博舍

浅谈人工智能的发展现状与前景分析 有关人工智能的发展前景有哪些

浅谈人工智能的发展现状与前景分析

浅谈人工智能的发展现状与前景分析

2022-03-2311:19:03

摘要:随着科技的发展,人工智能技术发展突飞猛进,并以不可阻挡之势进入了人们的生活领域。人工智能的蓬勃发展将人们的生活推向了更高的层次,人类由此进入了智能化时代。人工智能不但能够帮助人们进行高效工作和学习,而且能为生活增姿添彩。本文将具体分析人工智能的发展现状,并探讨其未来发展前景,旨在使人们重视人工智能技术,推动人工智能技术的发展,使其更好地为人类生活服务。

关键词:人工智能现状前景

人工智能悄然地改变了人们的生产生活,同时也改变了人们的思维,它是科技发展的最好诠释。无论是家庭生活还是工业发展,无论是经济开发还是教育教学,都离不开人工智能技术的应用。虽然人工智能技术能够帮助人们完成各种复杂的工作,甚至能代替人类到极其危险的环境中进行探测,但是人工智能并不能代替人的大脑,它更多的是机器智能而非人的智能。

1人工智能技术发展现状

1.1人工智能发展较快

随着“互联网+”的迅速发展,人工智能技术也得到了快速的发展,并以不可阻挡之势深入到人们的生产、生活之中

[1]。人们更加注重人工智能的研发与应用,近些年,人工智能产品备受关注,例如智能机器人、智能家居、手术机器人、智能护理机器人等。它们的诞生进一步拓宽了人们的生活舞台,实现了人类生活的智能化,使人们步入了智能化时代。随着市场变化发展,生物识别技术应运而生,并深受人们的关注,这进一步推动了人工智能技术的发展。以扫地机器人为例,随着人们生活水平不断提高,人们的幸福指数也在不断攀升,人们更加注重精神享受,使得扫地机器人迅速走红,成为服务机器人领域的“香饽饽”。随着扫地机器人的热销,研究人员也更加注重研发多功能的扫地机器人。因此扫地机器人的功能也在不断升级,并具有很大的市场需求。随着人们生活需求的不断增加,人工智能产品将不断发展,未来研发力度将更强,发展速度将更快。

1.2具有广阔的发展前景

我国人工智能技术与发达国家相比起步较晚,但是发展速度较快。尤其是最近几年,随着人工智能产品的不断深入生活,人们对人工智能技术更加重视。我国的人工智能技术在仿生学领域具有重要的发展,这也为人类的发展做出了重要的贡献。国家对人工智能技术大力支持,使得人工智能技术在未来将拥有广阔的发展前景。

1.3我国人工智能技术有待提高

我国人工智能技术虽然有了一定的进步,但仍然无法与发达国家相媲美。无论是核心技术方面,还是设计方面都存在一定的问题,需要研究人员加以重视。例如翻译问题、识别功能问题等,这些都是制约人工智能技术发展的瓶颈,亟待人们解决。

2人工智能技术发展前景。

2.1人工智能技术的计算能力将更强

人工智能产品方兴未艾,随着互联网时代的不断发展,网络与联网的终端将不断普及,尤其在大数据时代,海量的数据涌现,数据爆发式增长,这也进一步要求人工智能技术拥有更大更强的计算能力。传统的计算机系统对于逻辑运算十分擅长,但是并不擅长模式识别与形象思维,所以构建模仿人脑的类脑计算机十分必要,这也将进一步推动人工智能技术向更深的领域发展。随着经济的发展,数据知识的融合更加广泛,未来人工智能技术的计算能力将会更强。

2.2核心技术将进一步提高随着人工智能产品的不断涌现,智力资源不断被收集,这将进一步推动人工智能技术的研发。我国人工智能技术虽然发展迅猛,但是缺乏核心技术。随着量子计算机类脑芯片等技术的研发与应用,人工智能技术不再停留在较低层次,将向更深领域迈进。随着国家对人工智能技术有越来越重视,人工智能技术的核心技术也将不断升级。人工智能技术的魅力深深吸引着机器人爱好者,更吸引了众多开发者的研发兴趣。随着国内外众多新产品的问世,将出现更高端的技术与产品,这会进一步推动核心技术的发展。

2.3人工智能技术进一步与商业融合

随着人工智能产品的广泛应用,人工智能技术将有更广阔的发展前景。以智能手机为例,智能手机更新换代速度较快,它不但功能齐全,而且与人们的生活紧密联系,是人们日常生活中不可或缺的工具。智能手机的商业价值是十分巨大的,在未来智能机器人也将会像智能手机一样,走入千家万户。随着市场竞争的不断深化,低端机器人将会被更高端的产品挤出市场,功能更全、配置更高的机器人将出现在人们的视野中。这也将吸引更多企业进行投资研发,越来越多的商业巨头也纷纷瞄准这一机会涌入人工智能领域,以期为其商业的发展打开新通道。

2.4人工智能技术将对我国的劳动密集型产业造成影响我国地大物博,人口众多,因此劳动密集型产业在我国占重要地位。随着人工智能技术的发展,劳动密集型产业将不可避免地受到冲击。以智能机器人为例,无论在工业领域还是在农业领域,无论在人们的生活之中还是在工作之中,它都具有重要的意义。智能机器人在工业生产中的广泛应用,会使部分劳动密集型产业的从业者面临失业的风险。随着科技的发展,人工智能技术将对传统的生产模式造成重要的影响[2]。

2.5人工智能产品更智能化

随着社会的发展,智能终端也在不断升级,人工智能产品将更加智能化。以医疗行业为例,医疗人员可利用智能机器人对病人进行诊断,这不但使诊断结果更加清晰、准确,而且能为医生决策提供依据。

3结语

科技改变世界,人工智能技术对我们生活的影响是巨大的,其作用更是无可比拟。人工智能技术推动了社会的发展,为我们的生活带来了极大的便利。虽然当前我国人工智能技术有了一定的发展,但其在发展中也呈现出一些问题,需要我们高度重视。人工智能技术发展前景十分广阔,在未来,它将朝着更高端、更深入的领域发展,进而为社会做出更大的贡献,更好地推动社会的发展。

参考文献

[1]刘玉斌.人工智能在网络技术中的应用研究[J].电脑迷,2018(2):176.

[2]景琳.山水青国际大酒店客户关系管理现状和对策分析

[J].当代旅游(高尔夫旅行),2017(9):76.

展开全文

新一代人工智能的发展与展望

随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

作者:徐云峰

catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]

人工智能的发展方向与机遇

AI中国网https://www.cnaiplus.com

原标题:人工智能的发展方向与机遇

编辑导读:近几年人工智能大热,几乎所有人都在讨论关于人工智能相关的话题,同时各个领域的突破也不少。本文作者对当前人工智能的目前发展情况进行了梳理,并分享了自己对人工智能未来的一些猜测与看法,与大家分享。

01现阶段人工智能的瓶颈

现在人工智能有很多突破,尤其在应用上有大量突破,但是实际上人工智能底层的技术研究的进展其实并不多。最近值得说的进展就一项,就是曾经研制出了AlphaGo,战胜了李世石的公司DeepMind。DeepMind在前段时间研究了一个系统,战胜了人类的德州扑克选手。

玩过德州扑克的朋友是可以感受到的,德州扑克要比玩围棋复杂得多。因为围棋所有的信息都是充分信息,是已知的;而德州扑克,你对面的玩家肯定不会让你知道他手里的牌,所以是不充分信息。在不充分信息的情况下能战胜人类选手,某种程度上说明人工智能又进了一步。

不过这种进步只是弱人工智能。正如《前哨》中所说:弱人工智能比人强,强人工智能比人弱。迄今为止在强人工智能方面还没有任何进展。

美国著名的计算机专家、图灵奖的获得者JudeaPearl的在去年的新书《为什么》中,就提到了一个很有趣的,甚至让人工智能专家都有点尴尬的事实:“人工智能评价这个系统的好坏,并不能从结构上或者理论上来评价,比如你的结构更优或者理论更好,只能从结果来评价。”人工智能算是一门科学吗?答案成疑。所以Pearl就很毒舌地说:“人工智能现在已经变成了炼金术。”

所以人工智能在现阶段最大的瓶颈,就是理论上和实际底层技术的发展。

下面是笔者在读《为什么》时的笔记导图,强烈建议对人工智能感兴趣的朋友读下原书。

02人工智能的三大发展方向

虽然面临着理论和底层发展的瓶颈,人工智能终究还是有进展的,根据王煜全老师在2019年的报告中的阐述,结合笔者对人工智能领域的理解,可以总结为以下三个发展方向。

1.大数据向小数据过渡

过去机器学习要用海量数据做训练,现在希望用尽可能少的数据做训练。

小数据不等于没数据,因为人工智能迄今还是基于归纳总结原理做出来的,也就是说在人工智能系统里面其实统计学更有意义。

但人工智能绝不能满足于此,人类是会推理的,可以在没有数据的情况之下判断事情该怎么做,小数据也不能真实模拟人类的这种判断。

我们可以想象这样一个场景:在一个雨夜里,你在一个崎岖的山路上开车,前面路中间有一堆土,土堆边上有一个看似穿着警服的人在挥手,摇着一个旗子让你下来,你下还是不下?如果你不下,勉强可以冲得过去,但如果你下来才是遵守指令。这种时候,我们普通人会有很复杂的推导,比如这附近治安好不好?晚上天很黑的时候附近治安会不会有问题?另外我们人会看这个警察,他身上的装扮是不是真正的警察制服?周围的交通疏导装置是不是都安上了?如果只有一个人站在那,而没有相应的交通疏导装置,很多人会认为这是假的,就会想办法冲过去。

这些所有背后的复杂判断,不只是一个路面的问题,而且涉及到了社会安全,以及很多其它和交通无关的问题。这些问题是迄今为止自动驾驶都无法判断的。

这也就是五级自动驾驶几乎接近于永远无法推向市场实现商业化的原因。除非下一次人工智能的突破到来,使得人工智能真正具备智力分析能力。虽然现在人工智能的一个方向是小数据,但依然不是没数据,依然是基于统计,而不是基于推理和因果关系,这也是《为什么》这本书质疑人工智能的地方。

2.边缘计算

笔者不是技术出身,对计算能力上的概念理解也是有限,简单描述下该方面的发展方向。

从计算能力上来说,一方面,我们要有充分的计算能力;另一方面,5G的来临使得我们的云端计算能力也可以得到极大的加强。而且因为响应速度提升了,所以云端计算能力可以对局端、对边缘的计算能力实现更好的补充,使得云端和终端形成一体化的人工智能计算能力。

这其实对整体来讲是锦上添花,而并不是一个革命性的变化。

3.终身学习

现在机器也可以终身学习了。

机器一旦有了终身学习能力,就会使得我们整个人类或者说企业,尤其是行业里面采用人工智能的策略产生本质性变化。如果机器不能终身学习,我们在引入人工智能的时候就不用太着急,等到人工智能系统足够好的时候再引入即可。但是如果机器能够终身学习,最好的策略是第一时间引入人工智能,因为虽然引入的时候它可能还不那么智能,但是它不断学习、不断完善自己,就会比引入晚的竞争对手领先一大截,这个时候甚至和硬件都没有那么大的关联。

所以,各个行业都需要去看人工智能能否更快、更好地引入到自己的行业领域里面来。因为人工智能确实是像互联网一样,所以很多人都说人工智能是互联网的下一代,就是因为它有广泛的适用性,所有的行业都有可能因为人工智能而获益。

03人工智能技术在哪些应用上有优势?

现在采用人工智能还是有一些障碍的,尤其是对于不是这个行业领域的公司。一些传统领域的公司通常认为,建立了人工智能部门,也招了很多做人工智能的人,就是在做人工智能了。但实际上迄今为止,人工智能专家依然是稀缺的,人工智能专家在未来五年之后可能就不再稀缺了,但是现在依然是稀缺的。

稀缺的一个主要的特征,就是很多大IT公司都在喊:现在和我们抢夺人工智能人才的,主要的竞争对手是华尔街。为什么呢?因为人工智能技术基本上到顶了以后,你就可以判断它在单项上有很强的优势。这种单项优势就会被各个行业领域采用,最早采用的一定是利用这个优势获得大量收入利润的行业,金融无疑是最理想的行业,所以用人工智能炒股已经几乎变成华尔街的标配了。

虽然独立的人工智能炒股的基金公司并不多,但实际上,大多数的基金公司都储备了人工智能的人才。判断短时的涨跌,用人工智能做短期操作一定比人强,这已经是事实了。当然,这并不代表人没有机会,因为现在单项上人工智能比人强,但是多项综合人就显著地占有优势。

如果你判断短期的股票交易,基本上就根据以前的交易行为来判断,那一定是机器比人强;但是如果判断一个企业的长期发展,尤其是判断一个企业未来的科技产品有没有可能在未来的科技市场当中占优,机器就不一定比人强。

因为这些判断是非常综合的事情,涉及到了科研发展的趋势,包括研发的进展、技术能力的变化,包括产业格局的变化,甚至包括企业经营特点的变化,还包括市场的接受程度、用户的变化。

从这个意义上讲,人工智能相对来说是判断不清晰的。也就是说,你问人工智能明天可不可以买一个股票,它的回答一定比问一个人要好,但是你问一个公司五年之后发展得好不好,你最好去问人类的专家。这说明人还是有机会的,不要和人工智能去争夺单项的长短,而要在综合上面取得优势,甚至每个单项上都用人工智能辅助我们,但是在整体上我们可以超越人工智能。

这是一个相对来说比较特例的地方,因为人工智能能为企业带来大量的钱,所以整个华尔街现在非常欢迎人工智能专家,以至于现在很多IT公司都把华尔街当成竞争对手,这个竞争指的不是市场的竞争,而是指人才的竞争。而随之而来的,大多数情况之下,人工智能专家不太愿意去传统行业的企业,因为传统行业往往有很长的研发周期,它不像短线炒股,研发周期很短,迅速就有结果。

04人工智能独角兽着临着巨大的压力

现在中国的人工智能有一个很大的问题,就是过热了以后产生了一批人工智能独角兽。

独角兽就是还没有上市,但是估值已经超过了10亿美金的公司。我们都知道很多公司其实估值不到10亿美金就可以上市了。但是这些独角兽之所以没有上市,是因为收入利润并没有清晰地显示出来,也就是说其实它还不符合上市指标。但是因为市场热捧,所以它的估值非常高,这样的话这些企业就会有特别强大的压力。

压力体现在两方面:

一方面,它必须要持续不断地从市场网罗人才。因为它是独角兽,它给期权的时候会显示期权的价值特别高。虽然这个期权显示很高,不代表员工真正获取了这个价值。但是市场承认这个价值,所以它就会对人才形成很强的吸引,造成现在很多的人工智能人才愿意去独角兽,因为有高薪又有高期权,而不愿意去传统行业。传统行业的薪水没那么高,而研发又需要一个周期,不能立竿见影看到效果,回报产生了落差,因此大多数人会选择去独角兽企业。

独角兽企业有另一个致命的问题,因为它估值过高了以后,就要尽快地在收入利润上兑现它的承诺。这就意味着这些独角兽企业在长期研发上投入不足,同样是盯着那些眼前最能赚钱的业务,人工智能现在最能赚钱的业务是什么呢?这其实也是大家普遍关注的一个话题。

因为人工智能在去年、前年就在喊这样一个话题了,今年甚至还会再继续喊,就是所谓人工智能叫好不叫座。虽然人工智能非常热,各种新的应用层出不穷,但是你去看人工智能企业,似乎它们收入利润的增长没有那么令人满意。

05在人工智能细分领域的机会1.硬件层

该层级主要是涉及人工智能相关的硬件企业。这些企业坦白讲其实未来还很难预测,做这种专业领域的研发(FPGA)的公司机会相对还大一些,现在做类脑计算芯片、人工智能计算芯片,通用性相对强一点,压力会比较大。因为实际上这种芯片是需要构筑生态的,这种芯片的一个领军企业就是NVIDIA(英伟达)。

英伟达有几千个工程师,去帮它的芯片做各种应用的场景开发,或者是应用的支持,加强了英伟达的生态的健全。例如,同样做自动驾驶解决方案,英伟达更看重的是,我如何能让客户得到全面的服务。基于此,英伟达做了一套虚拟的试车系统。这套虚拟系统,让自动驾驶系统在虚拟路面去跑,可以把速度倍速。另外,可以同时在多个虚拟环境跑,显示好像是有100辆车、1000辆车同时跑,很快地积累到了足够的里程,由此人工智能系统就足够地强壮、足够地智能了。

这就是它对环境的构建,这是非常重要的。而国内大多数芯片企业,只是盲目地强调自己计算能力的优越,没有这种生态构建的能力,其实是很难跟英伟达竞争的。当然英伟达也有一个缓慢的苦尽甘来的过程,其实在两三年以前黄仁勋在演讲时,他还在畅想人工智能在各个行业领域的突破,非常地发散,但是到去年的时候业务已经非常地聚焦,一定能实现足够大的收入利润。

2.基础服务层

这个层级主要聚集着在基础平台和基础应用上发力的企业,比如云计算提供者。

在美国几乎所有的IT巨头都花巨资去建立大的云计算平台,而且都要有强大的人工智能的支撑能力,其中最领先的就是亚马逊的AWS和谷歌这两家公司。所以这几乎变成了一个业内共识,未来云计算+人工智能,甚至到了5G以后,使得云计算+人工智能无所不在,成为标配,很快就会发现人工智能会像自来水一样,随处都可以获得。

中国也是一样,现在比较领先的就是阿里云,腾讯、百度也在发力,但是现在看起来阿里还是比较领先的。当然华为也在做自己的云。中国也会诞生几朵大云,也有很大的市场空间,因为中国的IT市场不比海外小多少。

所以这一层会发展起来。而这一层的核心就是除了提供基础的云计算能力以外,一定要提供一些附加的人工智能能力。而这种人工智能能力就会使得人工智能的基础应用,不是由人工智能提供商来提供,而是由云平台直接提供。

什么是基础应用呢?现在其实没有明确的定义,在此笔者举出几个例子,供大家了解与讨论。

视觉识别,包括面部识别会变成基础应用。因为在更多公共场所的监控加上视觉识别之后,可以快速抓捕逃犯,有助于社会治安。这就形成了一个巨大的市场,现在大量独角兽都在追逐该市场。

但从长期来看,这个市场对于独角兽们恐怕不是很友好:一方面,政府会形成统一的大市场,未来应该是打通的,就从全国到处都是客户变成一个客户,这个市场也就某种程度上不存在了;另一方面,不管是几个客户,提供者很可能都不是今天的这些独角兽们,而是由基础云平台直接提供,比如阿里、腾讯或者是华为这个量级的企业。

主要原因就是这个能力并不复杂,尤其有了云以后,从云上直接提供是最简单的,未来各地只要有摄像头,就可以利用云端的能力实现智能的面部识别或者是图像识别的功能。

除了面部识别以外,现在一个大热点就是动作的识别,甚至把它叫做动作指纹。我们每个人的步态、动作、姿态都有自己的特定规律,经过人工智能的分析,可以只通过我们的动作就知道这个人是谁。现在还有一个特点,就是跨摄像头、跨领域的连续分析。也就是说通过动作捕捉,你可以跨多个摄像头,这就可以了解一个人的行为轨迹。虽然这个人的脸并没有被识别,但是通过动作就可以识别出来。虽然今天人工智能还是作为科研任务在搞,但是很快就会变成一种基础能力,通过云计算提供出来。

除此以外,还有一些基本的图形识别能力,包括另一个热门的市场,就是医学的图像识别。医学里面X光或者B超这样的图像识别,未来很有可能也会被整合到云端,提供者可能是第三方公司,也可能是云端的大IT服务商,但是未来都会由云端来提供,这也变成基础服务了。

最后,语音语义识别和翻译未来很有可能也变成云端的基础服务。今天如果你要翻译的话,还需要随身带翻译机,但是其为什么不是整合到手机里呢?据搜狗的CEO王小川介绍,搜狗的翻译机里有6个GPU,这样使得它翻译的时候计算能力能够跟得上。但是未来如果云端的处理能力加强了,所有这些语音全部送到云端去处理,然后把结果返送回来,这种时候我们每个人的手机就可以是翻译机了,而不需要一个单独的设备。

3.行业结合层

根据上文,很多基础能力未来很可能都会变成一个云端提供能力,而真正的应用能力应该是不那么基础、不那么通用,而且和行业要有充分结合。虽然它也会用到很多基础能力,甚至是云端的基础能力,但是因为它有行业特异性,所以不是云端这个云提供者能够提供的。

比如,因为语音语义识别的成熟,包括翻译能力的成熟,结合行业所组成了一个已经启动的市场,那就是智能客服。呼叫中心小企业虽然不像大企业一样有呼叫中心,但是其实有呼叫中心的需求。现在如果用人工智能来做呼叫中心,回答用户问题的并不是一个人,而是一个人工智能系统,小企业也可以通过租借或者购买这个SaaS系统来满足自身需求。所以这个市场会迅速地崛起,甚至呼叫中心市场会繁荣,但是呼叫中心那些接电话的人会失业,这是冷冰冰的事实。

其实很多人工智能系统都是这样的,自动驾驶会繁荣,意味着车可能会更多,而不是更少,但是司机可能会失业。

这个层次会有大量的人工智能相关的应用公司繁荣起来。这些应用公司很明确,一定要有自己本行业的特色,因为、人工智能这个技术本身没有办法形成壁垒,真正能够形成壁垒的地方一定是行业,也就是说行业数据、行业经验和行业准入会是你的壁垒。这需要我们去找到这个壁垒,从而把业务做起来。

所以任何先进领域不代表只要领先就好,还必须找到自己的壁垒和竞争优势,才能够做得好。

本文由@Pete原创发布于人人都是产品经理,未经许可,禁止转载。

题图来自Unsplash,基于CC0协议

AI中国网https://www.cnaiplus.com

本文网址:

人工智能应用领域的研究与展望

引言

20世纪的科技成就中,人工智能占据着重要的位置,它的研发使用是将智能机器人的技术、信息化技术、自动化技术和关于人类自身智能探索与研究融为一体的必然结果。随着人工智能的系列化研究与发展,如今,人工智能已经被广泛地应用于很多领域。但是关于人工智能的应用领域的综述并不多,本文就人工智能在不同领域应用发展趋势进行展望。

1人工智能的由来

人工智能是研究、开发模拟应用、延伸和拓展人的智能领域的理论、方法、技术以及应用系统的一门新的学科。相比于其他学科,人工智能的研究和发展历史是很短暂的,但是它的研究发展与应用却为人类生活带来了翻天覆地的变化,是人类发展历史的一个里程碑,将人类从繁重的体力劳动和脑力劳动中解放出来,同时帮助人类探索拓展了更多的未知领域。

1956年,麦卡赛和明斯基等科学家就提出了“人工智能”的理念,认为在未来机器将会以其独有的人工智能特点更好地服务于人类,代替人类来完成许多高难度、高强度和高危险系数类的工作。这一理念的提出引来了许多优秀科学家的青睐,随即对此展开了更深入的研究、探索、发展和应用[1]。

在计算机的应用普及之前,几乎没有什么机器设备可以分担人类的脑力劳动,特别是依据人脑的思维去对数据进行收集、处理、运算、判定、存储、积累、分析和选择决断。当计算机有了一定程度的发展和应用之后,能够代替人脑工作的软件才逐步被开发并应用到研究和生活中。由早期的各种复杂数据分析运算,一维、二维、三维和立体的测绘,继而发明并应用二维码的识别、无人机作业、月球车等各种模拟人类思维模式的应用,到后来人工智能云处理、对比、处理和建议等人脑无法准确、无误且快速处理大数据的运用。如今,人工智能的应用已经遍布人类生活的许多领域。

2人工智能的应用领域

现在人工智能在计算机领域的应用比较广泛,在其他领域的发展应用也是频见报道。随着人工智能“深、广、精”的研究、发展与应用,不久,必将迎来在更多领域的应用,未来的人工智能将更加智能,更加的人性化,更像个“人”一样进入人类生活,为人类社会的发展服务。

2.1人工智能在工业领域的应用

人工智能的应用在工业发展方面起着举足轻重的作用,它具有效率高、稳定可靠、重复精度好,可承担劳动强度大、危险系数高的作业等优势,已被广泛应用到了工业生产领域,如机器人焊接、机器人搬运、机器人装配、机器热打磨抛光和机器人喷涂电镀等。2018年,林远长等人研究得到焊接机器人在每米长度方向上焊接轨迹跟踪仿真误差为0.18mm,而实际跟踪误差为0.2mm,由此验证利用人工智能仿真误差与实际误差基本一致,完全满足工业生产需求[2]。赵猛研发发动机挠性飞轮盘螺纹装配工业机器人项目[3],提高装配的自动化和柔性化程度,保证装配质量和生产效率。用人工智能的机器人来代替普通工人去完成许多对人体有不良影响及人体生理条件限制而不能承受的工作,是20世纪工业发展的一个质的飞跃,是工业发展史的一个标志性的里程碑。

2.2人工智能在金融领域的应用

近来,随着人工智能的开发及应用,互联网金融更是取得了极其辉煌迅猛的发展。二维码支付、手机银行、网络借贷、P2P平台、淘宝、京东等逐渐成为人们茶余饭后议论的热点词汇。通过大数据库、云计算、计算机网络应用、区块数据链等最新IT技术,即可获取大量、精确的信息,更加个性化、定向化的风险定位模型,更科学、严谨的投资决策过程,更透明、公正的信用中介角色等,从而能大大地提高金融业务效率和服务水平,特别是一些技术应用,如大数据征信、供需信息、供应链金融等[4]。

2.3人工智能在信息安全领域的应用

数字密码安保模式伴随着互联网技术的不断发展,其弊端也逐步显露,一方面容易被破解,导致信息泄露,另一方面,对于越来越多的信息安保需求,对人脑的记忆力要求也越来越高。由此产生的各种困扰也越来越多,如忘记密码后,自动取款机无法取现、打不开文件、登录不了系统等问题层出不穷,因此信息安全问题越来越被人们所关注。但当人工智能和生物识别技术结合并深入发展之后,信息安全领域得到了一个全新的发展和提高。指纹解锁速度可达0.2s,支持多个指纹同时录入,且被广泛应用;iPhoneX的人脸识别解锁,支付宝的刷脸登录和考勤机器上的刷脸打卡等正渐渐步入人们的日常生活之中;人的虹膜具有惟一性,为实现信息认证、保障信息安全提供了理论基础。现实中也已经有电子厂商将这一技术运用到了实际产品当中,比如三星S系列的手机,就配备了虹膜识别技术,但是虹膜识别目前对环境的要求比较高,尤其是在暗光环境下识别效果还有待提升。相比于指纹识别,虹膜识别在完成产业化的道路上还有很长的路要走[5]。

2.4人工智能在医疗领域的应用

医疗领域的人工智能应用更加普遍,它正在成为改善人们身心健康的主力军,可为病人提供就诊前健康状况初步分析和评估、协同医师处理病人信息和改善服务质量、在医院精准地指导病人就医、节约医疗资源、缓解就医难的紧张局面等。医学领域,精准是非常重要的,因为任何偏差或者误判都会危及人体的健康乃至生命。2015年,杨宇面对心脏手术医疗机器人的异构式主从控制研究,充分运用人工智能[6],简化了手术操作,降低了操作风险。人工智能芯片能够存入大量的信息,并对这些信息进行高速地运算处理和判断,做出最准确的决策,这是目前人脑没有办法做到的[7]。人工智

能还可以根据患者的实际情况,收集所需要的数据,结合过去的数据进行计算和决策,从而得出最有效的治疗方案,以此减少医务人员的脑力劳动强度,合理利用医疗资源[8]。

3人工智能应用领域的展望

随着人工智能在数字理论技术、自动化控制、机器人应用等方面不断地研究发展,将来,机器必定会无限地接近人的各种行为,通过智能“视觉”“听觉”“触觉”“味觉”“嗅觉”来接收信息,传递信息;通过“电脑”来处理信息,选择和决策;通过智能输出端的“说”和“做”来传递信息发布需求和指令;通过智能肢体“行为”来响应与实施。在人类的日常工作、学习、医疗、安全和可持续发展等领域,人工智能都将尽最大的可能去为人类提供服务。然而无论人工智能发展到哪一步,依然无法在思维、精神、感触和情绪方面全盘取代人脑,仍旧不够人性化和智能化,只能跟随人类对自身智能的开发和研究而尽量接近人类[9]。与此同时,随着大数据类的人工智能的研究与开发,信息安全问题将会凸显,并且成为科学家以后很长一段时间的困扰和研究热点[10]。

4结语

总之,人工智能技术的发展是日新月异的,为将来在更多领域、更广泛的应用人工智能技术提供了更多的可能,但是,这一切都是基于人类对自身智能的充分了解和掌握。为此,还需要很多的知识和技术积累,针对人工智能更大量的应用,科研人员还需要做更多的工作。一方面是开发更多的未知智能,另一方面是完美地将人的智能转化成机器人的智能来为人类生存与发展服务。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇