人工智能如何在物流领域应用我们梳理了14个环节的案例
资料图
从行业作业性质看,人工智能在物流行业应用前景可观,首先有丰富的场景,其次有大量重复的劳动,再次物流作业的高效离不开数据规划与决策,而这些因素正是和人工智能应用相匹配的。而今,我们也不断看到领先企业在人工智能方面的研发与应用。随着国家发力推进新基建,人工智能的爆发前景可期。那么,具体到物流领域,人工智能究竟有哪些落地场景?本文从仓(园区管理、仓储管理)-干(无人驾驶、车辆管理)-配(分单、调度、配送),以及其中涉及的装卸、搬运、盘点、客服等环节梳理如下:
01
表单处理
物流行业有许多表单、文档数据,人工智能技术中的计算机视觉和深度学习就可以在这一场景中应用。
比如腾讯云的OCR技术:通过计算机视觉结构化识别表单内容,能够快速便捷地完成纸质报表单据的电子化,大幅避免人工输单;对文档扫描件或者图片中的印章进行位置检测,内容提取,实现自动化一致性比对;独有的手写文字识别技术可以精准识别出手写文字、数字、证件号码、日期等,实现带有手写文字的扫描件或图片数字化处理。
目前,中外运、顺丰等均有与腾讯云合作应用该技术。以中外运的北京奔驰进口报关业务为例。因为零部件的单据非常复杂,一个零部件涉及的单据可能100多页,以往一页一页的录,四个人要花一周时间,如今应用了人工智能技术,一个人40分钟就可以解决,且准确率极高。
02
园区管理
表单处理完,货物进入园区。随着IOT、5G等技术的应用,人工智能在园区管理上同样可以发挥重要作用,比如监测、采集场院内车辆信息,提供车辆装载率、车辆调度、运力监测和场地人员能效等基础数据,优化运力成本;再比如对人员工作情况进行管理,规避员工不规范甚至危险的操作。
2018年,菜鸟网络曾宣布全面启动物流IoT(物联网)战略,并向全行业发布了全球首个基于物流IoT的“未来园区”。这是IoT、边缘计算和人工智能等前沿技术第一次在物流领域的大规模应用,“未来园区”可以识别每一个烟头、监控每一个井盖,实时保障园区安全、高效运转。
2019年,京东物流披露,其已建成的5G智能园区,通过5G+高清摄像头,不仅可以实现人员的定位管理,还可以实时感知仓内生产区拥挤程度,及时进行资源优化调度;5G与IIoT的结合,帮助对园区内的人员、资源、设备进行管理与协同;5G还帮助园区智能识别车辆,并智能导引货车前往系统推荐的月台进行作业,让园区内的车辆更加高效有序。这中间同样是以人工智能技术为底层依托。
03
搬运
从园区进入仓内,其中必然要发生的一个动作就是装卸。货物识别+机器人与自动化分拣则可大大降低人类的劳动量。举例来说,AMR(AutomaticMobileRobot)即自主移动机器人,是目前发展和应用较快的技术。与传统AGV不同的是,AMR的运行不需要地面二维码、磁条等预设装置,SLAM系统定位导航为其装上了“一双眼睛”,让其可以实现高效的搬运和拣货作业。
以AMR商业化项目落地领先的灵动科技为例,其率先将计算机视觉技术与多传感器输入相结合,让其机器人实现了真正的视觉自主导航。据介绍,灵动视觉AMR能够帮助企业实现人效提升2倍以上、拣货成本下降超过30%的“降本增效”成果。
04
装卸
2019年,顺丰对外发布的“慧眼神瞳”一度备受关注,这也是顺丰科技人工智能计算机视觉成果在业务场景的落地突破。其实简单地说,“慧眼神瞳”就是利用各种视频和图像进行自动化分析的人工智能系统。比如中转场的装卸口环节,将摄像机部署在装卸口,通过分析车辆到离卡行为、车牌识别、车辆装载率、人员工作能效等基础数据,就可以刻画出装卸口作业场景的完整生产要素,将所有作业数据线上化,持续优化各项运营成本,优化运转效率。
同样,与华为云合作的德邦快递,也有类似技术应用。比如,可以通过AI来监控快递分拣的场地、场景,抓取对货物搬运不规范的情况,从而让业务员或者理货员操作的规范程度大大提高。
如果说上述场景的应用是在“助人”,无人叉车的应用则是在“替人”。2018年,物流指闻曾见证:德邦快递与智久共同宣布,作为德邦快递无人智慧物流的发展探索,首款无人叉车将应用于德邦快递浦东分拨中心。当时,智久机器人相关负责人介绍说,改进后的无人叉车采用“无人叉车+智能托盘+多层货架+JDS(调度系统)+LMS(库位管理系统)”的形式进行实地操作、多机调度、多车协同,同时通过RFID及传感器等进行智能路径规划。经测试新解决方案可使仓内成本下降30%,total毛利润增加7%。
05
盘点
库存盘点也是仓储管理的重要一环。如何保证盘点的准确高效?人工智能同样可以提供助力。
一汽物流就与百度云合作,运用无人机航拍取代人工盘点。简单来说,所谓无人机取代人工,就是无人机通过获取图像数据,基于视觉识别技术模型进行自动分析,并快速识别子库区,及库内汽车数量、车辆所在的车位号、与库存系统进行实时比对,如果实际数量与库存数量不吻合,将对异常数据进行警示,实现库存自动盘点。经过多次的数据训练,可将无人机准确识别率提升至100%。
此外,无人机还有报警、提示等功能,当实拍图与从LVCS获取车辆位置信息形成的图示有差异时,将会第一时间提示工作人员,查漏补缺,避免产生重大损失。
06
仓储系统
在仓内投入大量的机器人等设备,就需要一个系统进行管理,就像身体需要大脑。
旷视科技就曾发布AIoT操作系统——河图(HETU)。据介绍,河图是旷视科技推出的首个智能机器人网络协同大脑是一套致力于机器人与物流、制造业务快速集成,一站式解决规划、仿真、实施、运营全流程的操作系统。旷视河图与机器人硬件设备相结合,不仅体现了河图对整个作业节奏的控制、连接运维等能力,实现了人、设备、订单、空间、货的高效协同。
2019年,极智嘉(Geek+)也曾宣布,推出实体智慧物流版的aPaaS(applicationplatformasaservice)系统——“极智云脑”。极智云脑能够让客户轻松重构其解决方案,并在云端高效部署,自由调度机器人和各种设备,实现高度灵活的智能化系统,极大降低了智慧物流的部署门槛,让AI触手可得。
而针对无人仓内容物流机器人数量多、设备模型、接口、技术特点驳杂繁多,设备巡检和及时维护工作量大,京东物流也推出了X仓储大脑。据介绍,X仓储大脑自2018年8月投入应用,在人工智能等技术的助力下,提升规划、运营监控及维保效率高达80%,降低人力成本高达50%。
07
无人驾驶
运输是物流的重要一环,人工智能在该环节的应用也表现在多个方面,比如无人驾驶、车队管理、智能副驾等等。以最熟知的无人驾驶为例,要实现无人驾驶,要依靠三个环节感知、处理以及执行,这均离不开人工智能。
此前不久,自动驾驶货运初创企业图森未来(TuSimple)宣布,获得美国卡车制造商Navistar(纳威斯达)投资,双方将共同研发L4级无人驾驶卡车。图森未来表示,争取在2024年前量产无人驾驶卡车。目前,图森未来拥有一支超过50台卡车的无人驾驶车队,并服务于包括UPS(美国联合包裹)、McLane(麦克莱恩)在内的18位客户。2017年6月,图森未来获准在加州展开自动驾驶汽车路测。
而除了图森未来,赢彻、智加、驭势等均在研发相关技术,包括亚马逊、京东等多家企业也尝试提出了各种解决方案,并已经有一些商用测试。
当然,相比于公路运输,封闭的港口园区落地或更快速。2018年4月3日,图森未来就对外发布全球首个无人集卡车队港区内测试视频,宣布进入港内集装箱卡车无人驾驶运输市场。
08
智能副驾
看完“无人”,再说“有人”。驾驶从来不是一份安全的工作,对于长时间驾驶的司机尤甚,而计算机视觉则给了车辆发现危险的“眼睛”。
物流指闻曾见证过中寰卫星导航通信有限公司发布智能副驾产品。其智能副驾依托车载智能硬件T-Box、ADAS和DMS设备,通过传感器数据融合和智能算法,结合ADAS地图等位置服务,从“人、车、路”三方面建立协同的安全管理机制,及时感知道路运输过程中的不安全因素,并通过监控管理平台实时呈现、预警,以安全共管云平台方案为商用车安全管理提供工具、手段和依据,降低风险、减少隐患,以实时在线的虚拟“副驾驶”。当司机有风险系数不大的行为时,设备将启动报警,并上报平台,形成日报月报,提供给车主甚至保险公司。如果出现重大风险,立即启动本地报警,如果本地报警没有引起司机重视,则引入管理者介入;如果管理者依然还没有解决,则会启动亲情电话,让司机的妻子或者儿子在线提醒。
09
装载
除了安全,运输另外一个关注点在于装载率,如何能装更多的货?基于大数据积累和AI深度学习算法,G7数字货舱就可以实时感知货物量方,自动记录量方变化曲线,时刻知晓装载率。通过AI摄像头和高精度传感器对厢内货物进行图像三维建模,保证货物运输状态全程可视化,并智能管控装车过程和装车进度。
其发布智能挂车“数字货舱”V9版,还搭载了业界首创的“量方”功能。“量方”功能,采用了传感器+AI算法,对舱内货物进行高精度扫描+三维图像建模,最终自动计算出货舱容积占用百分比,实现精准装载。不仅如此,货舱在装载过程中“哪里空”、“哪里满”,都将以全3D方式呈现。通过对货舱空间更合理地利用,时刻保证车辆的真正满载。
除上述应用外,资料显示,在货车、轮船和飞机上安装与AI程序相连的传感器,也可以大大改善车队管理。这些程序可以监控油耗,针对减少石油和天然气的使用提供方法建议,以及在昂贵且耗时的重大故障发生之前主动提供维修意见。
10
无人机配送
配送是货物流动过程的最后环节,也是物流链条上人力资源投入最重的环节。目前,在这一环节,常见的科技创新是无人机与无人车配送。
亚马逊于2013年提出的PrimeAir业务,将无人机引入物流领域。国内顺丰、京东、中通等企业也纷纷跟进。2019年5月,中外运敦豪与亿航智能签署战略合作协议,并发布了国内首个全自动智能无人机物流解决方案。当时,物流指闻在现场也见识了无人机+智能包裹柜的创新应用。
当时应用的是亿航天鹰(Falcon)物流无人机进行派送。该机型采用4轴8桨多旋翼结构、全备份多冗余设计、智能安全飞控算法,可实现垂直起降、视觉识别精准定位、智能规划航线、全自动飞行、实时联网调度,最大载重5公斤的快递包裹,可将单程派送时间从40分钟大幅缩短至8分钟。作为此次发布的全自动智能无人机物流解决方案的一部分,专门开发的DHL智能柜能够与无人机高度自动协作、无缝接驳,并可以实现无人机的自动起飞、降落,挂仓的自动装卸载,快件的自动分类和基于身份比对以及实名认证的快件存取等一系列智能功能。
11
无人车配送
无人配送车是应用在快递快运配送与即时物流配送中低速自动驾驶无人车,其核心技术架构与汽车自动驾驶系统基本一致。在新闻当中,我们也时常听说京东、菜鸟、美团、苏宁等无人配送车在小区校园等封闭区域配送、快递员接驳等多种场景中应用和测试。
比如,2016年就有一款名为菜鸟小G的自动送包裹的机器人在阿里西溪园区亮相。2019年8月,苏宁物流对外公开5G无人配送车的路测实况,这也是5G技术应用从实验阶段走向商业化应用。
研发方面,代表企业如九号机器人。2018年,其与美团进行了合作,并联合发布了Segway配送机器人S1。这是九号机器人在智能服务机器人领域的“试水”。在一年的时间里,S1代产品已经运行了5000+公里,积累了大量的运营数据。而后,九号机器人又新发布了Segway配送机器人S2与Segway室外配送机器人X1。
12
调度
文章开头说,数据是提高物流效率的重要工具,一个体现就是以运筹学等为代表的工具进行调度与规划。而这方面,算力+算法+数据“喂养”的人工智能也能大展身手:借助人工智能技术,实现物流运配环节车辆、人员、设备等作业资源的协调统一,使作业效率最大化。
以外卖为例,资料显示:美团实时智能配送系统是全球最大规模、高复杂度的多人多点实时智能配送调度系统。能够基于海量数据和人工智能算法,在消费者、骑手、商家三者中实现最优匹配,同时需要考虑是否顺路、天气如何、路况如何、消费者预计送达时间、商家出餐时间等复杂因素,实现30分钟左右准时送达。
而,饿了么的智能调度系统方舟,通过使用深层次神经网络与多场景智能适配分担,引入“大商圈”概念,为平高峰不同场景建立了不同的适配模型。得益于深度学习与多场景人工智能适配分单,该系统能实时感知供需、天气等压力变化,对预计送达时间,商户出餐时间、商圈未来订单负载等做出精准预测,用户的订单将会在最优决策下被匹配最佳路径,保证配送效率和体验。
13
分单
看完外卖的例子,再看一个快递的例子。分单是快递的重要一个环节。人工智能的应用,使其实现了从人工分单到人工智能分单的转变。
以送往北京的包裹为例,过去包裹到达北京的转运中心之后,需要专门的人工对包裹进行区分,哪些去往海淀区,哪些去往东城区,会被写上不同的编号。到达网点之后要经过再次分拨,到达配送站之后,快递员之间需要第三次分拨。这些分单工作人员,要达到熟练至少要经过半年的训练,一个转运中心大则100多号人三班倒工作,小的也需要几十人,还会经常发生错误,出现类似去往北京的包裹意外来到了深圳这样的问题,严重影响派送效率和消费者体验。
菜鸟网络通过人工智能技术,大规模的机器学习,处理海量数据,实现智能分单。包裹发出时,就会对包裹要去往的网点以及快递员做出精准的对应,并在面单上标识出编号,无需再由人工手写分单。包裹到达转运中心、网点以及配送站之后,工作人员根据编号即可判断包裹的分配,分单准确率达到99.99%,效率也得到提高。
14
客服
以言语理解为核心的认知智能研究也是人工智能领域的核心研究之一,目标是让机器具备处理海量语音内容和认识理解自然口语的能力,并在此基础上实现自然的人机交互。在日常生活中,小度、小爱等都是代表案例。而在物流快递业当中,其可以应用的场景之一是客服。客服不容易,人员流失率也高,有报道称客服岗每年离职率高达50%,为此巨头都在打造智能客服系统。“三通一达”、顺丰和美团、饿了么为主的头部公司均已上线了语音和文字智能客服,其服务半径辐射80%以上终端消费者。菜鸟也曾发布语音助手这一产品。
以圆通速递为例,圆通速递在2017年开始相继在官网、微信等渠道上线国内版智能在线机器人客服,代替或协助人工在线客服完成客户服务工作,一定程度上解决了客服用工成本高、服务时间难以满足客户需求的问题。相关资料显示,圆通速递高峰期每日电话呼入量超200万通,需要5000人工坐席处理,在配备智能语音客服机器人后,高峰期90%以上电话呼入可通过语音机器人处理,日均服务量超30万,每秒可处理并发呼入量超1万次,在控制成本的前提下,极大程度上释放了人工效率。
……
除了上述案例,人工智能在路径规划、智能选址、智能路由、商品布局等等方面均可以应用,篇幅所限不再详述。另外值得一提的是,此前科技部公布的最新一批国家人工智能开放创新平台名单,宣布依托京东集团建设国家新一代智能供应链人工智能开放创新平台,领衔智能供应链国家战略发展。可见国家层面的重视。
当然,技术应用要考虑包括投入与产出等等方方面面的问题。当下,人工智能在物流行业应用也不一定成熟。然而未来的物流一定是科技的物流,下一个时代一定是人工智能的时代,当下我们可以不应用,却不可以不看到这样的趋势。
来源/物流指闻(ID:wuliuzhiwen)
作者/叶帅返回搜狐,查看更多
人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
有关人工智能的10个常见问题的答案
人工智能是本世纪的主要话题之一。人工智能的功能和无限的潜力导致了许多有趣的对话和辩论。
[[380760]]
人工智能的兴起引起了AI的许多新关注。从热情高涨的爱好者开始学习有关AI的更多信息,到渴望探索该领域的有抱负的人,或者只是想批评它的其他人。但是,无论您所处的频谱是什么,您都会想到几个问题。
在本文中,我们期待回答有关人工智能的一些最常见问题。目的是回答这两个方面,包括所有实际问题,并阐明个人对此主题可能有的疑问。让我们简要地看一下今天我们将尝试解决的各种问题。
[[380761]]什么是人工智能?AI有多强大?人工智能会偷你的工作吗?人工智能可以接管世界吗?人工智能的优点是什么?人工智能的弊端是什么?我们离AGI有多近?人工智能有哪些应用?您需要成为天才才能开始学习AI吗?如何开始使用AI?
您可以随时跳过最想要回答的问题。但是,如果您不想错过任何特定要点,强烈建议您阅读整篇文章。现在,让我们期待回答有关AI的十个最常见的问题。
1.什么是人工智能?
人工智能是指开发的软件或特定模型可以自己执行复杂的任务而无需任何人的帮助。AI的更正式定义可以描述如下:
“能够执行通常需要人类智力的任务的计算机系统的理论和开发,例如视觉感知,语音识别,决策和语言之间的翻译。”
人工智能是一个庞大的研究领域,由多个子领域组成,包括机器学习,深度学习,神经网络,计算机视觉,自然语言处理等等。
人工智能被认为是未来的技术,它可以解决机器人,医学,物流和运输,金融等众多领域的众多问题,并提供更多的工业公用服务。
我强烈建议您从下面提供的链接中查看以下有关使人工智能神秘化的文章,以更好地了解这一领域。
2.AI有多强大?
为了回答这个问题,让我们简要地看一下人工智能的复杂历史,尤其是神经网络领域。人工智能的概念及其无限的能力在几十年前就已经确定。预计AI将是为现有问题提供解决方案的下一件大事。
随着时间的流逝,人们意识到人工智能并没有想象中那么简单。而且执行复杂的活动几乎是不可能的,尤其是在那段时期内的现有技术下。
最初,AI并没有像人们认为的那样成功,原因是缺少数据以及能够执行复杂排列和组合的能力的技术资源。
但是,在当前时代,我们得出的结论是,人工智能是创造革命性世界的潜在未来。人工智能甚至可以解决某些复杂的任务,相对而言,这可能会花费更多的时间。
这个问题的简单答案-“人工智能有多强大?”在现代时代,取决于研究人员从事程序计算的能力。开发人员的技能使AI模型足够好,可以尽快解决特别复杂的任务。
随着图形处理单元(GPU)的兴起,您可以帮助更快地计算AI模型并开发创新的东西。截至目前,人工智能已经非常强大,可以高效地解决分配给它的一系列任务。但是,它还没有达到顶峰,距离这一点还差几年。
3.人工智能会取代你的工作吗?
人工智能是当今增长最快的领域。据《财富》杂志统计,人工智能专家的招聘在过去四年中增长了74%。人工智能被视为当代最“热门”的工作。
对熟练的AI专家的需求以前所未有的速度增长。人工智能子领域(如机器学习,深度学习,计算机视觉,统计和自然语言处理)的专家的要求和职位空缺每天都在增加。
自然产生的问题是,人工智能最终会变得如此强大,以至于它有能力窃取我们所有的工作吗?
我认为,关于AI将来会窃取您的工作的说法几乎可以视为神话。在这种假设情况下,人工智能将取代所有人类活动并接管现代世界的大部分任务,因为它们不易出现人为错误,并且可以更高效地执行特定任务。
在引入机器的工业革命时期,也发生了类似的事情。显然,它没有窃取工作机会。相反,它为人类控制工作铺平了道路。人类是知识分子。因此,人工智能将简化人工工作的复杂性,但实际上并不会夺走您的工作!
4.人工智能可以接管世界吗?
科幻电影改变了一些人对人工智能的认识。他们用AI编程的图像机器人将变得如此强大,以至于他们最终将摧毁他们的创造者并摧毁整个世界,从而导致新的AI控制物种的发展。
一个引人入胜的故事情节,但在不久的将来随时发生,这是不真实的!
不可否认,人工智能已经走了很长一段路,并发展成为现代世界的独特功能。尽管AI取得了进步,但是大多数任务仍然是在工作或开发阶段的人工监督下完成的。
人工智能也仅限于编程完成的特定任务。一个有趣的例子是自动驾驶汽车,其中AI负责控制汽车并将其驾驶到用户选择的所需目的地。但是,AI仅限于精确地驾驶汽车,而没有其他外部任务。
因此,对于科幻电影中所显示的AI占领世界来说,距离这样的结果至少还有几十年的时间。但是,只是为了保持对此猜测的好奇心,将来最终有可能!尽管目前,这只是虚构的。
5.人工智能的优点是什么?
由于现代对人工智能的炒作是巨大的,因此它具有许多优点。
除了先前讨论的由AI创造的大量工作机会外,它还具有其他优点,例如完成循环或人类需要执行的重复性任务,而不会出现容易发生人为错误的缺点。
人工智能类似于计算机程序,不会疲倦,因此具有在特定任务上全天工作的能力,直到实现期望的结果。
与人类的速度相比,他们能够对各种问题进行更快的计算,并获得精确的结果。他们还拥有大量现实生活中的应用程序,以使我们的日常生活更简单。人工智能的优点是不言而喻的。
6.AI的弊端是什么?
从头开始构建人工智能模型有时可能很耗时且需要大量资源。如果您希望在没有GPU的普通计算机上开发深度学习模型,则替代方法是切换到云平台,因为该模型的构建过程在您的PC上不可持续。
除了消耗大量时间和资源外,在某些情况下,人工智能模型的部署也可能非常昂贵。而且,在特殊情况下AI模型发生故障的情况下的维护成本可能很烦人。
人工智能要考虑的另一个重大缺点是缺乏使用人工智能来完成更高级的知识任务。我们仅限于人工智能。ANI对于执行许多任务是有益且必不可少的,但它并不像AGI那样有效。这一点使我们想到了下一个问题。
7.我们离AGI有多近?
人工智能是一个有趣的概念。AGI是人工智能程序可以人类水平的完整性和智能性来计算,评估和处理多个任务的时候。
尽管进行了不断的研究和技术进步,人工智能领域仍未取得丰硕成果。有关此概念的实验和研究正在不断地进行评估,以期在不久的将来获得更好的结果。
根据专家的说法,人工智能尚未实现的主要原因是由于几乎不可能复制人脑。
尽管神经网络在执行分配给它们的特定复杂任务时表现出色,但不幸的是,它们并不能替代人脑。
8.人工智能有哪些应用?
自然界中的人工智能具有广泛的应用。这些包括您从一天开始到一天结束的旅程。通常,当您使用智能手机开始新的一天时,您会利用智能面部锁定或其他指纹AI措施的AI功能来解锁手机。
然后,您决定使用Google进行搜索,就会遇到自动完成和自动更正的AI功能,该功能利用序列技术进行序列建模。除智能手机外,人工智能还有大量其他应用程序,包括电子邮件垃圾邮件检测,聊天机器人,对象字符识别等。
人工智能还可以在许多其他领域中找到其应用,例如机器人技术,医学,物流与运输,金融等主题,以及行业中更多的公用事业服务。
9.您需要成为天才才能开始学习AI吗?
这个问题有一个简单的答案-“不,你不!”
人工智能是一个神话般的领域,包含许多壮观的子领域。如果您对以下主题提供的各种有趣概念特别感兴趣,那么完全值得投资您的宝贵时间来获得有关AI主题的更多知识。
虽然从头开始学习AI有时有时会很困难,但随着您继续投入更多时间学习与AI相关的众多概念,它会变得更加有趣和酷。您将接触到数学,编程,机器学习等方面的知识,这将扩展您的大量知识。
即使您发现人工智能领域不适合您的特定兴趣,只要您学习了有关AI众多主题的知识,这还是完全可以的。
使用人工智能弄湿手最好的部分是,您从以下学科获得的知识也可以部分或全部用于各种软件应用程序和工作。
10.如何开始使用AI?
好的!因此,到这一点,希望您对人工智能的各种功能着迷,并为寻找人工智能的理想起点感到兴奋。
人工智能是一个广阔而渺小的领域。但是,不用担心!您可以利用大量宝贵的资源和生产资料来产生最佳结果。仅通过分析和研究Internet上的资料,您就可以获得广泛的知识领域。
诸如StackOverflow,DataStackExchange和GitHub之类的网站是一些最受欢迎的网站,它们可提供深入的解决方案以及对您在运行或安装程序或相应代码块时遇到的问题或错误的解答。
我建议您查看本文结论部分提供的第一个链接,以详细了解“10个最好的免费网站,以了解有关数据科学和机器学习的更多信息。”在从资源中获得大量知识的同时,这应该是分析各种观点的一个很好的起点。
结论:
在本文中,我们涵盖了有关人工智能的大多数常见问题,同时试图为众多AI主题提供可持续的信息和解决方案。我们还旨在澄清误解,并讨论有关AI的各种概念。
阅读本文之后,我希望所有的观众都能清楚地看到人工智能以及有关AI的众多主题。对AI的现实认识对于理解世界革命性未来将发生的变化具有重要意义。
因此,必不可少的是要了解复杂的细节并在人工智能方面具有丰富的知识,以避免错误的观念和其他误解。同样,了解AI并致力于确保AI的未来是一种令人愉快的经历。这是一个充满新机遇和发现的崭新领域。