人工智能导论课程论文:人工智能及其发展趋势
摘要:人工智能,又简称AI,它是当今最火的一门科学,是研究使计算机来完能表现出人类智能的任务的学科。主要包括计算机实现智能的原理,制造类似于人脑的智能计算机,以及使计算机更巧妙些实现高层次的应用。人工智能科学,它起源于近代,在电气时代随着计算机科学的发展,以及生物学,脑科学等相关科学的发展,极大地推动了人工智能的发展。人工智能还涉及信息论、控制论、自动化、仿生学、生物学,数理逻辑、语言学、心理学等多门学科。导致其非常复杂,所以其研究领域也分成许多方面,从最开始的博弈论,专家系统,模式识别,神经网络,机器学习到现在大热的深度学习。其应用领域,也非常之多,比如机器翻译,语音交互,ORC,图像识别,智能驾驶等等。自从谷歌的阿尔法狗在围棋打败了人类棋手,人工智能也进入了一个新的发展阶段,如今各国,各大公司都在大力发展人工智能技术,争取在新时代把握先机,把握未来。人工智能即将在无人驾驶,机器翻译,语言交互等应用领域取得巨大成功。即使如此,人工智能现在还是处于弱人工智能阶段,人工智能还面临着许多问题和挑战。向强人工智能发展的道路上,仍然充满巨大的困难。
关键词:人工智能
人工智能应用场景及未来发展趋势 一 什么是人工智能人工智能是当前比较热门的科学和各国重点发展的前沿技术,但人工智能(Artificial Intell
来源:雪球App,作者:玖点半,(https://xueqiu.com/2857816313/132432573)
一.什么是人工智能
人工智能是当前比较热门的科学和各国重点发展的前沿技术,但人工智能(ArtificialIntelligence,缩写为AI)一词的出现,却是早在1956年由麦卡赛、明斯基、罗切斯特和申农等一批具有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题时提出来的,它也标志着"人工智能"的正式诞生。
人工智能是指通过计算机实现人的头脑思维所产生的效果,是对能够从环境中获取感知并执行行动的智能体的描述和构建。从狭义认知角度来讲,人工智能可分为人工智能产业(包含技术、算法、应用等多方面的价值体系)、人工智能技术(包括凡是使用机器帮助、代替甚至部分超越人类实现认知、识别、分析、决策等功能)两大类。
人工智能得到快速发展的时期,是2008年金融危机之后,美日欧等西方发达国家希望借助机器人实现再工业化。此时的工业机器人比以往任何时候都发展的更快,更加带动了人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。
而企业层面,目前在人工智能领域领先的企业,包括IBM、谷歌、微软、苹果、东芝、三星等大型科技企业,国内人工智能领先的企业,包括百度、科大讯飞,中国国家电网、阿里、腾讯以及一些新兴科技企业,如商汤科技、云从科技、码隆科技、影普科技、Yi+等。
二.国内人工智能应用领域及产值规模2.1.国内人工智能应用领域及产业规模人工智能作为科技创新产物,在促进人类社会进步、经济建设和提升人们生活水平等方面起到越来越重要的作用。国内人工智能经过多年的发展,已经在安防、金融、客服、零售、医疗健康、广告营销、教育、城市交通、制造、农业等领域实现商用及规模效应。
2018年国内人工智能技术为实体经济贡献收益规模达到251.1亿元人民币,而据艾瑞咨询预测数据,2019年人工智能将为实体经济贡献收入超570亿元,到2022年贡献收入将达到1573亿元,年复合增长率达到58.2%。
在2018年人工智能251.1亿元市场规模中,安防领域占比份额最高为53.8%,其次则是金融领域,份额占比为15.8%。
2.2.人工智能在安防领域的应用安防是为数不多的可以将人工智能成熟应用并落地的行业,为此,安防也被认为是人工智能的第一着陆场。这是因为人工智能在安防领域的快速落地,除了不需要过多的基础建设之外,也得益于全国范围内安防设备的普及以及政府部门大力发展雪亮工程、智慧城市、平安城市、智慧交通、天网工程等公共安全领域项目工程的推动。其中,2018年公共安全领域安防贡献的市场份额就超过70%。
人工智能在安防领域的应用主要是利用其视频结构化(视频数据的识别和提取技术)、生物识别技术(如指纹识别、人脸识别等)以及物证特征识别(如目前大力推广的ETC对车牌的识别等)等三大特性。其改变了过去需要通过人工取证、被动监控的安防形态,视频数据的识别和提取分析,使人力查阅监控的时间大大缩短,而生物识别又大大提升了人物识别的精准性,极大提升了公共安全治理的效率。
2018年,我国“AI+安防”软硬件市场规模达到135亿元(不含C端用户),其中视频监控占比达到88.1%,据艾瑞咨询预测2019年将达到350亿元,而到2022年,安防规模将超过700亿元,复合增长率将达到51.45%。
2.3.人工智能在金融领域的应用
人工智能在金融领域的应用仅次于安防,这要得益于移动互联网、区块链、云计算、大数据等新技术的日趋成熟,为金融行业的智能化转型升级奠定重要基础。
从技术层面,人工智能的本质上是机器通过大量的数据训练作出智能决策,人工智能能够赋予机器具有理解力的“大脑”,让机器能够解读文字、数据所包含的“语义”,通过自学的方式获得判断的规则。金融行业作为高度数据化的行业,加之业务规则和目标明晰,是人工智能、大数据处理技术和云计算等数据驱动技术的最好应用场景。以此同时,在互联网时代,金融行业的在线业务将成主流,数据量的激增,超出了人的经验范畴和处理能力,而这些却是人工智能最擅长处理的。人工智能正在对金融产品、服务渠道、服务方式、风险管理、授信融资、投资决策等带来新一轮的变革。
2018年国内金融领域人工智能相关科技投入(包括软件和硬件设备)约为166.8亿元,较2017年增速为42.9%,到2022年人工智能相关投入将超580亿元,年复合增长率超过37%,其中银行是人工智能相关应用的主要投入方,占比超过70%。
目前,人工智能在金融业的应用,主要集中在智能支付、智能理赔、智能投顾、智能客服、智能营销、智能投研、智能风控等场景,这些场景又以银行最具有代表。
2.3.1.智能客服智能客服是人工智能在金融领域应用最广的。智能客服机器人取代了传统菜单式语音和人工客服模式,能够提供7*24小时的客服服务。智能客服在电话场景当中主要表现为机器管理和语音问答分析,智能客服可以通过深度学习文本中的对话、语音对话场景,并加以应用回复。智能客服目前在银行领域应用最广,平安银行的客服服务人工智能替代率超过80%,其服务量也提升了两至三倍,客服的人力降低了40%。
2.3.2.智能投顾智能投顾,即人工智能投资顾问,其是通过人工智能的深度学习和分析能力,为客户提供个人理财产品策略咨询,包括股票配置、基金配置、债权配置、交易执行、投资损失避税等策略。智能投顾的最大特点,是弱化“人性”,在基于大数据分析、AI算法等的前提下,一旦投资者选定了某种方案,资产的进出抛售就会严格按照既定的标准实行。
智能投顾的应用,最早可追溯到2016年年底,“摩羯智投”在招商银行手机APP的上线。目前,智能投顾已成为银行、券商、保险等金融机构的标配型服务。
2.3.3.智能风控金融行业在传统风控环节中,存在信息不对称、成本高、时效性差、效率低等问题。而智能风控因为引入了人工智能科技,使得贷前审核、贷中监控和贷后管理等环节效率和准确度都得到了极大的提升,智能风控还能促进风险管理差异化。另外智能风控在信用反欺诈、骗保反欺诈、异常交易行为等方面也发挥了越来越重要的作用,为金融行业欺诈风险的分析和预警监测提供坚实的技术支持。
2.3.4.智能投研与智能投顾相比,智能投研主要面对B端企业用户,为其提供辅助投研的工具。对于金融机构来说,人工智能技术的介入,使得传统投研的各个环节发生一定的优化和革新,解放大量基础的投研信息搜集类工作,而前期信息搜集的耗时性和不全面性,也是传统投研中较为主要的缺陷。智能投研是在金融数据基础上,通过深度学习、自然语言处理等人工智能方法,对数据、事件、结论等信息进行自动化处理和分析,为金融机构提供投研支持。
2.4.人工智能在客服领域的应用前文金融领域中已经提到了智能客服的应用,当然智能客服不仅仅只限于金融行业,在其他行业也运用得越来越广。客户服务引入人工智能技术后,整体上节省了10%以上的运营成本。另外,通过对语音等非标准化数据的识别,企业能沉淀下一手数据资源,为后续精准营销、产品升级等环节做好铺垫。
据艾瑞咨询数据,2018年,国内智能客服业务规模达到27.2亿元,其中以智能客服机器人为代表的人工智能应用业务规模达到7.9亿元,预计2022年智能客服业务规模将突破160亿元,年复合增长率为56%,人工智能应用业务规模突破70亿元。
2.5.人工智能在零售领域的应用人工智能在零售领域的应用已经十分广泛,包括无人便利店、智慧供应链、客流统计、无人仓储等细分领域。人工智能通过深度学习以及计算机视觉、图像智能识别、大数据应用等技术,使得工业智能机器人可通过自主判断和行为学习,完成各种复杂的任务,包括在商品分拣、运输、出库等环节实现自动化。另外,将人工智能技术应用于客流统计工作中,其通过人脸识别客流统计功能,门店可以从性别、年龄、表情、新老顾客、滞留时长等维度建立到店客流用户画像,为调整运营策略提供数据基础,帮助门店运营从匹配真实到店客流的角度提升转换率。
2018年中国现代渠道主要零售商数字化建设投入为285.1亿元,其中人工智能投入约为9亿元,占比3.15%,据预测,到2022年其数字化建设投入将突破700亿元,人工智能投入将超过178亿元,占比超过25%,这主要得益于阿里巴巴、京东、苏宁等零售巨头的推动,以人工智能应用为代表的新零售概念处于增长的上升通道,未来两年将保持较高增速。
而以计算机视觉技术为核心的人脸识别和商品识别是主要建设方向,相关投入占整体的55%以上。另外,零售领域供应链的优化最为复杂,对人工智能算法的可用性要求最高,但更靠近零售业的核心点,未来可释放的增益价值也将最大。
三.人工智能未来发展趋势目前,人工智能的研究及应用主要集中在基础层、技术层和应用层三个方面,其中基础层以AI芯片、计算机语言、算法架构等研发为主,技术层以计算机视觉、智能语音、自然语言处理等应用算法研发为主;应用层以AI技术集成与应用开发为主。而国内人工智能企业多集中在应用层,占比高达77.7%,技术层和基础层企业占比相对较小,分别只占有17.9%和5.4%。当然,未来随着5G的建设普及以及科技进步,人工智能除了在语音识别、计算机视觉技术的继续拓展和实地运用外,在人工智能芯片、机器学习、神经网络等方面也将引来增强趋势,人工智能也将在越来越多的领域得到应用落地。
另外,人工智能与物联网的结合(即AIoT)也将更紧密,AI的介入让物联网有了连接的大脑,使得万物互联互通成为现实,未来或将颠覆现有的产业模式。经济方面,助力产业价值链延伸,目前产业很难依靠既有技术与业务模式打破产业生命周期,AIoT通过设备感知与数据分析支撑新的产品形态与服务模式落地,开拓新的市场空间,产生新的发展周期。社会发展方面,数据价值得到挖掘,实现大量线下数据线上化,实现自动高效处理。
$海康威视(SZ002415)$$上证指数(SH000001)$$沪深300(SH000300)$
人工智能的历程、现状及未来发展趋势
谭铁牛院士在第十九次中科院院士大会上发表了《人工智能:天使还是魔鬼》的主题报告,深度解读了60多年来人工智能发展历史,人工智能的七大现状,发展趋势、展望和现有人工智能的局限性等。面对各界对人工智能的期待和愿景,谭院士认为:“人工智能的春天刚刚到来”。
随着科学技术的发展,人工智能正越来越多地进入并改变着我们的日常生活。当你在网上购物时,对话式线上机器人能准确理解你的需求,迅速解决问题;在医院,人工智能可以帮助医生检测病情……可以说,人工智能正深刻地改变着人类的认知与生活。但同时,人工智能的发展也给人类带来一丝隐忧。
本报告将全方位剖析人工智能的发展历程、发展现状及未来发展趋势,分析人工智能发展带来的到底是什么。
01人工智能的基本概念和发展历程
1. 人工智能学科的起源
2. 人工智能的基本概念
研究目的:探寻智能本质,研制出具有类人智能的智能机器
研究内容:能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统
表现形式:
会看:图像识别、文字识别、车牌识别
会听:语音识别、说话人识别、机器翻译
会说:语音合成、人机对话
会行动:机器人、自动驾驶汽车、无人机
会思考:人机对弈、定理证明、医疗诊断
会学习:机器学习、知识表示
3. 人工智能的发展历程
4. 人工智能发展历程的重要启示
尊重发展规律是推动科技健康发展的前提
基础研究是科技可持续发展的基石
应用需求是科技创新的不竭之源
学科交叉是创新突破的”捷径”
宽容失败应是支持创新的题中应有之义
实事求是设定科学目标
02人工智能的发展现状
人工智能60余年的发展道路虽然起伏曲折,但成就可谓硕果累累。无论是基础理论创新、关健技术突破,还是规模产业应用,都是精彩纷呈,使我们每一天都享受着这门学科带来的便利。
人工智能因其十分广阔的应用前景和重大的战略意义,近年来日益得到社会各界的高度关注。
1. 专用人工智能取得突破性进展
面向特定领域的人工智能(即专用人工智能)由于应用背景需求明确、领域知识积累深厚、建模计算简单可行,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。
专用人工智能成功应用↓
2. 统计学习成为人工智能走向实用的理论基础
2.1技术发展
2.2强化学习
通过奖惩机制构建智能体与环境的交互与行为策略,能够与深度学习相结合在策略类问题上达到实用。
2.3生成对抗学习
构建生成器模型与判别器模型,通过相互博弈,达到生成器与判别器性能的协同提升。
3. 产业史:新老IT巨头抢滩布局IT生态
人工智能创新创业如火如荼:
2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
4. "智能+"成为人工智能应用的创新范式
"智能+X"应用范式日趋成熟,AI向各行各业快速渗透融合进而重塑整个社会发展,这是人工智能驱动第四次技术革命的最主要表现方式。
5. 世界各国人工智能竞争白热化
6. 人工智能的社会影响得到广泛关注
7. 人工智能领域的误解和炒作普遍存在
机器学习≠人工智能
深度学习≠机器学习
图像识别≠人工智能
大数据≠人工智能
专家系统≠人工智能
机器人≠人工智能
专用人工智能≠通用人工智能
…….
8. 人工智能总体发展水平仍处于起步阶段
通用人工智能研究与应用依然任重道远。
现有人工智能的局限性:
9. 人工智能发展的瓶颈问题
10.人工智能的未来发展趋势
03人工智能有望引领新一轮科技革命
人工智能将是未来十年最具变革性的技术,无处不在的人工智能将成为趋势。
1. 从专用智能到通用智能
如何实现从专用智能到通用智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的挑战问题。
2. 从机器智能到人机混合智能
人工智能(或机器智能)和人类智能各有所长.因此需要取长补短,融合多种智能模式的智能技术将在未来有广阔的应用前景。"人+机器"的组合将是人工智能研究的主流方向,"人机共存"将是人类社会的新常态。
3. 从"人工+智能"到自主智能系统
4. 学科交叉将成为人工智能创新源泉
5.人工智能产业将蓬勃发展
6. 人工智能的法律法规将更为健全
7. 人工智能将成为更多国家的战略选择
8. 人工智能教育将会全面普及
结语
人工智能经过60多年的发展已取得了重大进展,但总体上还处于初级阶段。
人工智能既具有巨大的理论与技术创新空间,也具有广阔的应用前景。
高科技本身没有天使和魔鬼之分,人工智能亦是如此。人工智能这把双刃剑是天使还是魔鬼取决于人类自身。
我们应未雨绸缪,形成合力,确保人工智能的正面效应,确保人工智能造福于人类。
11月25日,模式识别与人工智能学科前沿研讨会在自动化所召开。会上,谭铁牛院士做“人工智能新动态”报告,回顾了近代以来历次科技革命及其广泛影响,并根据科学技术发展的客观规律解释了当前人工智能备受关注的深层原因。报告深入分析了其当前存在的局限性和面临的瓶颈问题,整理并列举了2017年人工智能的十件大事,全方位、多维度展示了人工智能所取得的最新进展。基于对这些事件的深入分析,报告总结了人工智能未来的发展趋势和值得关注的研究方向。
在科学研究中,从方法论上来讲都应先见森林,再见树木。为了更好地带领大家认识人工智能的发展趋势,报告回顾了近代世界科技发展的历史进程,主要包括从16世纪到现在,世界上发生的两次科学革命与三次技术革命。
报告指出,这五次科技革命对人类文明进程带来了根本性的变革,也影响了整个国际格局的调整,伴随着大国兴衰。过去的五次科技革命,我们国家都没有占据主导地位甚至严重缺席,因此我们国家的GDP从曾经占全球的三分之一以上下滑到新中国建立前仅占全球大约百分之几,我们应该从这惨痛的经历中吸取教训。
最近的一次科技革命是一次技术革命,其开始于上世纪四十年代,以1946年计算机的出现为标志,距今已有六十多年。这六七十年中科学技术没有大的突破与进展,没有取得能够与上个世纪上半叶相提并论的科学与技术成果,谭老师将这段时间称为科技革命的空窗期。
报告认为,科学沉寂了大概60多年,新一轮的科技革命正处于孕育过程中并且已经曙光可见。新一轮的科技革命会是一次技术革命,而且人工智能有望引领这一轮新的技术革命。以1776年蒸汽机的发明为标志的第一次科技革命解放了人类的体力,使人类社会发展进入第一次重大飞跃,其为第一次机器革命。现在以人工智能为代表的第二次机器革命,以及以其为主要核心技术驱动的新一轮技术革命和产业变革将极大的拓展人的脑力,成为人类社会发展进程的又一次重大飞跃。相比较而言,脑力的拓展比体力的拓展更为重要。
报告还回顾了人工智能60多年的发展过程,并指出应该从曲折的发展过程中吸取教训,不要给人工智能设置不切实际的过高目标,尤其是在人工智能特别火爆的时候。报告指出,这两年人工智能有些过火,应降降温,回归理性。