因子分解Falsenegative假负类Falsepositive假正类FalsePositiveRate/FPR假正例率Featureengineering特征工程Featureselection特征选择Featurevector特征向量FeaturedLearning特征学习FeedforwardNeuralNetworks/FNN前馈神经网络Fine-tuning微调Flippingoutput翻转法Fluctuation震荡Forwardstagewisealgorithm前向分步算法Frequentist频率主义学派Full-rankmatrix满秩矩阵Functionalneuron功能神经元

LetterG

Gainratio增益率Gametheory博弈论Gaussiankernelfunction高斯核函数GaussianMixtureModel高斯混合模型GeneralProblemSolving通用问题求解Generalization泛化Generalizationerror泛化误差Generalizationerrorbound泛化误差上界GeneralizedLagrangefunction广义拉格朗日函数Generalizedlinearmodel广义线性模型GeneralizedRayleighquotient广义瑞利商GenerativeAdversarialNetworks/GAN生成对抗网络GenerativeModel生成模型Generator生成器GeneticAlgorithm/GA遗传算法Gibbssampling吉布斯采样Giniindex基尼指数Globalminimum全局最小GlobalOptimization全局优化Gradientboosting梯度提升GradientDescent梯度下降Graphtheory图论Ground-truth真相/真实

LetterH

Hardmargin硬间隔Hardvoting硬投票Harmonicmean调和平均Hessematrix海塞矩阵Hiddendynamicmodel隐动态模型Hiddenlayer隐藏层HiddenMarkovModel/HMM隐马尔可夫模型Hierarchicalclustering层次聚类Hilbertspace希尔伯特空间Hingelossfunction合页损失函数Hold-out留出法Homogeneous同质Hybridcomputing混合计算Hyperparameter超参数Hypothesis假设Hypothesistest假设验证

LetterI

ICML国际机器学习会议Improvediterativescaling/IIS改进的迭代尺度法Incrementallearning增量学习Independentandidenticallydistributed/i.i.d.独立同分布IndependentComponentAnalysis/ICA独立成分分析Indicatorfunction指示函数Individuallearner个体学习器Induction归纳Inductivebias归纳偏好Inductivelearning归纳学习InductiveLogicProgramming/ILP归纳逻辑程序设计Informationentropy信息熵Informationgain信息增益Inputlayer输入层Insensitiveloss不敏感损失Inter-clustersimilarity簇间相似度InternationalConferenceforMachineLearning/ICML国际机器学习大会Intra-clustersimilarity簇内相似度Intrinsicvalue固有值IsometricMapping/Isomap等度量映射Isotonicregression等分回归IterativeDichotomiser迭代二分器

LetterK

Kernelmethod核方法Kerneltrick核技巧KernelizedLinearDiscriminantAnalysis/KLDA核线性判别分析K-foldcrossvalidationk折交叉验证/k倍交叉验证K-MeansClusteringK–均值聚类K-NearestNeighboursAlgorithm/KNNK近邻算法Knowledgebase知识库KnowledgeRepresentation知识表征

LetterL

Labelspace标记空间Lagrangeduality拉格朗日对偶性Lagrangemultiplier拉格朗日乘子Laplacesmoothing拉普拉斯平滑Laplaciancorrection拉普拉斯修正LatentDirichletAllocation隐狄利克雷分布Latentsemanticanalysis潜在语义分析Latentvariable隐变量Lazylearning懒惰学习Learner学习器Learningbyanalogy类比学习Learningrate学习率LearningVectorQuantization/LVQ学习向量量化Leastsquaresregressiontree最小二乘回归树Leave-One-Out/LOO留一法linearchainconditionalrandomfield线性链条件随机场LinearDiscriminantAnalysis/LDA线性判别分析Linearmodel线性模型LinearRegression线性回归Linkfunction联系函数LocalMarkovproperty局部马尔可夫性Localminimum局部最小Loglikelihood对数似然Logodds/logit对数几率LogisticRegressionLogistic回归Log-likelihood对数似然Log-linearregression对数线性回归Long-ShortTermMemory/LSTM长短期记忆Lossfunction损失函数

LetterM

Machinetranslation/MT机器翻译Macron-P宏查准率Macron-R宏查全率Majorityvoting绝对多数投票法Manifoldassumption流形假设Manifoldlearning流形学习Margintheory间隔理论Marginaldistribution边际分布Marginalindependence边际独立性Marginalization边际化MarkovChainMonteCarlo/MCMC马尔可夫链蒙特卡罗方法MarkovRandomField马尔可夫随机场Maximalclique最大团MaximumLikelihoodEstimation/MLE极大似然估计/极大似然法Maximummargin最大间隔Maximumweightedspanningtree最大带权生成树Max-Pooling最大池化Meansquarederror均方误差Meta-learner元学习器Metriclearning度量学习Micro-P微查准率Micro-R微查全率MinimalDescriptionLength/MDL最小描述长度Minimaxgame极小极大博弈Misclassificationcost误分类成本Mixtureofexperts混合专家Momentum动量Moralgraph道德图/端正图Multi-classclassification多分类Multi-documentsummarization多文档摘要Multi-layerfeedforwardneuralnetworks多层前馈神经网络MultilayerPerceptron/MLP多层感知器Multimodallearning多模态学习MultipleDimensionalScaling多维缩放Multiplelinearregression多元线性回归Multi-responseLinearRegression/MLR多响应线性回归Mutualinformation互信息

LetterN

Naivebayes朴素贝叶斯NaiveBayesClassifier朴素贝叶斯分类器Namedentityrecognition命名实体识别Nashequilibrium纳什均衡Naturallanguagegeneration/NLG自然语言生成Naturallanguageprocessing自然语言处理Negativeclass负类Negativecorrelation负相关法NegativeLogLikelihood负对数似然NeighbourhoodComponentAnalysis/NCA近邻成分分析NeuralMachineTranslation神经机器翻译NeuralTuringMachine神经图灵机Newtonmethod牛顿法NIPS国际神经信息处理系统会议NoFreeLunchTheorem/NFL没有免费的午餐定理Noise-contrastiveestimation噪音对比估计Nominalattribute列名属性Non-convexoptimization非凸优化Nonlinearmodel非线性模型Non-metricdistance非度量距离Non-negativematrixfactorization非负矩阵分解Non-ordinalattribute无序属性Non-SaturatingGame非饱和博弈Norm范数Normalization归一化Nuclearnorm核范数Numericalattribute数值属性

LetterO

Objectivefunction目标函数Obliquedecisiontree斜决策树Occam’srazor奥卡姆剃刀Odds几率Off-Policy离策略Oneshotlearning一次性学习One-DependentEstimator/ODE独依赖估计On-Policy在策略Ordinalattribute有序属性Out-of-bagestimate包外估计Outputlayer输出层Outputsmearing输出调制法Overfitting过拟合/过配Oversampling过采样

LetterP

Pairedt-test成对t检验Pairwise成对型PairwiseMarkovproperty成对马尔可夫性Parameter参数Parameterestimation参数估计Parametertuning调参Parsetree解析树ParticleSwarmOptimization/PSO粒子群优化算法Part-of-speechtagging词性标注Perceptron感知机Performancemeasure性能度量PlugandPlayGenerativeNetwork即插即用生成网络Pluralityvoting相对多数投票法Polaritydetection极性检测Polynomialkernelfunction多项式核函数Pooling池化Positiveclass正类Positivedefinitematrix正定矩阵Post-hoctest后续检验Post-pruning后剪枝potentialfunction势函数Precision查准率/准确率Prepruning预剪枝Principalcomponentanalysis/PCA主成分分析Principleofmultipleexplanations多释原则Prior先验ProbabilityGraphicalModel概率图模型ProximalGradientDescent/PGD近端梯度下降Pruning剪枝Pseudo-label伪标记

LetterQ

QuantizedNeuralNetwork量子化神经网络Quantumcomputer量子计算机QuantumComputing量子计算QuasiNewtonmethod拟牛顿法

LetterR

RadialBasisFunction/RBF径向基函数RandomForestAlgorithm随机森林算法Randomwalk随机漫步Recall查全率/召回率ReceiverOperatingCharacteristic/ROC受试者工作特征RectifiedLinearUnit/ReLU线性修正单元RecurrentNeuralNetwork循环神经网络Recursiveneuralnetwork递归神经网络Referencemodel参考模型Regression回归Regularization正则化Reinforcementlearning/RL强化学习Representationlearning表征学习Representertheorem表示定理reproducingkernelHilbertspace/RKHS再生核希尔伯特空间Re-sampling重采样法Rescaling再缩放ResidualMapping残差映射ResidualNetwork残差网络RestrictedBoltzmannMachine/RBM受限玻尔兹曼机RestrictedIsometryProperty/RIP限定等距性Re-weighting重赋权法Robustness稳健性/鲁棒性Rootnode根结点RuleEngine规则引擎Rulelearning规则学习

LetterS

Saddlepoint鞍点Samplespace样本空间Sampling采样Scorefunction评分函数Self-Driving自动驾驶Self-OrganizingMap/SOM自组织映射Semi-naiveBayesclassifiers半朴素贝叶斯分类器Semi-SupervisedLearning半监督学习semi-SupervisedSupportVectorMachine半监督支持向量机Sentimentanalysis情感分析Separatinghyperplane分离超平面SigmoidfunctionSigmoid函数Similaritymeasure相似度度量Simulatedannealing模拟退火Simultaneouslocalizationandmapping同步定位与地图构建SingularValueDecomposition奇异值分解Slackvariables松弛变量Smoothing平滑Softmargin软间隔Softmarginmaximization软间隔最大化Softvoting软投票Sparserepresentation稀疏表征Sparsity稀疏性Specialization特化SpectralClustering谱聚类SpeechRecognition语音识别Splittingvariable切分变量Squashingfunction挤压函数Stability-plasticitydilemma可塑性-稳定性困境Statisticallearning统计学习Statusfeaturefunction状态特征函Stochasticgradientdescent随机梯度下降Stratifiedsampling分层采样Structuralrisk结构风险Structuralriskminimization/SRM结构风险最小化Subspace子空间Supervisedlearning监督学习/有导师学习supportvectorexpansion支持向量展式SupportVectorMachine/SVM支持向量机Surrogatloss替代损失Surrogatefunction替代函数Symboliclearning符号学习Symbolism符号主义Synset同义词集

LetterT

T-DistributionStochasticNeighbourEmbedding/t-SNET–分布随机近邻嵌入Tensor张量TensorProcessingUnits/TPU张量处理单元Theleastsquaremethod最小二乘法Threshold阈值Thresholdlogicunit阈值逻辑单元Threshold-moving阈值移动TimeStep时间步骤Tokenization标记化Trainingerror训练误差Traininginstance训练示例/训练例Transductivelearning直推学习Transferlearning迁移学习Treebank树库Tria-by-error试错法Truenegative真负类Truepositive真正类TruePositiveRate/TPR真正例率TuringMachine图灵机Twice-learning二次学习

LetterU

Underfitting欠拟合/欠配Undersampling欠采样Understandability可理解性Unequalcost非均等代价Unit-stepfunction单位阶跃函数Univariatedecisiontree单变量决策树Unsupervisedlearning无监督学习/无导师学习Unsupervisedlayer-wisetraining无监督逐层训练Upsampling上采样

LetterV

VanishingGradientProblem梯度消失问题Variationalinference变分推断VCTheoryVC维理论Versionspace版本空间Viterbialgorithm维特比算法VonNeumannarchitecture冯·诺伊曼架构

LetterW

WassersteinGAN/WGANWasserstein生成对抗网络Weaklearner弱学习器Weight权重Weightsharing权共享Weightedvoting加权投票法Within-classscattermatrix类内散度矩阵Wordembedding词嵌入Wordsensedisambiguation词义消歧

LetterZ

Zero-datalearning零数据学习Zero-shotlearning零次学习

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇