人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能主要包括哪些研究内容,人工智能现状和发展方向是什么
人工智能主要包括哪些研究内容,人工智能现状和发展方向是什么?发布时间:2020-08-1313:42:01来源:ITPUB博客阅读:871作者:巴菲特的小秘栏目:互联网科技人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
随着20世纪中叶电子计算机产生以来,科学技术得到迅猛发展,人工智能也随之产生和发展。人工智能已经应用到我们生活的很多领域,伴随着研究的发展,人工智能会更加深入的影响我们的生活。
1.什么是人工智能
“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
2.人工智能的应用领域
今天,AI能力更倾向于应用到人类或其他动物智能的某一或某几方面,并用自动化替代,有时候也用于对其进行模拟。这些在高性能计算机调度之下的智能行为远远比人类的行为更为强大。
2.1路径查找和路径规划
在最小代价路径规划和路径查找系统中,可以使用专门的技术,它们中有一些非常灵巧微妙,另一些则仅仅是用蛮力解决:来模拟对理解的直觉迅速转换或者对普通人大脑生成过程的识别,结果有时非常令人惊讶!路径查找就是路径规划问题的一种变体。
不管怎样,当对真实世界中存在的问题应用AI技术的时候,您所遇到和需要克服的挑战有很多,但其中最令人烦恼的一个就是问题的规模和复杂度,即使在人类看来这些问题非常理所当然、简单和幼稚。早些年,AI研究的大部分工作是用于开发快速、高效、充分理解的查找方法。
2.2规则和专家系统
人工智能的发展到今天开始使用知识库来代替器官或机构记忆,多年来专家系统以及基于规则的决策系统在人类诊断和经验分析上一直处于主导地位。它用于在知识库中挖掘出问题的答案、寻找关联性、模式提取等等相关工作。
事实上,专家系统甚至可以用作游戏的一个可玩性特色。想象在一个实时战略游戏当中,您训练一个罗马士兵军团,让其攻击、抵御某种特定类型的敌人。然后,您又训练了敌人军队,让它再次抵御罗马军团的进攻,依次反复。
每一个历史军队所有的进攻和防御能力都包含在一个具有代表性的数据库中。当某一特定环境设置出现时,这些军队就需要找出一种策略来进行防御,这种需要由某种软件来提供,其中封装了这些环境作为一组参数,用于在专家系统中进行查找操作,从而寻找出抵御敌人的最佳方法。
3.人工智能的现状与发展方向
3.1人工智能的现状
20世纪90年代A.I.技术的发展在各个领域均展示长足发展——学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。到了90年代末,以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。
3.2人工智能发展的方向
关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。
在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。
另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。
于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。
霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。
库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。
由以上分析我们可以了解到,人工智能得到了全球从学术界到应用领域的高度重视,为了使我们的命题那更加美好,为了使我国在人工智能领域赶超国外先进行列,我们应该加大研究和投入力度,培养更多的超一流人才。
http://yyk.familydoctor.com.cn/21523/推荐阅读:数据库设计主要包括的内容是什么研究人工智能方面python用哪个版本更好免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
主要人工智能包括上一篇新闻:python中注释是什么意思下一篇新闻:Python中多重继承是什么猜你喜欢香港cn2的vps访问速度快吗香港cn2的vps适合搭建哪些网站便宜海外vps购买怎么选择便宜海外vps怎么租用便宜海外vps的ip被墙如何解决便宜海外vps选择要注意哪些问题香港vps访问速度变慢的原因有哪些怎么辨别真假香港vps企业网站怎么选择香港vps香港vps的IP为什么会被封下列不属于计算机人工智能应用的是
d著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。人工智能(artificialintelligence,简称ai)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的获取、知识的表示方法和知识的使用。所以我觉得d比较准确
AR属不属于人工智能看完本文你就懂了
图.典型AR流程
这其中有几个关键点:
首先是3D环境理解。要理解看到的东西,主要依靠物体/场景的识别和定位技术。识别主要是用来触发AR响应,而定位则是知道在什么地方叠加AR内容。定位根据精度的不同也可以分为粗定位和细定位,粗定位就是给出一个大致的方位,比如区域和趋势。而细定位可能需要精确到点,比如3D坐标系下的XYZ坐标、物体的角度。根据应用环境的不同,两种维度的定位在AR中都有应用需求。在AR领域,常见的检测和识别任务有人脸检测、行人检测、车辆检测、手势识别、生物识别、情感识别、自然场景识别等。
在感知现实3D世界并和虚拟内容融合后,需要以一定方式将这种虚实融合信息呈现出来,这里面需要的就是AR中的第二个关键技术:显示技术,目前大多数的AR系统采用透视式头盔显示器,这其中又分为视频透视和光学透视,其他的代表有光场技术(主要因MagicLeap而显名)、全息投影(在科幻影视剧作品中常出现)等。
AR中的第三个关键技术在于人机交互,用以让人和叠加后的虚拟信息互动,AR追求在触摸按键之外自然的人机交互方式,比如语音、手势、姿态、人脸等,用的比较多的语音跟手势。
人工智能和AR的技术关联
在人工智能领域有几个概念常被提及,如深度学习(DL)、机器学习(ML),在学术领域包括人工智能(AI)在内几大领域均有自己的研究界限,而在普遍意义上,我们常说的是泛意的人工智能,涵括所有“让机器像人一样”的技术的应用方向。
从这张图也可以简单一窥三者的关系,深度学习是实现机器学习的一种技术方式,而机器学习是为了让机器变得智能,去达到人工智能。可以说人工智能是最终目标,而机器学习是为了实现这个目标延伸出的一个技术方向。在这其中,还有另一个重要概念为计算机视觉(CV),主要来研究如何让机器像人去“看”,是目前人工智能概念中的一个重要分支,这也是因为人类获取信息最主要的方式之一就是视觉,目前计算机视觉已经在商业市场发挥价值,比如人脸识别;自动驾驶中读取交通信号和注意行人以导航;工业机器人用来检测问题控制过程;三维环境的重建图像的处理等等。这些概念既有区分也有一定范围的重叠。
其中,2006年开始,Hinton引发的深度学习热潮开始蔓延,在一定程度上带动了AI的又一次崛起,十年中,在包括语音识别、计算机视觉、自然语言处理在内的多个领域取得重大突破,并向应用领域延伸,正发展的如火如荼。
在AR的核心技术中,3D环境理解、3D交互理解和计算机视觉、深度学习都有着紧密的联系。3D环境理解在学术界里主要对应的是计算机视觉领域,而近年来深度学习在计算机视觉中得到广泛应用。交互方面,更趋自然的交互方式如手势和语音在硬件终端的使用,得益于近几年深度学习在相关领域的突破。也可以说,深度学习在AR中应用主要在视觉关键技术。
目前,AR最常见的形式是2D图片扫描识别,如腾讯QQ-AR火炬活动、支付宝五福等多数AR营销中所见,用手机扫描识别图出现叠加的内容,但主要的研发方向还在3D物体识别和3D场景建模。
现实的物体是以3D形态存在的,有不同的角度和空间方位。所以一个自然的扩展就是从2D图片识别到3D物体识别,识别物体的类别和姿态,深度学习可以用在这里。以水果识别为例,识别不同类别的水果,并且给出定位区域,即集成了物体识别与检测的功能。
3D场景建模,从识别3D物体扩大到更大更复杂的3D区域。比如识别场景里面有哪些东西、它们的空间位置和相互关系等等,这就是3D场景建模,是AR比较核心的技术。这其中涉及目前热门的SLAM(实时定位与地图构建)。通过扫描某个场景,然后在上面叠加虚拟战场等三维虚拟内容。如果只是基于普通2D图像识别就需要有特定的图片,而在图片不可见时会识别失败。而在SLAM技术里面,即使特定平面不存在,但是空间定位依然非常精确,就是因为有周围3D环境的帮助。
这里想探讨下深度学习和SLAM技术的融合,计算机视觉大体上可以分两个流派,一种基于学习的思路,例如特征提取-特征分析-分类,目前深度学习技术在这一路线上取得了主导性的地位。另外一种路线是基于几何的视觉,从线条、边缘、3D形状推出物体的空间结构信息,代表性的技术就是SFM/SLAM。基于学习的方向上深度学习基本上一统天下,但是在基于几何视觉的领域,目前相关的进展还很少。从学术界而言,深度学习技术的研究进展可以说日新月异,而SLAM技术最新十年的进展相对较少。在国际视觉顶级会议ICCV2015年度组织的SLAM技术专题讨论会上,基于近年深度学习在视觉其它领域的快速发展,有与会专家曾提出SLAM中采用深度学习的可能性,但是目前还没有成熟的思路。总体而言,短期内将深度学习和SLAM融合是一个值得研究的方向,长远来看联合语义和几何信息是一个非常有价值的趋势。因此,SLAM+DL值得期待。
在交互方式方面,主要的包括语音识别和手势识别,语音识别在目前已经取得了较大进展,国内如百度、科大讯飞、云知声等都是其中的佼佼者,AR公司更想突破的是手势识别的成熟商业化。
“亮风台展示过的一款基于深度学习的手势识别系统,主要定义了上下左右、顺时针、逆时针六种手势”亮风台工作人员告诉青亭网,先实现人手的检测和定位,然后通过识别相应的手势轨迹来实现对人手势的识别。虽然人脸识别等其他人工智能热门领域在AR中也有使用,但不是AR公司重要的研发方向。
以上不难看出,AR的底层技术或者说基础部分是计算机视觉以及关联领域的融合,而当下热门的深度学习和AR的结合,也是算法工程师们的努力方向。这也是AR为计算机视觉与人机交互的交叉学科,AR的基础是人工智能和计算机视觉等说法的依据。
图:计算机视觉与AR流程关联
在去年今日头条发布的《人工智能影响力报告》中也简单统计了人工智能科学家的分布情况,这其中包括人脸识别、语音识别、机器人、AR、芯片等领域的公司与大型研发机构,高端研发人员的分布也说明了AI领域的细分方向。
那AR究竟是不是人工智能?
对AR从业者来说,理想的状态是用更智能的AR终端去取代智能手机,所以对于用户来说接触使用AR首先受影响的是内容,其次是终端,AR产业链可以粗略划分为技术提供商、智能终端研发公司,以及AR内容提供商。在这其中,AR设备提供商不可避免关注硬件技术,如底层的芯片、电池、光学镜片等,以及硬件本身的性能优化,而内容提供商更倾向于在现有技术基础上优化内容及表现。所以我们可以说AR技术提供商,或者说在底层算法研发上有一定成绩的AR公司是人工智能公司。
对公司来说,特别是创企会把底层技术转化为成熟的产品或服务,这可能是如无人机、AR智能终端、机器人等,也可能是行业解决方案,以达到商业目的,并且这已经成为在沸腾声音之后,媒体、企业以及大众对AI企业的期待和要求。近期,人工智能产业发展联盟(AIIA)出版的图书《人工智能浪潮:科技改变生活的100个前沿AI应用》将对外发布,以及涵括了目前巨头公司以及创企在商业化上的前沿成果,也直接反映了AI目前的主要商业化方向。
作为技术驱动的商业领域,无论是AR还是人工智能的其他多数方向,技术距离完全成熟还有很长的路程要走,在整个产业链逐渐繁荣,关注商业化实现的同时,也需要有更多公司机构去不断拓展技术边界,建立核心竞争力,让行业爆发更大的价值与潜力,如此,AI时代中国弯道超车当可期。
来源:青亭网返回搜狐,查看更多