人工智能赋能教师教育:基本逻辑与实践路向
近年来,自然语言处理、机器学习、人脸识别等智能技术快速发展,促使教育信息化逐渐呈现智慧特性,人工智能赋能教育创新发展已成我国教育改革的关键抓手。传统信息技术逐步实现智能升级,技术赋能教师教育的形态也实现重大变革。2018年,《教师教育振兴行动计划(2018—2022年)》推出“互联网+教师教育”创新行动,并强调应充分利用大数据、人工智能等新技术,助力教师教育理念与模式变革,推进教师教育信息化建设与应用。2022年,《教育部教师工作司2022年工作要点》指出,“推进第二批人工智能助推教师队伍建设试点工作,开发和应用教师智能助手,探索开展教师智能研修,推广完善‘双师课堂’。”基于此,本研究尝试聚焦人工智能赋能教师教育这一议题,理顺人工智能赋能教师教育的基本逻辑,并面向中小学教师群体开展问卷调研,从而进一步挖掘人工智能支持下教师教育变革所面临的现实困境,归纳提炼人工智能赋能教师教育的实践路向,以期为新技术时代教师教育变革提供有益参照。
一、信息技术赋能教师教育的历史变革
随着信息技术的不断升级与发展,一些具有“类人功能”的智能产品逐渐应用于教育教学领域,促使教育信息化样态逐渐具有智能属性。就教师教育而言,信息技术赋能教师教育的历史进程主要经历了三个发展阶段。
(一)电化教育时代:信息技术赋能教师教育的初步探索期
1978年4月,全国教育工作会议指出,应充分利用广播、电视等工具,大力培训师资。此次会议不仅有力地推动了我国电化教育的发展,也促进了广播、电视等现代化技术手段在教师教育中的应用,开启了信息技术赋能教师教育的初步探索。1981年10月,教育部颁文要求“发挥电化教育在提高师资水平中的作用”。20世纪80年代中后期,随着计算机技术和网络通信技术的不断进步,信息技术赋能教师教育的工具与方式逐步得以拓展。1996年,《中小学计算机教育五年发展纲要(1996—2000年)》指出,应面向师范生开展相关培训,提升计算机辅助教学的知识与技能,并强调教师需对计算机等电化教育教学手段予以掌握。归纳来看,在电化教育阶段,教师教育的实践理念与行动方式逐渐融入技术元素,但这一时期教师教育存在着信息共享滞后、技术应用水平低下等诸多问题,教师教育过程与投影、录音、录像、电视、计算机等传统教育技术媒体之间的融合尚处于浅层阶段。
(二)教育信息化时代:信息技术赋能教师教育的快速发展期
21世纪初,我国的教育信息化发展较为关注项目及工程建设,以远程教育、开放教育等方式为依托,致力于提供多样化的教育信息化服务。在教育信息化背景下,我国教师教育理念与方式发生重大变革,信息技术赋能教师教育也逐步从电化教育时代迈向教育信息化时代。2002年,教育部发布《关于推进教师教育信息化建设的意见》,对教师教育信息化原则、目标以及具体举措等诸多方面作了基本要求,为我国教师教育信息化快速发展奠定了行动方向。随后,我国教师教育信息化建设开始逐渐关注宏观指导与项目实践相结合的推进方式。《2009—2012年中小学教师国家级培训计划》等文件以具体的实践项目来推动教师教育信息化。随着互联网、云计算等技术的快速发展,教师教育体系也积极顺应信息技术发展趋势,致力于培养具有信息化教学技能的新型师资。但由于这一时期信息资源良莠不齐,教师教育过程的数据挖掘和分析还相对滞后,对于硬件设施投入与建设的关注高于软件设施,教师教育课程资源尚未实现有效的区域联通。
(三)“智能教育”时代:信息技术赋能教师教育的战略转型期
2017年,《新一代人工智能发展规划》中明确提出,应利用人工智能技术满足社会大众对于教育、医疗等方面的民生需求。随着机器学习、智能感知等智能技术与教育教学的整合成效逐渐凸显,2018年,《关于开展人工智能助推教师队伍建设行动试点工作的通知》中更是强调应提升教师对于人工智能的胜任力与适应力。2021年4月,教育部发布《关于开展第二批人工智能助推教师队伍建设试点推荐遴选工作的通知》,强调应通过建立师范生大数据评价管理机制、创新“人工智能+教师研修”模式等手段,促进人工智能、大数据等技术与教师队伍建设的有效整合,助推教师教育理念与模式的智能转型。此外,人工智能与教师培训的整合也逐渐得到广泛关注,2021年5月,教育部、财政部发布《关于实施中小学幼儿园教师国家级培训计划(2021—2025年)的通知》,强调应推进人工智能与教师培训融合发展,形成人工智能支持教师终身学习的新机制;《教育部教师工作司2022年工作要点》亦强调应推进人工智能助推教师队伍建设,发掘推广一批人工智能助推教师队伍建设的先进典型,推进教师资源数字化建设和教师队伍数字化治理。
二、人工智能赋能教师教育的基本逻辑
在“人工智能+教师教育”生态系统中,信息技术能够对教师教育的课程设置、教育模式、评价方式、应用实践、培训和终身学习等方面产生影响,解决教师培训方式变革以及教师教育的管理问题也是推进人工智能与教师教育体系深度融合的关键。
(一)课程层面:智能资源共享赋能教师教育课程体系完善
教师教育课程是构成教师教育体系的重要内容,这也是人工智能赋能教师教育的基本着力点。人工智能在资源推荐、资源整合等方面具有智能特性,人工智能赋能教师教育的一大优势在于可通过智能资源共享推进教师教育课程体系趋向完善。首先,人工智能可为教师教育课程资源的开发与获取提供技术保障。可通过智能化资源开发平台,设计与整合海量教案、课件、课堂实录、习题等教学资源数据,且利用大数据的智能匹配与分析功能为教师筛选出最优质的课程资源并为其推荐最适切的学习资料,有助于为教师专业发展提供精准化的培训课程资源。例如,华中师范大学“现代教育技术应用”课程通过引入虚拟仿真实验和桌面VR交互一体机,促进师范生自身学科内容与新兴形式资源的融合,设计、开发和生成多种沉浸式、交互式的教学资源。其次,人工智能可助力教师教育课程管理建设。基于智慧课程管理系统为教师及教师教育者提供留言、点评、交流、反思等信息共享功能,可实现海量的教师学习行为数据的精准采集与分类,并利用数据分析与共享技术为教师教育者改进课堂教学方式与内容设计提供证据支持。归纳来看,智能资源共享本身是一种信息共享,有助于拓展教师教育课程学习的资源内容与空间场域,此为人工智能赋能教师教育的课程逻辑。
(二)评价层面:机器学习赋能教师教育质量精准改进
机器学习赋能教师教育质量精准改进可被视为人工智能赋能教师教育评价的重要环节。首先,机器学习有助于实现教师教育过程性数据的精准挖掘。长期以来,教师教育质量缺乏相对全面的评价标准,教师教育质量评估往往侧重于结业考评、期末考评等总结性评价方式,较为忽视教师教育过程的数据记录与信息采集,教师教育者可能对于自身教学过程中的潜在问题也难以发觉。其次,机器学习立足于对海量数据全生命周期的伴随式采集、深度挖掘与分析,其能够通过挖掘数据背后的潜在关系,不仅能够实现基于理性证据的科学决策,也能够为教师教育质量的精准监测与改进提供实践路径。机器学习可通过智能传感、人脸识别、图像识别等技术实现在线教师教育数据、线下教师教育数据的有效采集与智能分析,有助于以大数据分析方式来可视化呈现教师教育质量分析结果。基于质量分析结果,教师教育者能够迅速识别其教育教学的缺点,并能够有针对性地予以改进,进一步掌握当前教师教育课程、管理、实践等方面存在的实质性不足,这为教师教育质量的精准改进提供了诸多便利。例如,黄慕雄等人以广东省教师教育大数据智慧系统为例,构建了一种多源多层的教师专业发展分析模型,采用较为成熟稳定的协同过滤推荐算法综合分析并精准制订培训发展方案,是满足教师培训机构为教师智能化制订培养方案需求的部分体现,为精准评估与改进教师教育质量提供了有效支持。
(三)管理层面:智能决策助力教师教育治理机制重塑
人工智能拥有规模化数据、深度学习算法以及高度计算力,其通过科学规范的数据聚类、数据认知、决策优化等过程,挖掘数据的复杂性关联和潜在价值,使智能决策得以实现。首先,智能决策为以单向性、强制性及刚性为核心特征的传统教师教育管理模式走向科学民主式的教师教育治理模式提供了重要支撑。基于智能决策理念的教师教育治理将由经验走向循证,经由“提出问题—获取证据—评价证据—应用实践—效果评估”科学流程,自始至终指向准确和明智的最佳教育证据筛选与应用,保障教师教育决策有据可循。其次,智能决策本身体现了一种数据治理的理念,其以规模化数据和智能算法为中介,促进教师教育决策过程由单一主体决策走向基于数据智能的多主体协作,有利于教育行政部门、教师培训机构、学校等决策主体构建基于证据的教师职前职后一体化协同机制,教师教育的决策者、参与者可通过协同完成数据收集、表征、组织、分析、交流等环节,精准定位并预测教师培训的需求与供给状况,尤其是应真正关照乡村学校在职教师专业发展的个性化需求,最终生成兼具技术理性与人文关怀的教师培训与研修方案。
(四)培训层面:智能互联助力教师培训空间极速拓展
自20世纪末《中小学教师继续教育规定》颁布以来,我国教师培训的规模、经费投入、相关制度和体系建设等飞速发展。然而,不少地区的教师培训工作也暴露出一些现实难题,如对教师培训的需求分析不够细致与准确、培训内容重复与泛化、培训空间满意度不高等。随着深度学习等智能技术的发展,教师教育空间将逐步实现虚拟空间与物理空间的无缝衔接,智能互联助力教师培训空间极速拓展成为现实。首先,基于智能互联理念的教师研修平台进一步提升了教师培训的针对性与有效性,有助于创设沉浸性更强的线上虚拟研修空间与“双师课堂”教学空间,可实现对教师认知结构、教学行为、教学风格与专业能力的智能监测与精准诊断,并实现精准化的课程推送、个性化的助学支持。其次,基于智能互联的教师培训助手系统为教师培训目标的实现释放了工作空间。AI教师能够将教师培训者从琐碎的机械性行为中解放出来,教师培训者将拥有更多的“自由时间”,这使其可以在更充分的自我认知基础上,更多反思教师教育课程设计、实践应用、沟通协作等方面的教师培训问题。再者,基于智能互联的跨区域培训云平台有助于拓展教师专业学习空间。“智能+教育”模式打破了教师培训的时空局限,进一步增强了教师培训的灵活性,有助于实现跨区域的教师培训新机制,有助于打造线上线下一体化的教师培训新机制,这对于实现偏远、贫困、落后地区教师教育与发达地区协同发展具有重大意义。例如,依托统一的宁夏教育云在线互动课堂平台,宁夏尝试推进名校名师与普通教师开展线上师徒结对,组建专业成长共同体,利用在线互动课堂、名师网络工作室等,实现城乡教师“智能手拉手”。
三、人工智能赋能教师教育的现实困境
遵循前文所述的人工智能赋能教师教育的基本逻辑,本研究基于教师教育体系构建的实际现状,从课程层面、评价层面、管理层面、培训层面出发,结合对10位区域教师进修学校管理人员、教师教育领域学者、中小学校长的访谈结果,编制了“人工智能支持下的教师教育改革调查问卷”。除基本信息题项、多选题“您认为人工智能支持下的教师教育可能存在哪些问题?”之外,问卷中各题项均采用李克特五点量表形式(从非常不符合到非常符合)予以呈现。首先,选择江苏省W市90位中小学教师进行预调研施测,基于预调研样本数据,对问卷进行信效度检验。数据分析结果显示,整体量表的KMO统计值为0.95,Bartlett球形检验结果的p值<0.001,表明问卷适合进行因子分析。对整体问卷进行探索性因子分析,抽取出4个公因子,累计方差解释率达到86.26%,表明因子结构较为可靠。依据因子载荷图可知,题项A1到A4构成课程维度,题项B1到B3构成评价维度,题项C1到C4构成管理维度,题项D1到D3构成培训维度,与本研究对人工智能赋能教师教育的基本逻辑的分析框架相一致,表明问卷具有较好的结构效度,可作为正式调研问卷。
之后,基于正式调查问卷,本研究选取浙江、江苏、上海等教育与经济发达地区的中小学作为调研学校,面向中小学教师投递电子问卷,调研结束后,回收有效问卷527份。本研究利用Cronbachsalpha、CR、AVE值检验问卷信效度。整体量表的Cronbachsalpha值为0.966,各分量表的Cronbachsalpha值在0.89与0.97之间,证明问卷具有较好的内在一致性信度;验证性因子分析结果显示,各分量表的CR(组合信度)取值范围在0.79与0.86之间,表明量表的组合信度较好。各分量表的AVE值均大于0.5,表明量表的收敛效度较好。此外,验证性因子分析结果显示,模型拟合较好,RMSEA、CFI、SRMR指标均达到测量学标准(RMSEA<0.08;CFI≥0.90;SRMR<0.06)。综合上述分析结果,可知问卷通过了信效度检验。
人工智能支持下的教师教育现状的描述性分析结果如下。总体而言,人工智能支持下的教师教育现状的均值水平为3.85,除评价层面以外,各子维度(课程层面、管理层面、培训层面)的均值水平均在4以下,由此可见,当前教师对于融入人工智能的教师教育、职后培训的感知情况并未达到理想程度,人工智能在推进教师教育改进方面尚存较大空间,因此,仍需进一步探索如何利用人工智能优化区域教师教育体系,提升教师教育的有效性、针对性、科学性、智慧性。在此诉求背景下,精准分析人工智能赋能教师教育变革所面临的现实困境,则成为归纳和提炼人工智能赋能教师教育实践路向的关键之举。具体而言,本研究将进一步结合调查分析结果,围绕课程、评价、管理、培训四个方面剖析人工智能赋能教师教育的现实困境(见图1)。
图1人工智能赋能教师教育的现实困境
(一)教师教育课程体系难以适应智能时代教师专业发展
在智能时代,教师教育的内容正发生重大变革,人工智能已成为教师教育工作的得力助手,开设一系列面向教师的人工智能课程具有一定的必要性。但就我国教师教育课程体系而言,其目前尚难以适应智能时代教师专业发展。首先,在课程层面,区域教师教育课程建设缺乏较为统一且清晰的课程标准,区域教师教育的课程科目、结构和类型较为单一的现象时常出现。而且,本研究调查结果显示,55.79%的教师认为,教师教育课程内容与教师所需的智能教育素养脱节;题项“教师教育的课程内容能够满足您的实际需求”均值为3.91。由于受人、财、物等多方面资源的影响,教师教育课程理念的变革难度相对较大,即使是面对人工智能等新技术的冲击,教师教育课程建设也具有滞后性与保守性,融入人工智能教育内容的教师教育课程特色难以有效凸显。其次,在教学内容方面,目前不少地区的教师教育教材体系陈旧,教学内容未能结合智能时代所需做到有效更新。数据分析结果显示,题项“当前的教师教育课程关注如何让教师有效应用人工智能产品”及“学习教师教育课程能够提升您的智能教育胜任力”的均值水平分别为3.95与3.94,这表明教师教育课程体系与人工智能等技术知识的融合力度与成效不足。再者,在教学方面,受困于不少教师教育者、受训在职教师及师范生的技术接受与整合能力存在欠缺,教师教育课程教学缺乏具有足够信息化胜任力的教师教育师资,导致智能技术赋能教师教育课程教学的过程受到教师能力的严重制约。
(二)基于证据的教师教育质量评价有待优化
在5G、人工智能、大数据等技术的支撑下,如何构建基于证据的教师教育质量评价体系是推动人工智能时代教师教育发展的一大难题。为尽可能地减少评价过程中的标准不一与价值冲突等问题,在从事教师教育评价活动之前,需要确立相应的指导标准和价值准则。对于我国教师教育评价实践而言,基于证据的教师教育质量评价亟待进行优化,教师教育质量评价体系尚待建立健全。综合来看,我国不少地区至今仍未形成循证式的教师教育质量评价标准体系,导致我国教师教育评价活动在实践中缺乏必要的规范性与科学性,48.39%的教师认为,对于教师教育效果的多维评价有待加强。此外,我国教师教育评价普遍存在着重视运用分数、成绩等量化指标评价的倾向,仍然留有“头痛医头、脚痛医脚”碎片化的评价方式,且数据分析结果显示,题项“培训专家能够利用人工智能对您的学习效果进行分析与评价”均值为3.96,这表明人工智能尚未全方位融入循证式教师教育质量评价体系,未能充分借助人工智能等新技术立体化地搜集教师教育活动的信息从而科学全面地评价教师教育效果,进而导致教师教育评价新格局尚未完全形成。
(三)大数据赋能教师教育管理存在决策偏差
人工智能浪潮风起云涌,其与大数据之间的关系相伴而行,人工智能功能的发挥离不开数据处理与运算的支持。决策者依托人工智能的分析及预测功能,可从“基于经验的分析”转向“数据驱动决策”,这在一定程度上有助于教育管理者系统把握教师的个体诉求与行为轨迹,并据此进行信息反馈和教学激励。但需要注意的是,智能技术是一把双刃剑,在帮助实现教师教育决策科学化的同时,其也会因人技关系异化而产生一系列问题。数据分析结果显示,人工智能赋能教师教育的管理层面均值水平为3.73,表明当前人工智能在优化教师教育管理方面尚存在一定的问题及弊病。首先,人工智能算法、决策使用的数据及数据处理方式均是由“人”来创建的,不可避免带有个体主观隐含的偏见。当主观的算法设计偏见或数据处理偏见渗透到教师教育管理过程中,将会给教师教育决策带来一定的偏差与错误。其次,人工智能算法具有自主决策、学习的能力,它的设计者难以预测最终的结果,也无法完全解读它是如何得出现有结论的。因此,教师教育决策的相关主体一定程度上将会陷入算法分析结果难以解读的困境,这将削弱决策者的公信力与可信度。再者,根据数据分析结果可知,45.92%的教师认为人工智能可能无法十分准确地量化教师教育成效。处于不断完善与发展阶段的人工智能算法及其所依赖的数据很有可能具有一定的局限性,这将导致一些非数据化或难以数据化的教师教育问题被排除在决策过程之外,进而给以数据作为决策基础的教师教育决策者带来一定的决策盲区,产生大数据赋能教师教育的信息偏差现象。
(四)教师培训与智能技术的整合存在效度困境
数据质量、算法功能对人工智能应用成效影响较大,无论是数据挖掘,还是智能算法设计,均无法做到尽善尽美,数据分析结果显示,人工智能赋能教师教育的培训层面均值水平为3.64,表明人工智能在教师培训实践中的应用依然存在效度困境。首先,使用算法和预测模型对教育现象进行度量将会造成一定风险,这主要取决于计算模型和算法是否符合教育逻辑、教育过程和教育中的人是否可以被量化和计算、对教育过程的量化是否能够反映教育本真,这需要进一步反思智能技术应用于教师培训的合理性与规范性,将其应用范围限定在可控风险领域之内。其次,智能技术在教师培训中的使用效能相对较低,其在培训资源建设、助学辅导、培训成效评价等方面的应用程度受人力、物力、财力等多方面制约。调查结果显示,59.20%的教师认为,人工智能技术与教师教育的融合性不强;41.18%的教师认为,学区或学校难以投入大量资源以支持智能化教师教育体系构建;另外,42.88%的教师认为,目前人工智能支持下的教师教育指导性政策与规章尚需完善。这表明不少地区不仅缺乏具有较高智能教育素养的教师教育专家以及足够的经费支持、资源保障,而且,也缺乏人工智能赋能教师培训的指导性政策与规章,进而导致区域教师教育部门在利用智能工具开展教师培训活动时易陷入“仅加大软硬件投入”的战略误区,忽视对教师教育者技术接受与整合能力的有效训练,进而削弱了智能技术在教师培训需求满足与资源建设方面的应用空间。
四、人工智能赋能教师教育的实践路向
随着人工智能与教师教育领域的不断融合,人工智能赋能教师教育也面临着如教师教育课程体系难以适应智能时代教师专业发展、基于证据的教师教育质量评价有待优化、大数据赋能教师教育管理存在决策偏差、教师培训与智能技术的整合存在效度困境等问题。综上,为推动人工智能在教师教育领域的合理应用,人工智能赋能教师教育体系构建应关注以下实践路向。
(一)加强数字化课程建设,推进教师教育资源智能化开放共享
以往教师教育资源虽然也包括微课、短视频、精品课等信息化形式,但随着新课标的颁布与新教材的逐步使用,教师教育数字化资源动态性缺位、资源建设质量不高、资源建设区域协同性差、资源建设针对性不强等问题逐渐凸显。在人工智能时代,教师培训课程、教师研修资料等均可被表征为较易传播与计算的数字形态,教师教育资源建设应加强数字化课程建设,推进教师教育资源智能化开放共享。首先,区域教育行政管理部门、各级各类教师培训机构及中小学校应携手打造智能化区域教师教育课程资源库,立足教师群体的数字画像以及教师培训专业标准,积极利用虚拟现实、增强现实、智能云等智能技术,关注教师教学技能网络模拟实训与教育理论在线学习,充分整合微课、慕课、直播课、公开课等数字化课程资源,推动数字化教师教育课程资源系统化建设。例如,首都师范大学聚焦于人工智能时代下的教师发展,由高校导师团队设计面向教师专业发展的在线课程,师范生制作开发课程,并且在课程开设期间与在职教师开展全程陪伴式的互助共学,师范生为在职教师解答与技术应用有关的困惑,而在职教师可以为师范生在教学方面提供经验分享。其次,构建数字化教师教育课程资源监管体系。地方教育行政管理部门、学科教研员、教育督学及督导专家等多方人员应组建数字化教师教育课程资源审查小组,确保数字化教师教育课程资源开发经过开发测试、内部评价、外部评价等严格流程,应利用机器学习、数据挖掘等智能技术,及时对参训在职教师或师范生的课程资源使用记录、共享渠道与心得体会予以电子存档。再者,应创设数字化教师教育课程资源的智能推送与共享机制。地方教育行政管理部门可依托“国培计划”“区域教师发展计划”等各级各类教师教育项目,着手建立优质数字化课程资源开发与遴选机制,遴选优质数字化资源,明确数字化教师教育资源流通标准与准入门槛,利用大数据分析与智能画像技术,通过智能筛选、提取和整合教师专业学习需求信息,基于在职教师专业学习的数字画像,有针对性地为教师推送定制化课程资源。
(二)立足评价改进,构建基于证据的教师教育质量监测体系
如前文所述,在评价层面,基于证据的教师教育质量评价机制还有待完善。评价对于教师教育质量的提升来说具有导向与指引作用,随着数据智能理念的不断深化,教师教育评价愈发关注数据式证据,如何利用数据信息呈现教师教育评价证据成为热点议题。因此,有必要立足于当前教师教育评价存在的现实问题,构建基于证据的教师教育质量监测体系。一方面,应基于智能数据挖掘,构建教师教育质量监测方案。从教师教育评价主体来看,教师教育质量评价受其主观判断影响,若教师教育评价所依赖的数据信息不够客观,将导致教师教育的评价结果有失公允。因此,应基于教师教育评价的实际诉求,智能挖掘与提取师范生、职后教师、教师教育者等评价利益相关者的数据信息,建立教师管理信息化系统,构建教师学分管理机制,建立教师数据的“驾驶舱”,对教师教育过程进行精准预警与监测。另一方面,创设基于证据可视化的教师教育质量分析机制。基于大数据分析、生物信息识别、图像识别、视频分析等技术,可从教师教育投入、过程、产出、背景等方面进行教育质量观测,动态采集教师教育行为和环境信息,严格落实数据筛选、数据比较、数据整合、数据呈现等一系列证据可视化流程,及时向主管部门、教育工作者、师范生、教师公开教师教育质量观测结果,注重教师教育质量评价结果与改进方案的可视化呈现,以便进一步明确教师教育质量的改进方向与提升路径。例如,宁夏充分利用大数据支撑教师智能研修行动并建设教师教育质量监测体系,为提升教师在教学设计、课堂组织、班级管理、教育研究等方面的综合能力,将教师管理信息系统、教师继续教育网络研修等平台整合融入宁夏教育云,基于教育云平台实现对教师专业发展状态的监管、测评与干预。
(三)聚焦数智融合,优化教师教育决策偏差调节机制
如前文所述,在管理层面,大数据赋能教师教育管理存在决策偏差。以往的教师教育决策存在主观判断、决策流程过于僵直与落后、决策技术过于单一等问题,人工智能时代教师教育决策虽可实现基于证据的教师教育决策,但其并不意味着教师教育决策绝对的合理化与准确化,教师教育决策仍有可能存在偏差问题(如决策偏见、决策失误等)。因此,应聚焦数智融合,优化教师教育决策偏差调节机制。首先,应构建基于数智融合的教师教育决策咨询服务体系。以师范教育、在职培训等多种形态为主体的教师教育体系涉及多个决策主体,且以往区域层面教师教育决策可能在师范教育与在职培训对接层面存在信息鸿沟,而且区域层面可能在城乡教师发展规划方面存在决策偏差。为此,可通过创设区域教师管理与发展服务平台,动态汇聚不同决策主体的建议与反馈意见,为地方教师教育管理者改进教师发展计划、教师研修项目管理服务、教师专业发展学分银行服务等提供信息支持与路向导引。其次,应关注教师教育决策偏差诊断与调节机制的创设。人工智能时代教师教育决策不仅应体现智慧化特性,而且应秉承基于证据的科学主义取向。应提升教师教育决策者的智能教育素养与数据素养,打通教师教育利益相关者间的决策信息共享通道,及时诊断区域教师培训与研修实践的主要问题与产生根源,智能分享与整合来自地方教师发展学院或中心、教育行政管理部门及高校教师教育基地的反馈信息,构建协同化地方教师教育决策咨询服务体系,有效提升区域教师教育决策的科学化和民主化。
(四)关注智能研修,创设基于分层分类的精准化教师培训体系
如前文所述,在培训层面,教师培训与智能技术的整合存在效度困境。以往师资培训一般采用讲座、讨论、观摩、进修、线上刷课等多种方式,但大多数培训方式属于短期行为,难以长期针对特定教师群体(如位处偏远的农村地区教师)开展教师专业培训。人工智能赋能教师网络研修平台与模式创建为教师终身学习与持续发展提供了重要支持。由此,为进一步推进人工智能赋能教师教育,满足不同类型教师群体的学习诉求,加快教师队伍数字化建设进程,推动教师数字化发展,有必要关注智能研修,创设基于分层分类的精准化教师培训体系。首先,教师培训部门或机构应着手建立研修专区,组建区域智能研修共同体,对参与在线研修的教师群体进行合理分类,以研修问题与实践案例为抓手,满足不同类别、层次、岗位的教师需求。教师教育者应基于教师研修数据进行智能追踪,尝试捕捉不同类型(如农村教师、城镇教师)、不同层次(如教学新秀、教学骨干、教学专家)教师参与智能研修的学习需求,以便构建线上与线下、必修与选修相融通的精准化教师研修模式。其次,应注重探索建立基于分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。最后,应基于大数据融合,探索建立分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。具体而言,应关注教师在学科、年龄、教龄等方面的实质性发展差异,评价方案的设计与实施应关注教师发展的过程性与阶段性数据的提取与筛选。也应着重提升教师教育者的信息化评价素养与智能技术胜任力,尝试通过教师个体发展画像的智能分析与评价,为受训教师后续的专业学习以及教师教育者的教学实践提供改进方向。
五、结语与展望
关于华南师范大学|统一认证|移动平台
Copyright©2023SouthChinaNormalUniversity.AllRightsReserved|华南师范大学版权所有
华南师范大学人工智能在中学教育教学中的应用现状分析
但是,从教学一线的现状来看,人工智能课程的教学效果有待提高,人工智能辅助教学的功能体现的不够充分,专家学者对人工智能在中学中的应用研究较为薄弱。因此,为提高中学人工智能课程教学效果和人工智能在教育教学中的深层次应用,该研究从学术期刊与教材两个方面着手,对中学人工智能教学现状、应用现状与研究现状进了分析,其目的在于借鉴学术界已有的研究成果,为中学人工智能课程的开展和人工智能在中学教育中的深层次应用提供理论指导。
研究样本与研究方法
研究样本
学术期刊的选择2001年11月教育部办公厅发布的《普通高中信息技术课程标准》中规定了中学信息技术课程包含信息技术基础必修模块和选修模块。自此,在中学信息技术课程中人工智能成为不可或缺的一部分。
因此,该文基于中国期刊网(CNKI)在《电化教育研究》、《中国电化教育》、《现代教育技术》、《中国医学教育技术》等4种期刊中检索了2002年1月到2012年12月间与人工智能相关的文献。检索时首先以“人工智能”为主题词进行初次搜索,再以人工智能研究领域的关键词(AI、机器人、模式识别、专家系统、神经网络等)进行第二次检索。在搜索结果中首先剔除重复文献、会议报道等无关样本,然后逐篇分析其关键词和摘要,直到确定文章的归属为止。最终确定了68篇文献作为重点研究内容。
教材的选择根据《普通高中课程方案(实验)》的规定,高中信息技术学科被列入技术学习领域,包括一个必修模块和五个选修模块。为增强课程选择的自由度,五个选修模块平行设计,相对独立(如图1所示)。目前,经全国中小学教材审定委员会初审通过的“普通高中信息技术课程标准实验教材”已经有五个出版社的版本:它们分别是“广东教育出版社”、“教育科学出版社”、“中国地图出版社”、“浙江教育出版社”和“上海科技教育出版社”,这五套教材已在全国多个省区实验并推广使用[4]。笔者以目前使用范围较为广泛的广教版必修教材、广教版选修教材和浙教版必修教材为例进行研究。
图1普通高中信息技术课程方案
研究方法
学术期刊的研究方法笔者对上述4种期刊中与人工智能相关的文献进行了定量和定性的分析。首先依据期刊中文献统计的数据,建立数学模型,并用数学模型计算出分析对象的各项指标。然后,依据文献中各对象的数值指标、一线课堂的真实情况以及人工智能研究领域的最新进展对分析对象的性质、特点、发展变化规律做出判断。教材的研究方法笔者就广教版和浙教版高中必修内容《信息技术基础》中人工智能的设置类型和设置比例进行了对比分析,又以广教版高中信息技术选修5《人工智能初步》为例,对目前中学人工智能选修课的内容分布、难易程度、教学模式、实施现状等逐一做了分析。
研究结果分析
从2002年1月到2012年12月,上述4中期刊中与人工智能相关的文献共计68篇,其中与中学教育教学直接相关的有24篇,其分布情况如表1所示。
从期刊文献的发表数量来看,人工智能已经成为教育技术学领域的一个重要研究领域和发展方向。人工智能在中学教育教学中的应用也受到了专家学者的普遍关注。据文献统计数据显示,《中国电化教育》杂志对中学的关注度较高;从作者来看,浙江师范大学的张剑平教授对人工智能的关注度很高;在上述研究样本中,张剑平教授的文献共计有12篇,其中与中学直接相关的有7篇。
从期刊文献的发表时序来看,文献数目呈“凸”字型分布(如图2所示)。人工智能引入教育界时,人们对这一模仿人脑的新型技术充满好奇与期待,在学术界的关注度呈逐年上升趋势。但是,由于对人工智能的研究需要脑神经科学、计算机科学、教育学、心理学等复杂的学科背景,许多专家学者对其研究逐步减弱,因此其发展速度偏低,其关注度在2008年之后呈递减趋势。
根据研究文献的集中趋向,笔者将研究内容划分为五个类目。再根据已确定的研究类目,对研究文献进行了统计分析,其结果如表2所示。
由表2可以看出,研究内容主要集中在人工智能的理论研究、系统研发,人工智能在教育中的应用以及在课程教学中的研究,且分布较为均匀。深入研究发现,在人工智能课程教学研究中以“机器人教学”为主。人工智能教育应用主要集中在高等院校,在中学中的应用较为简单,如Z+Z智能教育软件在数学教学中应用。从人工智能在信息技术课程中的设置情况分析在全国中小学信息技术教育工作会议上,教育部决定从2001年起用5-10年的时间在全国中小学普及信息技术教育。自2002年广东省、山东省、海南省、宁夏回族自治区首批进入新课改以来,我国其他地区也陆续进入了新课改。目前,人工智能的不少研究领域,如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的日常生活。张剑平2003年1月发表在《电化教育研究》上的《关于人工智能教育的思考》一文中强调:人工智能理论和技术在一定程度上代表着信息技术的前沿,应当在现有的中学信息技术课程体系中增加人工智能课程,以便更全面地培养学生的信息素养。
当前,我国中学使用的信息技术教材存在地域性差异。但基本上关于人工智能的都包含两个部分:一是在信息技术必修教材中与人工智能相关的内容;二是人工智能选修模块。笔者首先就现行高中信息技术必修教材(以广东教育出版社《普通高中课程标准实验教科书信息技术基础》和浙江教育出版社《普通高中课程标准实验教科书信息技术基础》)中人工智能部分在教材中所占的比例和涉及的领域进行了分析研究。其结果如表3所示。
从上述统计结果可以看出,在中学信息技术教育中,人工智能已经成为重要一部分,但是就教学层面而言,只关注了人工智能在信息处理方面的原理和应用。对于人工智能的其他研究领域在必修教材中没有涉及。其次,以广教版选修教材例,分析了选修5《人工智能初步》课程设置情况:目前大部分学校对信息技术的选修模块开设的并不完整,大多只开了选修《多媒体技术应用》。因此,笔者就两个选修模块的教材进行了横向比较,并分析其原因:在信息技术选修5《人工智能初步》中深入介绍了人工智能。教材内容主要包涵了五部分内容:即人工智能初探、知识表示及Prolog语言、专家系统、问题求解、人工智能的回顾与展望。从教材内容的设置来看,充分体现了新课改自主探究的理念。整个教材的设置解读了人工智能是什么、为什么、怎么实现的问题。这不仅使学生能够一脉相承地了解人工智能的总体思路,也为学生在实际的生活和学习中如何解决问题提供了的思路。
选修5和选修2相比较,在以下三个方面存在显著差异,使得选修5在中学的实施广度上低于选修2。第一,师资力量薄弱。尽管从课程内容设置的数量上来看,选修5少于选修2(选修5共五章内容,涉及74个知识点;选修2共8章内容,涉及91个知识点)。但是从难易程度上来看,选修5明显高于选修2。选修2为多媒体技术应用,主要包涵对多媒体的认识以及多媒体作品的采集与加工。随着信息化的飞速发展,这些内容与教师和学生的生活息息相关,这个主题已经不再陌生,技术相对成熟,且简单便于操作,信息技术教师的胜任度高。而由于选修模块的开设时间较短,大多数学校还没有专攻人工智能方向的教师。第二,对硬件的要求高。对于选修2,只需要学校配备普通的多媒体计算机即可。而选修5对计算机的配置要求较高,在第四章第五节中还涉及了机器人相关知识,从某种程度上来说学校还需要购置相应的人工智能设备。可见,选修5对硬件的要求远高于选修2。第三,与必修的相关程度偏低。在必修《信息技术基础》中,与多媒体相关的内容远高于人工智能。因此,学生在多媒体方面的基础高于人工智能。因此,学校在课程开设上对选修2有了倾向性,学生在选课上也对选修2有了倾向性。
从教材的整体设置结构来看,都是以建构主义为基本指导思想,注重学生的实际操作能力。每一小节都设置了活动课,以促进知识的应用能力和创新能力。从文献中分析,与人工智能在中学教学中的教法相关的研究较少。马超[5]等发表在《现代教育技术》2008年第8期上的《高中<人工智能初步>教学的三种常用模式》中总结了人工智能在我国高中课堂上的三种常用模式:即“情境化教学模式”、“基于问题的教学模式”、“基于案例的教学模式”。同时指出,“问题探索”是核心,“基于案例”是难点。笔者认为,要真正促进人工智能在中学中的进程,课堂是关键,而教法又是把握住课堂的关键。但是在这一领域的理论研究和实践经验都比较匮乏,需要一线教师的不懈努力,也需要理论与实践的深层次结合。
总结
人工智能技术及其应用的发展已经走过了50余年,它作为信息技术的前沿领域,对社会发展的影响越来越大。在基础教育课程改革的浪潮中,许多国家意识到在基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。英国早在1999年将人工智能课程作为选修课出现在中学的信息与通信技术(ICT)课程中[6]。我国教育部于2003年4月正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步[7]。但是就目前人工智能课程在我国中
学阶段的开展情况来看不容乐观,人工智能在中学教育教学中的应用体现的还不够充分。因此,想要解决上述问题,需要各级教育行政机构的高度重视,需要专家学者的执着追求,更需要一线教师的积极探索。
参考文献
[1]张剑平.关于人工智能教育的思考[J].电化教育研究,2003,(1):24-28
[2]史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1
[3]吴战杰,秦健.Agent技术及其在网络教育中的应用研究[J].电化教育研究,2003,(3):32-36
[4]王海燕,赵彬.中学信息技术教材研究与教学设计[M].西安:陕西师范大学出版社,2011:2
[5]马超,张义兵,赵庆国.高中《人工智能初步》教学的三种常用模式[J].现代教育技术,2008,(8):51-53
[6]SQA.NQReviewInvestigationReport:ComputingandInformation
Systems[EB/OL].http://www.sqa.org.uk/sqa/28.139.html
[7]教育部.普通高中技术课程标准(实验)[EB/OL].http://www.ycy.com.cn/Article/kcbz/gz/200608/8543_3.html
|来源:中国医学教育技术
|作者:王斐
|美编:甄宏莉返回搜狐,查看更多