博舍

新一代人工智能具有五大特点 人工智能算法有何特点包括哪些方面呢

新一代人工智能具有五大特点

科学技术部副部长李萌(刘健摄)

7月21日,国务院新闻办公室举行国务院政策例行吹风会,重点介绍《新一代人工智能发展规划》(以下简称《规划》)的编制情况。科技部副部长李萌在回答记者提问时表示,经过60多年的演进,人工智能出现了一些新特点,包括《规划》当中讲到“它呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点”。新一代的人工智能主要是大数据基础上的人工智能。

李萌指出,人工智能具有以下五个特点:一是从人工知识表达到大数据驱动的知识学习技术。二是从分类型处理的多媒体数据转向跨媒体的认知、学习、推理,这里讲的“媒体”不是新闻媒体,而是界面或者环境。三是从追求智能机器到高水平的人机、脑机相互协同和融合。四是从聚焦个体智能到基于互联网和大数据的群体智能,它可以把很多人的智能集聚融合起来变成群体智能。五是从拟人化的机器人转向更加广阔的智能自主系统,比如智能工厂、智能无人机系统等。

据了解,国际普遍认为人工智能有三类“弱人工智能、强人工智能还有超级人工智能”。弱人工智能就是利用现有智能化技术,来改善我们经济社会发展所需要的一些技术条件和发展功能。强人工智能阶段非常接近于人的智能,这需要脑科学的突破,国际上普遍认为这个阶段要到2050年前后才能实现。超级人工智能是脑科学和类脑智能有极大发展后,人工智能就成为一个超强的智能系统。从技术发展看,从脑科学突破角度发展人工智能,现在还有局限性。《规划》中的新一代人工智能,是建立在大数据基础上的,受脑科学启发的类脑智能机理综合起来的理论、技术、方法形成的智能系统。

跟以往相比,新一代人工智能不但以更高水平接近人的智能形态存在,而且以提高人的智力能力为主要目标来融入人们的日常生活。比如跨媒体智能、大数据智能、自主智能系统等。在越来越多的一些专门领域,人工智能的博弈、识别、控制、预测甚至超过人脑的能力,比如人脸识别技术。新一代人工智能技术正在引发链式突破,推动经济社会从数字化、网络化向智能化加速跃进。

版权所有,转载请注明出处。

人工智能常见算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(SupervisedLearning),无监督学习(UnsupervisedLearning)、半监督学习(Semi-supervisedLearning)和强化学习(ReinforcementLearning)四大类。

常见的监督学习算法包含以下几类:(1)人工神经网络(ArtificialNeuralNetwork)类:反向传播(Backpropagation)、波尔兹曼机(BoltzmannMachine)、卷积神经网络(ConvolutionalNeuralNetwork)、Hopfield网络(hopfieldNetwork)、多层感知器(MultilyerPerceptron)、径向基函数网络(RadialBasisFunctionNetwork,RBFN)、受限波尔兹曼机(RestrictedBoltzmannMachine)、回归神经网络(RecurrentNeuralNetwork,RNN)、自组织映射(Self-organizingMap,SOM)、尖峰神经网络(SpikingNeuralNetwork)等。(2)贝叶斯类(Bayesin):朴素贝叶斯(NaiveBayes)、高斯贝叶斯(GaussianNaiveBayes)、多项朴素贝叶斯(MultinomialNaiveBayes)、平均-依赖性评估(AveragedOne-DependenceEstimators,AODE)贝叶斯信念网络(BayesianBeliefNetwork,BBN)、贝叶斯网络(BayesianNetwork,BN)等。(3)决策树(DecisionTree)类:分类和回归树(ClassificationandRegressionTree,CART)、迭代Dichotomiser3(IterativeDichotomiser3,ID3),C4.5算法(C4.5Algorithm)、C5.0算法(C5.0Algorithm)、卡方自动交互检测(Chi-squaredAutomaticInteractionDetection,CHAID)、决策残端(DecisionStump)、ID3算法(ID3Algorithm)、随机森林(RandomForest)、SLIQ(SupervisedLearninginQuest)等。(4)线性分类器(LinearClassifier)类:Fisher的线性判别(Fisher’sLinearDiscriminant)线性回归(LinearRegression)、逻辑回归(LogisticRegression)、多项逻辑回归(MultionmialLogisticRegression)、朴素贝叶斯分类器(NaiveBayesClassifier)、感知(Perception)、支持向量机(SupportVectorMachine)等。

常见的无监督学习类算法包括:(1)人工神经网络(ArtificialNeuralNetwork)类:生成对抗网络(GenerativeAdversarialNetworks,GAN),前馈神经网络(FeedforwardNeuralNetwork)、逻辑学习机(LogicLearningMachine)、自组织映射(Self-organizingMap)等。(2)关联规则学习(AssociationRuleLearning)类:先验算法(AprioriAlgorithm)、Eclat算法(EclatAlgorithm)、FP-Growth算法等。(3)分层聚类算法(HierarchicalClustering):单连锁聚类(Single-linkageClustering),概念聚类(ConceptualClustering)等。(4)聚类分析(Clusteranalysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(FuzzyClustering)、K-means算法、K均值聚类(K-meansClustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。(5)异常检测(Anomalydetection)类:K最邻近(K-nearestNeighbor,KNN)算法,局部异常因子算法(LocalOutlierFactor,LOF)等。

常见的半监督学习类算法包含:生成模型(GenerativeModels)、低密度分离(Low-densitySeparation)、基于图形的方法(Graph-basedMethods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(DeepQNetwork)、策略梯度算法(PolicyGradients)、基于模型强化学习(ModelBasedRL)、时序差分学习(TemporalDifferentLearning)等。

常见的深度学习类算法包含:深度信念网络(DeepBeliefMachines)、深度卷积神经网络(DeepConvolutionalNeuralNetworks)、深度递归神经网络(DeepRecurrentNeuralNetwork)、分层时间记忆(HierarchicalTemporalMemory,HTM)、深度波尔兹曼机(DeepBoltzmannMachine,DBM)、栈式自动编码器(StackedAutoencoder)、生成对抗网络(GenerativeAdversarialNetworks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-classClassification)、多分类算法(Multi-classClassification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(AnomalyDetection)五种。1.二分类(Two-classClassification)(1)二分类支持向量机(Two-classSVM):适用于数据特征较多、线性模型的场景。(2)二分类平均感知器(Two-classAveragePerceptron):适用于训练时间短、线性模型的场景。(3)二分类逻辑回归(Two-classLogisticRegression):适用于训练时间短、线性模型的场景。(4)二分类贝叶斯点机(Two-classBayesPointMachine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-classDecisionForest):适用于训练时间短、精准的场景。(6)二分类提升决策树(Two-classBoostedDecisionTree):适用于训练时间短、精准度高、内存占用量大的场景(7)二分类决策丛林(Two-classDecisionJungle):适用于训练时间短、精确度高、内存占用量小的场景。(8)二分类局部深度支持向量机(Two-classLocallyDeepSVM):适用于数据特征较多的场景。(9)二分类神经网络(Two-classNeuralNetwork):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。常用的算法:(1)多分类逻辑回归(MulticlassLogisticRegression):适用训练时间短、线性模型的场景。(2)多分类神经网络(MulticlassNeuralNetwork):适用于精准度高、训练时间较长的场景。(3)多分类决策森林(MulticlassDecisionForest):适用于精准度高,训练时间短的场景。(4)多分类决策丛林(MulticlassDecisionJungle):适用于精准度高,内存占用较小的场景。(5)“一对多”多分类(One-vs-allMulticlass):取决于二分类器效果。

回归回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:(1)排序回归(OrdinalRegression):适用于对数据进行分类排序的场景。(2)泊松回归(PoissionRegression):适用于预测事件次数的场景。(3)快速森林分位数回归(FastForestQuantileRegression):适用于预测分布的场景。(4)线性回归(LinearRegression):适用于训练时间短、线性模型的场景。(5)贝叶斯线性回归(BayesianLinearRegression):适用于线性模型,训练数据量较少的场景。(6)神经网络回归(NeuralNetworkRegression):适用于精准度高、训练时间较长的场景。(7)决策森林回归(DecisionForestRegression):适用于精准度高、训练时间短的场景。(8)提升决策树回归(BoostedDecisionTreeRegression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。(1)层次聚类(HierarchicalClustering):适用于训练时间短、大数据量的场景。(2)K-means算法:适用于精准度高、训练时间短的场景。(3)模糊聚类FCM算法(FuzzyC-means,FCM):适用于精确度高、训练时间短的场景。(4)SOM神经网络(Self-organizingFeatureMap,SOM):适用于运行时间较长的场景。异常检测异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:(1)一分类支持向量机(One-classSVM):适用于数据特征较多的场景。(2)基于PCA的异常检测(PCA-basedAnomalyDetection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(InductiveTransferLearning)、直推式迁移学习(TransductiveTransferLearning)、无监督式迁移学习(UnsupervisedTransferLearning)、传递式迁移学习(TransitiveTransferLearning)等。

算法的适用场景:需要考虑的因素有:(1)数据量的大小、数据质量和数据本身的特点(2)机器学习要解决的具体业务场景中问题的本质是什么?(3)可以接受的计算时间是什么?(4)算法精度要求有多高?

有了算法,有了被训练的数据(经过预处理过的数据),那么多次训练(考验计算能力的时候到了)后,经过模型评估和算法人员调参后,会获得训练模型。当新的数据输入后,那么我们的训练模型就会给出结果。业务要求的最基础的功能就算实现了。

互联网产品自动化运维是趋势,因为互联网需要快速响应的特性,决定了我们对问题要快速响应、快速修复。人工智能产品也不例外。AI+自动化运维是如何工作的呢?

参考:《人工智能产品经理–AI时代PM修炼手册》作者:张竞宇

什么是人工智能人工智能有哪些特点

  刷脸认证、自动驾驶、大数据推送、智能音箱、手术机器人……人工智能在各行各业得到了广泛的应用,数据伪造、算法瓶颈、隐私保护、道德困境等问题也日益突出。AI基础设施建设必须从提高自身底层能力入手,以内生动力突破三个关卡:算法关、数据关、应用关,迈向算法可靠、数据安全、应用可控的第三代人工智能。接下来小编就给大家带来什么是人工智能、人工智能有哪些特点的相关介绍,一起来看看吧。

什么是人工智能?人工智能有哪些特点?

一、什么是人工智能?

  人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

  人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

  人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

二、人工智能有哪些特点?

  首先,是从人工知识的表达转向大数据驱动的知识学习技术。由分类化的多媒体数据处理转变为跨媒体的认知、学习、推理,本文所说的“媒体”并非新闻媒体,而是界面或环境。

  其次,从追求智能化机器到高层次人机、脑机的相互协同与融合。从对个体智能的聚焦,到基于互联网和大数据的群体智能,它能将多个人的智能集合融合在一起成为群体智能。

  第三,是从拟人机器人向更广泛智能自主系统的转变,如智能工厂、智能无人机系统等。世界范围内对人工智能有三种看法:弱人工智能,强人工智能和超级人工智能。

  第四,弱人工智能是指利用现有的智能技术,改善我国经济社会发展所需的某些技术条件和功能。强人工智能阶段与人类智能非常相似,需要脑科学的突破,而国际上普遍认为,这一阶段将在2050年左右实现。

  第五,在脑科学和类脑智能得到长足发展之后,人工智能成为一种超强智能系统。在科技发展的今天,从脑科学突破的角度来发展人工智能,仍然有局限性。

  如何将人工智能(AI)引入计算领域,让机器从经验中学习,做出与人相似的决策,这在过去十年里得到了广泛的讨论,这几乎改变了我们经济的每个环节。

  AI技术被广泛应用于帮助企业将日常工作自动化,通过分析客户的行为来更好地了解客户,降低运营成本,以及在不同行业提供个性化服务的产品,无论是金融银行,还是交通运输,安保,医疗保健等领域,都逐渐显示出AI的独特优势。随着人工智能技术不断发展,不断涌现出新算法、新代码,新产品进入市场的机会大大增加,但不可授权使用和恶意篡改的风险无疑也在增加,数字版权保护任重道远。以上就是小编为大家带来的什么是人工智能、人工智能有哪些特点的相关介绍,希望对您有帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇