博舍

2023年全球人工智能芯片行业市场现状与发展趋势分析 专用芯片将成为市场增长热点 人工智能芯片目前处于什么阶段发展趋势

2023年全球人工智能芯片行业市场现状与发展趋势分析 专用芯片将成为市场增长热点

当前位置:前瞻产业研究院»经济学人»研究员专栏2021年全球人工智能芯片行业市场现状与发展趋势分析专用芯片将成为市场增长热点UVc分享到:肖婷•2021-03-0417:00:41来源:前瞻产业研究院E44184G02023-2028年中国人工智能芯片(AI芯片)行业发展前景预测与投资战略规划分析报告2023-2028年中国5G产业发展前景预测与产业链投资机会分析报告2023-2028年中国特高压设备行业市场前瞻与投资战略规划分析报告2023-2028年中国高铁行业市场前瞻与投资战略规划分析报告2023-2028年中国轨道交通装备行业发展趋势与细分市场投资前景分析报告2023-2028年中国城市轨道交通行业市场前瞻与投资战略规划分析报告

据MRFR数据,2019年全球FPGA市场规模为69.06亿美元,在5G和AI的推动下,2025年全球FPGA的市场规模有望达到125亿美元,年复合增长率达10.42%。

人工智能芯片的发展路径:芯片种类不断丰富,逐渐从通用向专用过渡

从广义上讲,面向人工智能计算的芯片都可以称为人工智能芯片,目前主要包括基于传统架构的GPU、FPGA以及ASIC(专用芯片)。随着人工智能在生活各领域的渗透,人工智能应用落地和大规模商业化的需求,催生了对芯片研发的更高要求。人工智能芯片种类日趋多元,目前已正在研究的有类脑芯片、可重构AI芯片等,但其离商用还有较大差距。

作为一项计算密集型的新技术,人工智能早期可以依靠通用芯片的性能来迅速发展,而后期将依靠专用芯片来统治市场。定制的硬件才能实现更优的功耗效率,满足不同算法、结构、终端和消费者的需求,实现规模化的收益。当然,通用芯片与专用芯片永远都不是互相替代的关系,二者必须协同工作才能发挥出最大的价值。

短期GPU仍是主导,FPGA将成为市场增长点

GPU是目前市场上AI计算最成熟,、应用最广泛的通用芯片,按照弗若斯特沙利文的推算,2020年GPU芯片在AI芯片中的占达35.95%,占领最主要的市场份额。作为数据中心和算力的主力军,前瞻认为,GPU市场仍将以提升效率和扩大应用场景为发展目标,继续主导芯片市场。

在当前技术与运用都在快速更迭的时期,FPGA可编程带来的配置灵活性使其能更快地适应市场,具有明显的实用性。随着开发者生态的逐渐丰富,适用的编程语言增加,FPGA运用将会更加广泛。在专业芯片发展得足够完善之前,FPGA作为最好的过渡产品,在短期内将成为各大厂商的选择热点。

FPGA算力强、灵活度高,但技术难度大,与国外差距较为明显

FPGA在出厂时是“万能芯片”,用户可根据自身需求,用硬件描述语言对FPGA的硬件电路进行设计,其灵活性介于CPU、GPU、等通用处理器和专用集成电路ASIC之间。由于FPGA的灵活性,很多使用通用处理器或ASIC难以实现的下层硬件控制操作技术利用FPGA可以很方便的实现,从而为算法的功能实现和优化留出了更大空间。

同时FPGA一次性成本(光刻掩模制作成本)远低于ASIC,在芯片需求还未成规模、深度学习算法暂未稳定需要不断迭代改进的情况下,利用具备可重构特性的FPGA芯片来实现半定制的人工智能芯片是最佳选择。

目前,FPGA市场基本上全部被国外Xilinx、Altera(现并入Intel)、Lattice、Microchip四家占据,2018年其占比分别为56%、31%、3%、2.6%。其中,Xilinx和Altera两大公司对FPGA的技术与市场占据绝对垄断地位,占据了近90%的市场份额。

2023年全球FPGA市场规模有望破百亿美元

据MRFR数据,2019年全球FPGA市场规模为69.06亿美元,在5G和AI的推动下,2025年全球FPGA的市场规模有望达到125亿美元,年复合增长率达10.42%。

更多数据来请参考前瞻产业研究院《中国人工智能芯片行业市场需求分析与投资前景预测》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资、IPO募投可研等解决方案。

更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究院交流互动。

前瞻产业研究院-深度报告REPORTS2023-2028年中国人工智能芯片(AI芯片)行业发展前景预测与投资战略规划分析报告

本报告前瞻性、适时性地对AI芯片行业的发展背景、供需情况、市场规模、竞争格局等行业现状进行分析,并结合多年来AI芯片行业发展轨迹及实践经验,对AI芯片行业未来的发展...

查看详情

本文来源前瞻产业研究院,内容仅代表作者个人观点,本站只提供参考并不构成任何投资及应用建议。(若存在内容、版权或其它问题,请联系:service@qianzhan.com)品牌合作与广告投放请联系:0755-33015062或hezuo@qianzhan.com

在招股说明书、公司年度报告等任何公开信息披露中引用本篇文章内容,需要获取前瞻产业研究院的正规授权。如有IPO业务合作需求请直接联系前瞻产业研究院IPO团队,联系方式:400-068-7188。

p14q0我要投稿

UVc分享:标签:人工智能芯片市场现状发展趋势专用芯片人工智能行业

品牌、内容合作请点这里:寻求合作››

产业规划

园区规划

产业招商

可行性研究

碳中和

市场调研

IPO咨询

前瞻经济学人专注于中国各行业市场分析、未来发展趋势等。扫一扫立即关注。

前瞻产业研究院中国产业咨询领导者,专业提供产业规划、产业申报、产业升级转型、产业园区规划、可行性报告等领域解决方案,扫一扫关注。相关阅读RELEVANT

2022年中国人工智能芯片行业市场现状及发展趋势分析行业尚处于起步阶段【组图】

2023年中国人工智能芯片行业发展现状分析行业处于萌芽期【组图】

预见2023:《2023年中国人工智能芯片行业全景图谱》(附市场规模、竞争格局和发展前景等)

2023年中国人工智能芯片行业市场现状及发展前景分析AI芯驱动引领未来【组图】

预见2023:《2023年中国公路养护行业全景图谱》(附市场现状、竞争格局和发展趋势等)

预见2023:《2023年中国特种油品行业全景图谱》(附市场现状、产业链和发展趋势等)

中国人工智能创新处于什么发展水平

◎编辑|数字经济先锋号

◎来源|北京工业大学学报

◎作者|王山陈昌兵

人工智能作为新技术创新的代表与引领未来、重塑传统行业结构的前沿性与战略性技术,逐渐成为全球新一轮科技革命和产业变革的重要驱动力量。世界各国在以创新为主的人工智能新技术方面展开了激烈的角逐与残酷的竞争。

目前,我国人工智能技术创新水平如何?技术处于何种发展阶段?我国发展人工智能的优势在哪?未来我国人工智能发展趋势如何?本文即将告诉你答案。

指标体系的构建

基于技术创新大数据,本文创新性地构建多指标测度体系与技术创新综合发展指数;根据综合发展指数模拟各国人工智能技术创新S演化曲线,描绘动态演变轨迹并定位中美技术创新发展位置。重点结合五维度在不同阶段的权重分布,比较中美新技术创新发展差距,探讨影响我国人工智能新技术创新发展的主要因素。提出提高新技术创新水平的具体措施与发展建议,助力实现我国人工智能关键核心技术突破、摆脱被先发国家控制的劣势地位。

表1人工智能技术创新发展水平多指标测度体系

根据技术创新周期不同发展阶段可能呈现出的特征与各特征之间的内在逻辑关系,同时结合人工智能新技术创新发展影响因素与技术创新发展测度相关参考文献,我们选择了基础研究、技术创新、科技布局、产业规模与技术进步5个维度来测度人工智能技术创新发展水平(如表一所示)。

根据指标熵权计算式得到的人工智能技术创新水平各测度指标的权重值(Wj)(如表二所示)。从单个指标权重看,首先体现产业规模的人工智能技术融资规模指标权重最高,然后为人工智能新增企业数指标;其次为体现技术创新程度的人工智能技术优先权年专利申请量指标,研发课题数指标权重最低。从分析维度看,首先产业规模维度权重最大;其次为技术创新维度与科技布局维度,基础研究维度权重值最小。综上可知,产业规模与技术创新维度各参数动态变化对人工智能技术创新所处发展阶段的判断具有显著影响。

表2人工智能技术创新水平测度指标权重值

中美等国的对比与分析

根据分析,目前,我国人工智能技术正处于快速发展的技术成长期后期,技术创新十分活跃,未来将涌入更多的企业和科研机构,竞争也将越来越激烈。而美国人工智能技术萌芽于1990年,于2005年步入技术成长期,2020年开始走向成熟,并预计于2034年进入技术衰退期,目前正处于开展商业应用的技术成熟期,创新动力将持续增强。(拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1,越接近1,说明回归直线对观测值的拟合程度越好,表三可见各国人工智能技术创新S演化曲线拟合优度R²均在0.9以上,拟合效果较为理想。——数字经济先锋号注)

表3中美等国人工智能技术创新发展阶段判定

日本、英国、法国与德国作为较早启动人工智能新技术研究开发与科研成果推广应用的主要发达国家,同样具有较大的先发优势,其技术创新发展水平早期均位列世界前沿且技术发展历程与演化轨迹比较相似,均在1990年左右进入技术创新萌芽期,后经技术不断地积累、发展与突破,分别于2005年与2019年左右步入技术创新成长期与成熟期,目前技术已经成熟。

图1中美等国人工智能技术创新周期S曲线

得益于雄厚的科技与经济实力,美国人工智能技术创新累计综合发展指数遥遥领先于其他各国,日英法德4国作为人工智能新技术创新发展早期的追随者与前期领导者,在人工智能技术领域,同样具有较高的发展水平与先发优势,鉴于人工智能技术创新是一个显著的动态累计过程,且发展周期较长,美日等世界主要发达国家并未因前期先发优势而形成技术发展垄断局面,因而为后发国家的技术追赶提供了巨大的机会窗口。

由图1技术创新演变曲线可预测出,在技术经验渐进性积累与自主创新能力不断提升的条件下,我国正逐步缩小与美国在人工智能新技术创新赛道上的发展差距,预计将在人工智能新技术创新发展的成熟期实现技术的追赶与超越。

目前,中国人工智能技术创新累计综合发展指数已超越英法德日4国,但与技术创新水平处于全球领先地位的美国相比仍有较大发展差距。本文从人工智能新技术创新累计综合发展指数增长率探索未来中国是否能反超美国并掌握创新发展的主导权,图2是各国人工智能技术创新累计综合发展指数增长率变化结果。

图2拟合中美等国人工智能技术创新累计综合发展指数增长率

由图2可知,1985-2003年,美国、英国、法国、德国与日本人工智能技术创新累计综合发展指数增长速率基本处于快速上升状态,尤其是美国。而我国的人工智能技术创新起步晚于美国,在基础研究原创性成果的不足或某些前沿领域的投入缺失的情况下错失了先发优势。但在国家大力扶持与自主创新能力不断提升的情况下,我国人工智能技术发展呈现出了非常强劲的增长态势。

因此,可以预见,在当前快速增长态势下,再加上后天技术的积累以及先发的数据优势,我国必将在人工智能新技术这一赛道上领跑全球。

影响因素动态分析

我国人工智能新技术创新发展速度较快,但关键核心技术水平与美国相比仍有差距。技术创新是一个多阶段过程,不同发展阶段因所需资源、条件不同而影响因素权重不同。本节创新性地引入技术创新不同阶段变量,动态分析不同阶段下人工智能技术创新的多指标测度体系中维度权重变化。进一步深入剖析我国人工智能新技术创新发展的影响因素。

由表四可以看出,中美两国在人工智能技术的发展阶段、技术创新和技术进步等方面存在差异。美国在人工智能新技术基础研究投入、技术创新布局、技术产业链上游的占据等方面具有较为显著的优势,而我国在科技布局、产业规模和融资份额等方面具有一定优势。但是,我国与美国相比,技术进步较为缓慢,尤其是在芯片领域存在较大差距,这将对我国的人工智能产业化形成不利影响。

因此,我们应该着眼于加强人工智能领域的基础研究,不断提升自主创新能力,积极推动技术创新和进步,在技术产业链上游抢占制高点,实现由技术跟随到技术引领的转变。同时,也需要加强与市场的有效结合,促进技术产业化的发展,让科技创新更好地服务于经济社会的发展,实现以科技创新驱动高质量发展的目标。

表4人工智能技术不同发展阶段影响因素权重分布

通过与美国的比较不难看出,我国人工智能新技术创新在基础研究、技术创新与技术进步维度,仍有相当发展空间,由于缺乏占据世界产业制高点的核心技术,存在若干被他国“卡脖子”的领域。

图3中美等国人工智能技术创新逐年发展指数

虽然我国人工智能新技术研发起步较晚,基础研究薄弱,技术创新累计综合发展指数与美国存在较大差距,但由技术创新逐年综合发展指数(图3)可知,我国人工智能新技术创新发展指数自2003年开始逐年上升,正不断缩小与美国人工智能技术创新累计综合发展指数的差距。作为后起之秀,在经历长期以技术跟随为主的技术潜伏期与萌芽期,以及二次创新为主的技术成长期后,依靠后发优势,我国于2017年反超自2003年以来技术创新逐年发展指数呈逐步下降态势的美国,跃居全球首位。

结论及建议

本文基于人工智能技术创新科研大数据,提出了人工智能技术创新水平多指标测度体系与技术创新综合发展指数计算模型,并通过绘制技术创新生命周期S演化曲线,对我国与世界主要发达国家在人工智能技术创新方面的发展阶段进行了评估与预测,深度剖析了我国与美国等国之间在技术创新、科技布局、产业规模、技术进步等方面的差距。

基于这些结论,本文提出了几点建议。首先,要强化基础研究,加大对基础研究长期稳定的支持力度,同时引导企业增加基础研究投入,提高我国基础研究水平和源头创新能力。

其次,要推动应用研究与基础研究的融合贯通,坚持问题导向、目标导向,设立重大科技计划项目,支持设立联合攻关团队(校企联合或校校联合等),或以企业为主导并协调高校和有关科研院所的资源,对有关人工智能的应用技术进行研究开发(委托研究、联合研究等形式)。

此外,还建议要产业化市场化发展,中国目前以高校为主、各自为战的人工智能研发体系不利于中国人工智能产业对前沿技术的把握和整体技术创新水平的进一步提升,也不利于技术的快速转化应用。建议培育一批技术先进、世界领先的企业,并带动产业上下游协同发展,形成持续创新能力、技术全球领先的产业集群。

最后,要完善技术创新机制,应鼓励企业培育和引进掌握关键核心技术的科技领军人才和团队,为产业发展提供智力支持;建立综合的关键核心技术突破与创新机制,将短期与中长期科技积累相结合,建立国家基础研究、产业科技等方面的公私结合的综合创新体系,将产业发展创新需求、国家战略创新需求、科研好奇创新需求等三大方面的创新动力综合起来,并重结合,实现“远水”和“近渴”的融合。

综上所述,通过实施这些建议,我国在人工智能技术创新方面可以进一步提升自身的科技水平和创新能力,缩小与美国等发达国家的差距,加速我国在人工智能领域的发展进程。

原文来源:王山,陈昌兵.中美人工智能技术创新的动态比较——基于人工智能技术创新大数据的多S曲线模型分析[J/OL].北京工业大学学报(社会科学版)。(因篇幅原因,本文有部分删减)

关于我们

「数字经济先锋号」是成都数联产服科技有限公司旗下数字经济研究交流平台。围绕数字产业、数字基建、数字治理、数字生态等数字应用领域,揭示与记录数字经济发展点滴与脉络。

数联产服是一家数字经济行业智库、产业大数据服务商,具备全流程大数据治理-分析-决策支撑服务能力,面向各级政府和产业运营机构提供基于大数据的产业经济发展解决方案和综合服务。

全球人工智能产业发展现状及发展趋势浅析

人工智能是指使用机器代替人类实现认知、识别、分析、决策等功能,是研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,其本质是对人的意识和思想的信息过程的模拟。人工智能是一种尖端技术,是新一轮科技革命和产业变革的重要驱动力量,它给经济、政治、社会等带来了颠覆性的影响,或将改变未来的发展格局。在21世纪,人工智能已逐渐成为全球各国新一轮科技战和智力战的必争之地,全球围绕人工智能领域的布局抢位日趋激烈。

一、全球人工智能发展现状

2021年7月8日,世界人工智能大会在上海开幕。根据统计数据评分,全球人工智能排名前10的国家依次为:美国、中国、韩国、加拿大、德国、英国、新加坡、以色列、日本和法国。其中,中国的综合得分为50.6分,美国为66.31分。

(一)美国着重国家和经济安全,力争保持全球领导地位

美国人工智能战略和政策的着力点在于保持其全球“领头羊”地位,并期望对人工智能的发展始终具有主动性与预见性。美国自2013年开始就发布了多项人工智能计划,并提及人工智能在智慧城市、自动驾驶和教育等领域的应用和愿景。2016年,美国将人工智能上升至国家战略层面,出台了《国家人工智能研究与发展计划》,从政策、技术、资金等方面给予一定的支持和保障。特朗普政府执政后,于2019年2月发布了第13859号总统行政令—《维持美国在人工智能领域领导地位的倡议》,从国家战略层面提出美国未来发展人工智能的指导原则,明确指出要集中联邦政府资源发展人工智能,扩大美国的繁荣,增强国家和经济安全,力图保持其在人工智能时代的全球领导地位。2021年6月,拜登政府宣布成立了由12名学术界、政界和产业界人士组成的国家人工智能研究资源工作组(NAIRR),他们将制定一项计划,让人工智能研究人员获得更多政府数据、计算资源和其他工具。该项计划基本继承了《2020年美国人工智能倡议法》的战略诉求。NAIRR的创建是美国政府加速美国国内技术进步的更广泛努力的一部分,美国参议院批准了2500亿美元的投资,用于从人工智能到量子通信等科学研究,这意味着,人工智能战略是拜登政府战略重心之一。

(二)韩国加快构建可持续的人工智能技术能力

韩国拥有雄厚的ICT产业发展根基,这为其发展人工智能奠定了良好的研发与应用生态基础。2018年5月15日,韩国第四次工业革命委员会审议并通过《人工智能研发战略》(以下简称《战略》),旨在重点推广人工智能技术进步,并加快AI在各领域的创新发展,打造世界领先的人工智能研发生态,构建可持续的人工智能技术能力。韩国认为人工智能是经济与社会大变革的核心动力之一,但其AI技术能力与中国和美国相比仍有较大差距,因此提升人工智能技术能力迫在眉睫,事关其能否在第四次工业革命中占得技术主导权。为了加快经济和社会的创新发展,为产业注入新的活力,韩国于2019年12月17日公布了《国家人工智能战略》,旨在凝聚国家力量、发挥自身优势,实现从“IT强国”到“人工智能强国”的转变。根据预算,相关措施若得以实施,到2030年,韩国将在人工智能领域创造455万亿韩元(约合2.7万亿元人民币)的经济效益。

(三)加拿大大力发展人工智能产学研用聚集中心

2017年3月,加拿大政府发布了全球首个人工智能国家战略计划——《泛加拿大人工智能战略(PanCanadianArtificialIntelligenceStrategy)》,计划拨款1.25亿加元支持AI研究及人才培养。该计划还提出了“增加加拿大优秀人工智能研究人员和熟练毕业生的数量”“在加拿大埃德蒙顿、蒙特利尔和多伦多3个主要人工智能中心建立互联的科学卓越节点”“在人工智能发展的经济、伦理、政策和法律意义上发展全球思想领导”以及“支持国家人工智能研究团体”等目标。此外,加拿大在全国范围内形成了数个有代表性城市的人工智能产学研用聚集中心,正是这些中心支撑起了加拿大人工智能发展的基本格局。这些聚集中心包括蒙特利尔、多伦多、埃德蒙顿、滑铁卢、温哥华和魁北克等城市,它们构成了加拿大人工智能研究的中坚力量。如果将加拿大人工智能领域看作一个生态系统,风险投资机构、加速器或孵化器以及公共非盈利机构构成了这个生态系统的土壤,为加拿大人工智能的研发和应用提供基础;各个人工智能产学研用聚集中心有其不同的偏重方向,就像不同种类的作物;各个聚集中心培育出来的初创企业,是人工智能服务人类生活的直接载体,就如作物结出的花朵与果实;国家和地方的政策支持、各领域方向的人才团队构成了人工智能生态的空气和养分;同时,加拿大社会开放,具备吸引外国投资机构、企业实体和人才的良好环境,为整个人工智能生态系统提供了有益补充。

(四)欧盟构建可信人工智能框架,抢占全球伦理规则主导权

欧盟很早就把发展以智能化为基础的经济模式作为其主要战略目标,注重在研发和人才上的投入,但由于缺乏风险资本和私募股权投资,以及民众过多顾虑隐私保护等问题,其在人工智能上的发展落后于中国和美国。为改变这一现状,欧盟采取多种措施大力发展人工智能,发力构建可信人工智能,力争取得全球主导权。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。2018年12月,欧盟发布了《人工智能协调计划》,提出要进一步增加资金投入、深化人工智能技术创新与应用、完善人才培养和技能培训、构建欧洲数据空间、建立人工智能伦理道德框架、促进公共部门人工智能技术使用、加强国际合作等行动,推进欧洲人工智能的开发与应用,实现欧盟和各国人工智能投资收益最大化,推动发展符合欧中价值观和伦理观念的人工智能,力争在伦理与治理领域占据全球领先地位。欧盟于2020年2月发布的《人工智能白皮书—欧洲追求卓越和信任的策略》,透露了欧盟人工智能将由“强监管”转向“发展和监管并重”,在促进人工智能广泛应用的同时,解决新技术使用所产生的风险问题。

二、我国人工智能发展现状

我国人工智能产业在政策、资本、市场需求的共同推动和引领下快速发展。产业上,我国人工智能企业“质、量”兼顾,同步发展,集聚发展效应明显,产业规模不断扩大,产业链布局不断完善。技术上,论文数量不断攀升,在复杂的国际环境下我国迎难而上,芯片产业突破明显,在国际竞赛中我国企业成果颇丰。为进一步推动技术创新,诸多高校设置人工智能相关专业、成立人工智能学院。融合上,我国人工智能与实体经济融合在广度和深度上都进一步深化,全国人工智能产业形成了特色化的发展格局。

2015年7月,国务院印发《关于积极推进“互联网+”行动的指导意见》。《指导意见》将人工智能作为其主要的十一项行动之一,并明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。2016年3月,国务院发布《国民经济和社会发展第十三个五年规划纲要(草案)》,人工智能概念进入“十三五”重大工程。2017年3月十二届全国人大五次会议上,“人工智能”首次被写入政府工作报告;7月,国务院发布《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心;10月,人工智能进入十九大报告,将推动互联网、大数据、人工智能和实体经济深度融合;12月,《促进新一代人工智能产业发展三年行动计划(2018-2020年)》的发布,它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。工信部为加快推动我国新一代人工智能产业创新发展,组织实施了人工智能产业创新任务揭榜挂帅工作,在人工智能项目攻关、选才用才方面效果显著。

相关数据显示,2020年人工智能行业核心产业市场规模将超过1500亿元,预计在2025年将超过4000亿元,中国人工智能产业在各方的共同推动下进入爆发式增长阶段,市场发展潜力巨大,未来中国有望发展为全球最大的人工智能市场。

我国高度重视人工智能技术进步与行业发展,人工智能已上升为国家战略。在此背景下,许多地方出台促进人工智能发展的政策,针对人工智能开展了布局,以广东省为例,广州、深圳、佛山等不少基础雄厚的城市都在积极谋划创建人工智能试验区,其中佛山市提出要“创建国家新一代人工智能创新发展试验区”,这一举措对区域在人工智能发展赛道抢占先机十分有利,对于区域人工智能发展有着显著的带动效果。在产业布局方面,佛山市因地制宜,将人工智能与工业制造进行融合。作为全国制造业的重要基地,佛山拥有2.16万亿的工业产值,对促进人工智能和实体经济融合发展有着大量的需求,可以实现人工智能技术在区域的产业化发展。2021年7月,《佛山市推进制造业数字化智能化转型发展若干措施》提出,“建设数字化智能化示范工厂、示范车间,支持技术改造升级”,加大金融财政支持力度、推动产业链协同、增强产业数字化智能化供给能力多措并举,以加快佛山制造业数字化、网络化、智能化转型升级。8月,佛山市南海区对外释放在人工智能方面的新布局,通过聚焦前沿技术,引进高科技企业和高端人才项目,联合高校科研院所共同攻克人工智能领域关键核心技术,一系列举措阐释着佛山市南海区全力打造国内一流的人工智能创新高地,助力打造佛山市制造业数字化智能化转型发展引领区,赋能佛山制造业升级提速的信心。这是佛山市南海区制造业高质量发展的表现,也是佛山市南海区在人工智能发展到新一阶段的布局升级,同时也反映了地方政府在新的时期发展和布局人工智能的信心与决心。

三、人工智能未来发展趋势

在未来的数十年里,人工智能有可能会极大地改变人类社会结构和生存方式。人工智能技术加速融入经济社会发展各领域全过程已是大势所趋。人工智能在重组全球要素资源、重塑全球经济结构、改变全球竞争格局方面将发挥出重要作用。我国面临中华民族伟大复兴战略全局和世界百年未有之大变局,将以国内国际两个大局、发展安全两件大事为出发点,充分发挥海量数据和丰富应用场景优势,促进人工智能与实体经济深度融合,赋能传统产业转型升级,催生新产业新业态新模式。在加强核心技术攻关、加快新型基础设施建设、推动人工智能和实体经济融合发展、规范行业发展和完善行业治理等方面持续发力,促进人工智能创新发展。

参考资料

1.国家工业信息安全发展研究中心.2019-2020人工智能发展报告.2020-7

2.李月白,江晓原.钱学森与20世纪80年代的人工智能热.2019-11

3.广州日报.2020中国人工智能产业白皮书:五年内市场规模预计超过4000亿元.2021-2

4.李贺南,陈奕彤,宋微.2020年韩国人工智能国家战略.2020-4

5.韩联社.韩国斥巨资大力发展人工智能.2020

6.江丰光,熊博龙,张超.我国人工智能如何实现战略突破——基于中美4份人工智能发展报告的比较与解读.2020-1

来源:中国网

免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。

AI芯片的未来发展趋势是什么

根据计算模式,人工智能核心计算芯片的发展分为两个方向:一个是利用人工神经网络从功能层面模仿大脑的能力,其主要产品就是通常的CPU、GPU、FPGA及专用定制芯片ASIC。另一个神经拟态计算则是从结构层面去逼近大脑,其结构还可进一步分为两个层次,一是神经网络层面,与之相应的是神经拟态架构和处理器,如IBM的TrueNorth芯片,这种芯片把数字处理器当作神经元,把内存作为突触。与传统冯诺依曼结构不同,它的内存、CPU和通信部件完全集成在一起,因此信息的处理完全在本地进行,克服了传统计算机内存与CPU之间的瓶颈。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作。二是神经元层面,与之相应的是元器件层面的创新。如IBM苏黎世研究中心宣布制造出世界上首个人造纳米尺度随机相变神经元,可实现高速无监督学习。

目前,AI芯片虽然在某些具体任务上可以大幅超越人的能力,但在通用性、适应性上相较于人类智能还有很大差距,大多数仍处于对特定算法的加速阶段。从短期来看,以异构计算(多种组合方式)为主来加速各类应用算法的落地(看重能效比、性价比、可靠性);从中期来看,要发展自重构、自学习、自适应的芯片来支持算法的演进和类人的自然智能;从长期来看,则是朝着通用AI芯片的方面发展。

“通用AI芯片”是AI芯片皇冠上的明珠。它最理想化的方式是淡化人工干预(如限定领域、设计模型、挑选训练样本、人工标注等)的通用智能芯片,必须具备可编程性、架构的动态可变性、高效的架构变换能力或自学习能力、高计算效率、高能量效率、应用开发简洁、低成本和体积小等特点。就目前而言,实现通用AI的主要直面两大挑战:一是通用性(算法和架构),二是实现的复杂度。通用AI芯片的复杂度来自于任务的多样性和对自学习、自适应能力的支持。因此,通用AI芯片的发展方向不会是一蹴而就地采用某一种芯片来解决问题,因为理论模型和算法尚未完善。最有效的方式是先用一个多种芯片设计思路组合的灵活的异构系统来支持,各取所长,取长补短。一旦架构成熟,就可以考虑设计SoC来在一个芯片上支持通用AI。

从短期来看,很难期待出现像CPU那样的AI通用算法芯片,AI杀手级应用还没出现,未来还有很长一段路要走。但必须承认的是,AI芯片是人工智能技术发展过程中不可逾越的关键阶段。无论哪种AI算法,最终的应用必然通过芯片来实现。目前,AI算法都有各自长处和短板,必须给它们设定一个合适的应用边界,才能最好地发挥它们的作用。因此,确定应用领域就成为了发展AI芯片的重要前提。

在应用方面,“无行业不AI”似乎正在成为主旋律,无论是人脸识别、语音识别、机器翻译、视频监控,还是交通规划、无人驾驶、智能陪伴、舆情监控、智慧农业等,人工智能似乎涵盖了人类生产生活的方方面面。然而,是所有的应用都需要人工智能吗?我们希望人工智能解决哪些实际的问题?什么才是AI的“杀手级”应用?这些问题目前依然等待答案。但对于芯片从业者而言,当务之急是研究芯片架构问题。从感知、传输到处理,再到传输、执行,这是AI芯片的一个基本逻辑。研究者需要利用软件系统、处理器等去模仿。软件是实现智能的核心,芯片是支撑智能的基础。

从芯片发展的大趋势来看,目前尚处于AI芯片发展的初级阶段,无论是科研还是产业应用都有巨大的创新空间。从确定算法、领域的AI加速芯片向具备更高灵活性、适应性的智能芯片发展是科研发展的必然方向。神经拟态芯片技术和可重构计算芯片技术允许硬件架构和功能随软件变化而变化,实现以高能效比支持多种智能任务,在实现AI功能时具有独到的优势,具备广阔的前景。

虽然AI芯片目前还不是特别智能,但它们绝对很聪明,而且很有可能在不久的将来变得更加智能。这些芯片将继续利用半导体加工、计算机架构和SoC设计方面的先进技术,以提高处理能力,支持下一代AI算法。与此同时,新的AI芯片将继续需要先进的存储系统和片上互连架构,以便为新的专有硬件加速器提供深度学习所需的源源不断的数据流。相信,未来十年将是AI芯片发展的重要时期,有望在架构和设计理念取得巨大的突破。

具体到不同计算场景和不同计算需求,云端和终端芯片的架构设计趋势将朝不同的方向发展,而软件定义芯片已经成为灵活计算领域的主流。

一、云端训练和推断:大存储、高性能、可伸缩

虽然训练和推断在数据精度、架构灵活和实时性要求上有一定的差别,但它们在处理能力(吞吐率)、可伸缩可扩展能力以及功耗效率上具有类似的需求。

NVIDA的V100GPU和Google的CloudTPU是目前云端商用AI芯片的标杆。

(CloudTPU的机柜包括64个TPU2,能够为机器学习的训练任务提供11.5PFLOPS的处理能力和4TB的HBM存储器。这些运算资源还可以灵活地分配和伸缩,能够有效支持不同的应用需求。)

从NVIDA和Goolge的设计实践我们可以看出云端AI芯片在架构层面,技术发展呈现三大特点和趋势:

(1)存储的需求(容量和访问速度)越来越高。未来云端AI芯片会有越来越多的片上存储器(比如Graphcore公司就在芯片上实现的300MB的SRAM),以及能够提供高带宽的片外存储器(HBM2和其它新型封装形式)。

(2)处理能力推向每秒千万亿次(PetaFLOPS),并支持灵活伸缩和部署。对云端AI芯片来说,单芯片的处理能力可能会达到PetaFLOPS的水平。实现这一目标除了要依靠CMOS工艺的进步,也需要靠架构的创新。比如在Google第一代TPU中,使用了脉动阵列(SystolicArray)架构,而在NVIDA的V100GPU中,专门增加了张量核来处理矩阵运算。

(3)专门针对推断需求的FPGA和ASIC。推断和训练相比有其特殊性,更强调吞吐率、能效和实时性,未来在云端很可能会有专门针对推断的ASIC芯片(Google的第一代TPU也是很好的例子),提供更好的能耗效率并实现更低的延时。

二、边缘设备:把效率推向极致。

相对云端应用,边缘设备的应用需求和场景约束要复杂很多,针对不同的情况可能需要专门的架构设计。抛开需求的复杂性,目前的边缘设备主要是执行“推断”。衡量AI芯片实现效率的一个重要指标是能耗效率--TOPs/W,这也成为很多技术创新竞争的焦点。在ISSCC2018会议上,就出现了单比特能效达到772TOPs/W的惊人数据。

在提高推断效率和推断准确率允许范围内的各种方法中,降低推断的量化比特精度是最有效的方法。此外,提升基本运算单元(MAC)的效率可以结合一些数据结构转换来减少运算量,比如通过快速傅里叶变换(FFT)变换来减少矩阵运算中的乘法;还可以通过查表的方法来简化MAC的实现等。

另一个重要的方向是减少对存储器的访问,这也是缓解冯·诺伊曼“瓶颈”问题的基本方法。利用这样的稀疏性特性,再有就是拉近运算和存储的距离,比如把神经网络运算放在传感器或者存储器中。

三、软件定义芯片

对于复杂的AI任务,甚至需要将多种不同类型的AI算法组合在一起。即使是同一类型的AI算法,也会因为具体任务的计算精度、性能和能效等需求不同,具有不同计算参数。因此,AI芯片必须具备一个重要特性:能够实时动态改变功能,满足软件不断变化的计算需求,即“软件定义芯片”。

可重构计算技术允许硬件架构和功能随软件变化而变化,具备处理器的灵活性和专用集成电路的高性能和低功耗,是实现“软件定义芯片”的核心,被公认为是突破性的下一代集成电路技术。清华大学微电子所设计的AI芯片(代号Thinker),采用可重构计算架构,能够支持卷积神经网络、全连接神经网络和递归神经网络等多种AI算法。

Thinker芯片通过三个层面的可重构计算技术,来实现“软件定义芯片”,最高能量效率达到了5.09TOPS/W:

1。计算阵列重构:Thinker芯片每个计算单元可以根据算法所需要的基本算子不同而进行功能重构,支持计算阵列的按需资源划分以提高资源利用率和能量效率。

2。存储带宽重构:Thinker芯片的片上存储带宽能够根据AI算法的不同而进行重构。存储内的数据分布会随着带宽的改变而调整,以提高数据复用性和计算并行度,提高了计算吞吐和能量效率。

3。数据位宽重构:为了满足AI算法多样的精度需求,Thinker芯片的计算单元支持高低(16/8比特)两种数据位宽重构。高比特模式下计算精度提升,低比特模式下计算单元吞吐量提升进而提高性能。

采用可重构计算技术之后,软件定义的层面不仅仅局限于功能这一层面。算法的计算精度、性能和能效等都可以纳入软件定义的范畴。

四、新兴存储技术打开新思路

《白皮书》第六章主要介绍对AI芯片至关重要的存储技术,包括传统存储技术的改进和基于新兴非易失存储(NVM)的存储器解决方案。

可以预见的是,从器件到体系结构的全面创新或将赋予AI芯片更强的能力。近期,面向数字神经网络的加速器(GPU、FPGA和ASIC)迫切需要AI友好型存储器;中期,基于存内计算的神经网络可以为规避冯·诺依曼瓶颈问题提供有效的解决方案;最后,基于忆阻器的神经形态计算可以模拟人类的大脑,是AI芯片远期解决方案的候选之一。

1。AI友好型存储器

上图显示了新兴存储技术中带宽和容量的快速增长。新兴的NVM由于其相对较大的带宽和迅速增长的容量,可以在AI芯片的存储技术中发挥至关重要的作用。对于嵌入式应用,NVM的片上存储器也可以提供比传统NVM更好的存取速度和低功耗,可在非常有限的功率下工作,这对于物联网边缘设备上的AI芯片特别具有吸引力。

2。片外存储器

3D集成已经被证明是增加商业存储器的带宽和容量的有效策略,其可以通过使用从底部到顶部的硅通孔(TSV)技术,堆叠多个管芯或者单片制造的方法来完成。DRAM的代表作品包括HBM和混合存储器立方体(HMC)。

上图显示了NVIDA的GPU产品与HBM集成的AI应用程序。对于NAND闪存,3DNAND正在深入研究。最近,三星已经开发出96层3DNAND。

3。片上(嵌入型)存储器

由于能够连接逻辑和存储器电路,并且与逻辑器件完全兼容,SRAM是不可或缺的片上存储器,其性能和密度不断受益于CMOS的尺寸缩放。其易失性使得芯片上或芯片外的非易失性存储器成为必须。当前主要和新兴存储器的器件指标如下:

此外,自旋力矩传输存储器(STT-MRAM)由于其高耐久性和高速度被认为是DRAM的替代品。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇