博舍

新一代人工智能的发展与展望 在人工智能方面,重点发展大数据驱动的

新一代人工智能的发展与展望

随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

作者:徐云峰

catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]

《中国人工智能发展报告2023》(附下载)

图源:《中国人工智能发展报告2020》

总体上,国内的人工智能相关专利申请量呈逐年上升趋势,并且在2015年后增长速度明显加快。(受数据公开滞后影响,专利数据截至2020年8月)

图源:《中国人工智能发展报告2020》

从专利申请的地域分布来看,广东省的AI专利申请量以72737位居第一,比排名第二的北京市(50906)多出42.8%,具有突出优势。

前十名的省份主要分布在东部、中部、西部等地区,分布较为均衡,但是以东部省市居多,江浙沪三省市均位居前五名。

这与这些地区的经济水平、发展程度、科研投入及知识产权保护等因素密切相关。

图源:《中国人工智能发展报告2020》

●全球人工智能专利近半来自企业●

此外,报告显示,过去十年,全球人工智能专利申请中,将近一半的申请人是来自于企业。高校和研究所的相关申请量共计约两成。

图源:《中国人工智能发展报告2020》

中国AI专利申请数量排名前十的机构包括5家企业和5所高校,主要分布在广东、北京、浙江和四川。报告显示,目前中国在AI专利领域的创新主要还是依靠高科技互联网企业和高校科研机构等方面的共同努力。

其中国家电网专利申请量最多,其后依次是腾讯、OPPO、百度、平安科技等。

图源:《中国人工智能发展报告2020》

●AI高层次人才分布不均,北京最多●

从人工智能领域的人才角度来看,报告数据显示,我国人工智能领域学者数量共计17368位,覆盖100多个国内城市,主要集中在京津冀、长三角和珠三角地区。

国内AI领域高层次人才也主要分布在京津冀、长三角和珠三角地区,其中,京津冀地区(主要是北京市)在AI领域的高层次人才数量最多。长三角地区也有较多的AI高层次人才分布。相比之下,内陆地区领域高层次人才较为缺乏。

从AI高层次学者分布来看,北京仍是拥有AI高层次学者数量最多的国内城市,有79位,占比45.4%,接近于国内AI高层次人才的一半。

同时,从子领域发展来看,北京在AI各个细分方向上的发展较为均衡,相关论文产出量均居于全国领先位置。

图源:《中国人工智能发展报告2020》

近年来,我国人工智能发展突飞猛进,但仍面临人才紧缺的问题。据悉,中国AI领域高层次人才培养从2018年起开始重点发展,主要由高校通过成立AI学院研究院、设立AI专业的方式进行培养。

2020年2月,教育部颁布《关于公布2019年度普通高等学校本科专业备案和审批结果的通知》。统计结果显示,人工智能方面,本次全国范围内获得人工智能专业首批建设资格的共有180所,相比2018年的35所,增加414%,反映出人工智能专业的热度攀升。

●知识图谱、智能机器人等是AI未来重点●

报告中指出,过去十年十大AI研究热点分别为:深度神经网络、特征抽取、图像分类、目标检测、语义分割、表示学习、生成对抗网络、语义网络、协同过滤和机器翻译。

图源:《中国人工智能发展报告2020》

通过对2020年人工智能技术成熟度曲线分析,并结合人工智能的发展现状,报告认为人工智能下一个十年重点发展的方向包括:强化学习(ReinforementLearning)、神经形态硬件(NeuromorphicHardware)、知识图谱(KnowledgeGraphics)、智能机器人(SmartRobotics)、可解释性AI(ExplainableAI)、数字伦理(DigitalEthics)、自然语言处理(NaturalLanguageProcessing)等技术。

如需下载原文件请关注下方先进制造业公众号,首页对话框发消息回复“20210416”即可下载!

★2021人工智能在工业领域的应用研究(附下载)

★2020中国人工智能厂商全景报告(附下载)

★制造业人工智能8大应用场景!

声明

来源:先进制造业公众号推荐阅读,转载请注明,如涉及作品版权问题,请联系我们删除或做相关处理!本文编辑:微明

投稿邮箱:lilyzhang@wintimechina.com

微信号:amdaily返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇