人工智能的三次浪潮与三种模式
■史爱武
谈到人工智能,人工智能的定义到底是什么?
达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。
百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。
2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。
人工智能的三次浪潮
自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
第一次浪潮(1956-1976年,20年),最核心的是逻辑主义
逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。
早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。
在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。
虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。
第二次浪潮(1976—2006年,30年),联结主义盛行
在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。
在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。
这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。
第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破
如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。
若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。
经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。
为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。
伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。
深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。
深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。
人工智能的3种模式
人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。
(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。
(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。
(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。
我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!
人工智能导论——人工智能学科研究的基本内容及主要研究领域
一、人工智能研究的基本内容
(1)知识表示
人工智能研究的目的是要建立一个能模拟人类智能行为的系统,但知识是一切智能行为的基础,因此首先要研究知识表示方法。只有这样才能把只是存储到计算机中去,供求解现实问题使用。知识表示方法可分为两类:符号表示法(用各种包含具体含义的符号以各种不同的方式和顺序组合起来表示知识的方法)和连接机制表示法(用神经网络表示知识)。
(2)机器感知
所谓机器感知就是使机器(计算机)具有类似于人的感知能力,其中以机器视觉和机器听觉为主。机器感知是机器获取外部信息的基本途径。
(3)机器思维
所谓机器思维是指通过感知得来的外部信息及机器内部的各种工作信息进行有目的的处理。
(4)机器学习
机器学习就是研究如何使计算机具有类似于人的学习能力,使它能通过学习自动的获取知识。
(5)机器行为
机器行为主要是指计算机的表达能力,即“说”、“写”、“画”等能力。对于智能机器人,它还应具有人的四肢功能,即能走路、能取物、能操作等。
二、人工智能的主要研究领域
目前,随着智能科学和技术的发展和计算机网络技术的广泛应用,人工智能技术应用到越来越多的领域。下面简要介绍几个主要领域:
(1)自动定理证明
自动定理证明是人工智能中最先进行研究并得到成功应用的一个研究领域,同时它也为人工智能的发展起到了重要的推动作用。实际上,除了数学定理证明以外,医疗诊断、信息检索、问题求解等许多非数学领域问题,都可以转化为定理证明问题。
(2)博弈
诸如下棋、打牌、战争等一类竞争性的智能活动称为博弈(gameplaying)。人工智能研究博弈的目的并不是为了让计算机与人进行下棋、打牌之类的游戏,而是通过对博弈的研究来检验某些人工智能技术是否能实现对人类智慧的模拟,促进人工智能技术的深入研究。
(3)模式识别
模式识别(patternrecognition)是一门研究对象描述和分类方法的学科。分析和识别的模式可以是信号、图象或者普通数据。模式是对一个物体或者某些其他感兴趣实体定量的或者结构的描述,而模式类是指具有某些共同属性的模式集合。
模式识别方法有统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等。
(4)机器视觉
机器视觉(machinevision)或者计算机视觉(computervision)是用机器代替人眼进行测量和判断,是模式识别研究的一个重要方面。计算机视觉通常分为低层视觉和高层视觉两类。
(5)自然语言理解
自然语言理解(naturallanguageunderstanding)就是研究如何让计算机理解人类自然语言,是人工智能中十分重要的一个研究领域。它是研究能够实现人与计算机之间用自然语言进行通讯的理论与方法。
(6)智能信息检索
数据库系统是存储大量信息的计算机系统。随着计算机应用的发展,存储的信息量越来越大,研究智能信息检索系统具有重要的理论意义和实际应用价值。智能信息检索系统应具有下述功能:能理解自然语言、具有推理能力、系统拥有一定的常识性知识。
(7)数据挖掘与知识发现
知识发现系统通过各种学习方法,自动处理数据库中大量的原始数据,提炼出具有必然性的、有有意义的知识,从而揭示出蕴涵在这些数据背后的内在联系和本质规律,实现知识的自动获取。知识发现是从数据库中发现知识的全过程,而数据挖掘则是这个全过程的一个特定的、关键的步骤,数据挖掘的目的是从数据库中找出有意义的模式。
(8)专家系统
专家系统是一个智能的计算机程序,运用知识和推理步骤来解决只有专家才能解决的疑难问题,是目前人工智能最活跃、最有成效的一个研究领域。可以这样定义,专家系统是一种具有特定领域内大量知识和经验的程序系统,它应用人工智能技术模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过人类专家的水平。
(9)自动程序设计
自动程序设计是将自然语言描述的程序自动转换可执行程序的技术,包括程序综合和程序正确性验证两个方面的内容。
(10)机器人
机器人是指可模拟人类行为的机器。它可分为三代:程序控制机器人(第一代)、自适应机器人(第二代)、智能机器人(第三代)。
(11)组合优化问题
组合优化问题一般是NP完全问题。NP完全问题是指:用目前知道的最好的方法求解,问题求解需要花费的时间(称为问题求解的复杂性)是随问题规模增大以指数关系增长。组合优化问题的求解方法已经应用于生产计划与调度、通信路由调度、交通运输调度等。
(12)人工神经网络
人工神经网络是一个用大量简单处理但愿经广泛连接而组成的人工网络,用来模拟大脑神经系统的结构与功能。
(13)分布式人工智能与多智能体
分布式人工智能(DAI)是分布式计算与人工智能结合的结果。分布式人工智能的研究目标是要建立一种描述自然系统和社会系统的模型。
(14)智能控制
智能控制就是把人工智能技术引入控制领域,建立智能控制系统。
(15)智能仿真
智能仿真就是将人工智能技术引入仿真领域,建立智能仿真系统。
(16)智能CAD
智能CAD就是将人工智能技术引入计算机辅助设计领域,建立智能CAD系统。
(17)智能CAI
智能CAI就是将人工智能技术引入计算机辅助教学领域,简历智能CAI系统即ICAI。
(18)智能管理与智能决策
智能管理就是将人工智能技术引入管理领域,建立智能管理系统,研究如何提高计算机管理系统的智能水平,以及智能管理系统的设计理论、方法和实现方法。智能决策就是将人工智能技术引入决策过程,建立智能决策支持系统。
(19)智能多媒体系统
智能多媒体实际上是人工智能与多媒体技术的有机结合。
(20)智能操作系统
智能操作系统就是将人工智能技术引入计算机的操作系统之中,从质上提高操作系统的性能和效率。
(21)智能计算机系统
智能计算机系统就是人们正在研制的新一代计算机系统,它将全面支持智能应用开发,且自身就具有智能。
(22)智能通信
智能通信就是将人工智能技术引入通信领域,建立智能通信系统,在通信系统的各个层次和环节上实现智能化。
(23)智能网络系统
智能网络系统就是将人工智能技术引入计算机网络系统。
(24)人工生命
人工生命是以计算机为研究工具,模拟自然界的生命现象,生成表现自然生命系统行为特点的仿真系统。
----内容来自于《人工智能导论(第四版)》
人工智能领域近期的蓬勃发展基于哪三个重要因素
人工智能已经从一种理念逐步转化为可应用的技术。这个领域近期的蓬勃发展基于三个重要因素:互联网技术带来的大数据;利用深度学习的标准算法来处理数据;超级计算机和云计算的强大计算力。然而,其中的数学理论却没有什么突破,这也是这领域存在诸多瓶颈的本源。我国的人口规模是发展人工智能的优势,在应用人工智能技术方面已经有了很多优秀的工作,处于世界前沿水平。只是在基础理论和算法创新方面,跟美国、英国等国尚有差距。想要在人工智能等核心技术在国际上领先,基础理论的突破不可或缺。
人工智能对大数据的处理本质上是数学中的统计学。然而目前尚没有完备的数学理论用以支持大数据分析的结果。很多数学方法还相对原始,过度依赖于经验总结,而非真正来自内在的数学结构。这也导致了当下人工智能在处理大数据问题时还需要大量的人力和算力,甚至需要超级计算机的协助。由于缺乏数学理论的支持,很多大数据分析的结果只适用于特定环境,缺乏迁移性。大数据还缺乏有效的算法经典计算机的算法并不能直接应用到大数据中。
广为流传的深度学习也有很多不足之处(大样本依赖,可解释性差,易受欺骗等),但当前没有更好的算法来替代。要解决这些问题,需要对相关数学理论进行深入的研究,了解大数据内在的数学结构和原理。目前的人工智能由于计算机速度限制,只能采取多层状结构解决问题,基于简单数学分析而非真正的玻尔兹曼机(Boltzmannmachine),无法有效地找出最优解。在可预见的未来,如何提升量子计算机的硬件,发展更有效的数学算法,让量子人工智能与量子深度学习变成实用工具,有赖于基础科学和数学的深度结合。很显然,没有基础科学的强力支持,应用科学是不可能做出顶尖成绩的。
世界上的万物皆与数学方程有关:数据科学,张量,大数据,人工智能,机器学习。数值优化,运筹学,及其在大规模机器学习中的应用。量子计算,量子算法,及其在机器学习中的应用。数值线性代数,矩阵计算,及其在数据科学中的应用。大规模科学计算和高性能计算,如计算材料科学,计算量子化学,计算电磁学等的快速算法和并行算法等。数值偏微分方程,有限元理论和方法,多重网格算法,(非)线性守恒律等。多尺度模拟,计算流体动力学,计算连续力学,如复杂流体,多孔介质渗流,界面问题,地球物理流,生物流体动力学等。数值逼近论,反问题的数值解法,计算机图形学,计算共形几何,图像处理,医学影像处理等。动力系统和混沌,非线性动力学,经典与量子(不)可积系统,耗散系统等。随机分析,随机微分方程,不确定性量化及应用,统计计算,蒙特卡洛方法等及其在机器学习中的应用。数理经济学,金融数学,精算保险等。2019年,中国科学院推出该院200多名院士、专家耗时1年多研制的《科技发展新态势与面向2020年的战略选择》,其中就明确提到,与实验科学、理论分析和计算机模拟这三种经典科研范式相比,大数据科学将成为一种全新的科研范式。 责任编辑:pj