博舍

人工智能的历史、现状和未来 人工智能的发展前景1000字怎么写的

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

浅谈人工智能未来发展趋势

与欧洲发达国家相比,我国关于人工智能的研究起步比较晚,但发展比较迅速――2016年,国家科技部、发改委及其他有关部门明确提出《“互联网+”人工智能三年行动实施方案》,就人工智能的发展问题提供了众多支持。目前,虽然我国人工智能产业整体水平与发达国家还有较大差距,但行业在中文信息处理、语音识别、文字识别、生物特征识别等技术领域都拥有独立自主的知识产权,在智能识别、核心算法等方面已经能够与欧洲发达国家相媲美。

3人工智能未来的发展趋势

人工智能已经发展了很长时间,它在未来的发展问题是该学科有关研究人员讨论的重点,从现阶段的发展情况来说,未来人工智能可能会朝着以下几个方向发展。

3.1更好地为人类服务

人工智能本质上是模拟人的意识、思维的信息过程。虽然未来的机器人能够像人类一样思考,但总体而言,并不能完全与人类的思维保持一致,人工智能主要还是为人类服务为主,比如北京明洋盛世网络科技有限公司自主研发的云应AI智能语音机器人,专为电销、客服而生,它就是通过大脑神经算法模拟,可以像真人一样给客户打电话介绍并推销自己的产品,主动将意向客户分类,后方便我们去跟进,云应AI机器人最大的特点就是,它可以不休息,不会因客户态度而影响心情和销售,可以快速的筛选出意向客户,帮助企业提高效率、节省人工成本,让电销公司不再为,招人难、留人难、培训难、人员销售话术水平参差不齐而发愁!在这种情况下,人类需要树立终身学习的思想,不断充实自己,以免过分依赖于人工智能。

3.2与人类平等

一旦人工智能具有人类的基本特征,它们拥有自己的感情,人类就不能将其作为自己的所属物,肆意地要求人工智能为自己提供各种服务,否则,必然会掀起一场关于人权的争论。在这种情况下,人类可能会与人工智能处于平等地位,从物种进化理论而言,“物竞天择、适者生存”,这也就意味着人类中学习能力较弱、对环境适应性较差的在未来的演化过程中会被大自然淘汰。与人类相比,人工智能的学习能力非常强,人类受到各种因素的影响,存在着许多消极心理,比如懒惰、依赖性强,在这种情况下,人类比较容易被人工智能淘汰,人类在发展过程中需要付出更多的努力,不断挖掘自身的潜力,才能够维持与人工智能的平等地位。

3.3毁灭人类

任何科学技术的发展都具有一定的风险,人工智能发展过程中可能会出现无法预测的质变,导致人工智能拥有与人类完全一致的思维方式,超过人类的智慧,易出现违反人类道德但与逻辑相符的情况。这必然会对人类的发展带来严重的危机。现阶段,许多科幻电影中都已经出现了这样的剧情,面对高智慧型的人工智能,人类完全处于下风,最终可能会导致人类灭绝。比如,电影《终结者》《机械公敌》中智能机器人试图取代人类;VR(虚拟现实)游戏系统赋予游戏的主机AI系统,过于智能化的系统,可能将人类困在VR世界中无法返回现实。除此之外,还有一种可能,即人类依赖于人工智能的便利,产生严重的依赖心理,最终导致许多基本的生产能力丧失,导致人类毁灭。

综上所述,人工智能属于全世界科研发展的前沿技术,发展过程中与信息技术、计算机技术、精密制造技术、互联网技术密切相关,对各行业、各领域的发展都有一定的影响,在人工智能发展过程中要认真、深刻地研究其未来的发展方向。

【云应AI智能语音】返回搜狐,查看更多

人工智能的8个有用的日常例子

如果你在谷歌上搜索“人工智能”这个词,然后不知怎的就打开了这篇文章,或者用优步(Uber)打车上班,那么你就利用了人工智能。

人工智能影响我们生活的例子不胜枚举。虽然有人将其称为“机器人以邪恶的天才统治世界”的现象,但我们无法否认人工智能通过节省时间、金钱和精力使生活变得轻松。

[[330378]]

术语

人工智能是指机器通过专门设计的算法来理解、分析和学习数据,从而充当人类思维蓝图的现象。人工智能机器能够记住人类的行为模式并根据他们的喜好进行调整。

在我们的讨论过程中,您将遇到与AI密切相关的主要概念是机器学习、深度学习和自然语言处理(NLP)。在继续之前,让我们先了解这些。

机器学习(ML)涉及通过大数据为例向机器教学有关重要概念的知识,大数据需要被构造(以机器语言)以便机器理解。这些都是通过向他们提供正确的算法来完成的。

深度学习(DeepLearning)比ML领先一步,这意味着它通过表示进行学习,但不需要对数据进行结构化以使其有意义。这是由于受人类神经结构启发的人工神经网络。

自然语言处理(NLP)是计算机科学中的一种语言工具。它使机器能够阅读和解释人类语言。NLP允许自动翻译人类语言数据,并使两个使用不同语言的实体(计算机和人类)进行交互。

现在您已经掌握了术语,让我们深入研究人工智能的示例及其工作方式。

8个人工智能的例子

以下列出了您每天可能会遇到的八个人工智能示例,但您可能没有意识到它们的AI方面。

1.谷歌地图和打车应用

地图应用程序如何知道确切的方向、最佳路线,甚至是道路障碍和交通堵塞呢?不久以前,只有GPS(基于卫星的导航系统)被用作出行的导航。但是现在,人工智能被纳入其中,让用户在特定的环境中获得更好的体验。

通过机器学习,app算法会记住建筑的边缘,在工作人员手动识别之后,这些边缘会被输入系统。这允许在地图上添加清晰的建筑视觉效果。另一个特点是识别和理解手写的门牌号的能力,这可以帮助通勤者找到他们想要的房子。没有正式街道标志的地方也可以用它们的轮廓或手写的标签来识别。

该应用程序已被教会理解和识别流量。因此,它推荐了避免路障和拥堵的最佳路线。基于AI的算法还告诉用户到达目的地的确切距离和时间,因为它被教导可以根据交通状况进行计算。用户还可以在到达目的地之前查看其位置的图片。

因此,通过采用类似的AI技术,各种乘车应用也已出现。因此,每当您通过在地图上定位您的位置来从应用程序预订出租车时,它都是这样工作的。

2.人脸检测与识别

当我们拍照时在脸上使用虚拟滤镜和使用人脸识别码解锁手机是人工智能的两个应用,现在已经成为我们日常生活的一部分。前者包含人脸检测,即识别任何人脸。后者使用人脸识别来识别特定的人脸。

这是如何运作的?

智能机器经常匹配,有时甚至超越的能力。人类婴儿开始识别面部特征,如眼睛、鼻子、嘴唇和脸型。但这并不是一张脸的全部。有太多的因素使人的脸与众不同。智能机器被教导识别面部坐标(x、y、w和h,它们在面部周围形成一个正方形作为感兴趣的区域)、地标(眼睛、鼻子等)和对齐(几何结构)。

人脸识别还被政府机构或机场用于监视和安全。例如,伦敦盖特威克机场(GatwickAirport)在允许乘客登机之前使用面部识别摄像头作为ID检查。

3.文本编辑器或自动更正

当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。

在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。

语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。

下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。

4.搜索和推荐算法

当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。

这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。

同样,优化的搜索引擎体验是人工智能的另一个示例。通常,我们的热门搜索结果会找到我们想要的答案。怎么发生的?

向质量控制算法提供数据,以识别超越SEO垃圾内容的高质量内容。这有助于根据质量对搜索结果进行升序排列,以获得最佳用户体验。

由于搜索引擎由代码组成,因此自然语言处理技术可以帮助这些应用程序理解人类。实际上,他们还可以通过汇编排名靠前的搜索并预测他们开始键入的查询来预测人们要问的问题。

诸如语音搜索和图像搜索之类的新功能也不断被编程到机器中。如果要查找在商场播放的歌曲,只需将手机放在旁边,音乐识别应用程序就会在几秒钟内告诉您歌曲的内容。在丰富的歌曲数据库中进行筛选后,机器还将告诉您与该歌曲有关的所有详细信息。

5.聊天机器人

作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。

聊天机器人被教导通过自然语言处理(NLP)来模仿客户代表的对话风格。高级聊天机器人不再需要特定的输入格式(例如,是/否问题)。他们可以回答需要详细答复的复杂问题。实际上,它们只是人工智能的另一个例子,它们给人的印象是客户代表。

如果您对收到的答复的评价不佳,则机器人会识别出所犯的错误并在下次进行纠正,以确保最大的客户满意度。

6.数字助理

当我们全力以赴时,我们常常求助于数字助理来代表我们执行任务。当您单手开车喝咖啡时,您可能会要求助手给您的妈妈打电话。助理(例如Siri)将访问您的联系人,识别单词“Mom”并拨打电话。

Siri是一个较低层模型的示例,该模型只能在说话时做出响应,而不能给出复杂的答案。最新的数字助理精通人类语言,并集成了高级NLP和ML。他们了解复杂的命令输入并给出令人满意的输出。他们具有自适应能力,可以分析您的喜好、时间表和习惯。这使他们能够以提醒、提示和时间表的形式为您系统化、组织和计划事务。

7.社交媒体

社交媒体的出现为世界提供了一种新的叙事方式,提供了过度的言论自由。然而,这也带来了一些社会弊端,如网络犯罪、网络欺凌和仇恨言论。各种社交媒体应用程序都在使用人工智能的支持来控制这些问题,并为用户提供其他有趣的功能。

AI算法可以发现并迅速删除包含仇恨言论的帖子,速度远比人类快。通过他们以不同语言识别仇恨关键字,短语和符号的能力,这成为可能。这些已被输入到系统中,该系统具有向其词典添加新词的附加功能。深度学习的神经网络架构是该过程的重要组成部分。

表情符号已成为代表各种情感的最佳方式。AI技术也可以理解这种数字语言,因为它可以理解特定文本的含义并提示正确的表情符号作为预测文本的一部分。

社交媒体是人工智能的一个很好的例子,它也能够理解用户产生共鸣的内容并向他们建议相似的内容。面部识别功能还用于社交媒体帐户中,可帮助人们通过自动建议为朋友加标签。智能过滤器可以识别并自动清除垃圾邮件或不需要的邮件。智能回复是用户可以享受的另一个功能。

社交媒体行业的一些未来计划包括使用人工智能通过分析发布和消费的内容来识别心理健康问题,例如自杀倾向。这可以转发给心理健康医生。

8.电子支付

银行现在正在利用人工智能通过简化支付流程来便利客户。

通过观察用户的信用卡支出模式来检测欺诈的方式也是人工智能的一个示例。例如,算法知道用户X购买哪种产品,何时何地购买产品以及价格落在什么价格区间。当有一些不正常的活动不适合用户个人资料时,系统会立即提醒用户X。

总结

人工智能算法超越了人类的能力,可以节省时间,从而使科学家们可以将精力投入到其他更重要的发现中。

我们已经讨论过的人工智能示例不仅可以作为娱乐的来源,而且还提供了我们已变得如此依赖的无数实用程序。人工智能领域仍处于新生阶段,还有更多的发明将更精确地复制人类的能力。

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇