博舍

人工智能期末试题及答案 人工智能研究的最重要最广泛的两大领域是哪个

人工智能期末试题及答案

一单项选择题(每小题2分,共10分)

1.首次提出“人工智能”是在(D)年

A.1946 B.1960 C.1916 D.1956

2.人工智能应用研究的两个最重要最广泛领域为:B

A.专家系统、自动规划        B.专家系统、机器学习

C.机器学习、智能控制       D.机器学习、自然语言理解

3.下列不是知识表示法的是  A 。

A:计算机表示法  B:“与/或”图表示法

C:状态空间表示法  D:产生式规则表示法

4.下列关于不确定性知识描述错误的是   C  。

A:不确定性知识是不可以精确表示的 

B:专家知识通常属于不确定性知识

C:不确定性知识是经过处理过的知识     

D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。

5.下图是一个迷宫,S0是入口,Sg是出口,把入口作为初始节点,出口作为目标节点,通道作为分支,画出从入口S0出发,寻找出口Sg的状态树。根据深度优先搜索方法搜索的路径是   C  。

A:s0-s4-s5-s6-s9-sg  B:s0-s4-s1-s2-s3-s6-s9-sg

C:s0-s4-s1-s2-s3-s5-s6-s8-s9-sg D:s0-s4-s7-s5-s6-s9-sg

二 填空题(每空2分,共20分)

1.目前人工智能的主要学派有三家:符号主义、  进化主义 和  连接主义 。

2.问题的状态空间包含三种说明的集合, 初始状态集合S、操作符集合F以及目标状态集合G。

3、启发式搜索中,利用一些线索来帮助足迹选择搜索方向,这些线索称为 启发式(Heuristic)信息。

4、计算智能是人工智能研究的新内容,涉及 神经计算、模糊计算和 进化计算等。

5、不确定性推理主要有两种不确定性,即关于 结论的不确定性和关于 证据的不确定性。

三名称解释(每词4分,共20分)

人工智能  专家系统  遗传算法 机器学习 数据挖掘

答:

(1)人工智能

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等

(2)专家系统

    专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统   

(3)遗传算法

    遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的操作,模拟事物内部多样性和对环境变化的高度适应性,其特点是操作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向

(4)机器学习

    机器学习(MachineLearning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎 

(5)数据挖掘

    数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

四 简答题(每小题5分,共30分)

1. 人工智能有哪些研究领域和应用领域?

答:(1)研究领域

自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法

(2)应用领域

智能控制,机器人学,语言和图像理解,遗传编程

2. 简述模式识别的基本过程

答:(1)信息获取

(2)预处理:对获取信号进行规范化等各种处理(3)特征提取与选择:将识别样本构造成便于比较、分析的描述量即特征向量(4)分类器设计:由训练过程将训练样本提供的信息变为判别事物的判别函数(5)分类决策:对样本特征分量按判别函数的计算结果进行分类

3.状态空间法、谓词逻辑法和语义网络的要点分别是什么?

答:(1)状态空间法是以状态和算符为基础来表示和求解问题的,三个要点是:状态,算符,问题的状态空间

(2)谓词逻辑法要点:命题真值,论域与谓词,连接词和量词,项与合式公式,自由变元和约束变元

(3)语义网络要点:类属关系,包含关系,属性关系,时间关系,位置关系,相近关系,推论关系

4.简述Agent的定义和基本特征

答:(1)Agent定义:Agent指的是一种实体,而且是一种具有智能的实体。这种实体可以是智能软件、智能设备、智能机器人或智能计算机系统等等,甚至也可以是人

(2)Agent基本特征:

 a.自主性

 Agent具有属于其自身的计算资源和局部于自身的行为控制机制,能够在没有外界直接操纵的情况下,根据其内部状态和感知到的环境信息,决定和控制自身的行为。例如,SNMP中的agent就是独立运行在被管理单元上的自主进程。

 b.交互性

 Agent能够与其他Agent(包括人),用Agent通信语言实施灵活多样的交互,能够有效地与其他Agent协同工作。例如,一个Internet上的用户需要使用Agent通信语言向主动服务Agent陈述信息需求。

 c.反应性

 Agent能够感知所处的环境(可能是物理世界,操纵图形界面的用户,或其他Agent等),并对相关事件作出适时反应。例如,一个模拟飞机的Agent能够对用户的操纵作出适时反应。

 d.主动性

 Agent能够遵循承诺采取主动行动,表现出面向目标的行为。例如,一个Internet上的主动服务Agent,在获得新的信息之后能够按照约定主动将其提交给需要的用户;一个工作流管理Agent,能够按照约定将最新的工作进展情况主动通报给有关的工作站

5. 根据自己的理解给出人工神经网络的定义,并指出其特征。

答:(1)人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型 (2)特征:a.非线性非线性关系是自然界的普遍特性。大脑智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性  关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储量

b.非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子

c.非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程 

d.非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性 

6. 有一个农夫带一只狐狸、一只小羊和一篮菜过河。假设农夫每次只能带一样东西过河,考虑安全,无农夫看管时,狐狸和小羊不能在一起,小羊和菜篮不能在一起。试设计求解该问题的状态空间,并画出状态空间图。

答:以变量m、f、s、v分别指示农夫、狐狸、小羊、菜,且每个变量只可取值1(表示在左岸)或0(表示在右岸)。问题状态可以四元组(m、f、s、v)描述,设初始状态下均在左岸,目标状态下都到达右岸。从而,问题求解任务可描述为(1,1,1,1)->(0,0,0,0)

由于问题简单,状态空间中可能的状态总数为2×2×2×2=16,由于要遵从安全限制,合法的状态只有(除初、目状态外):  1110,1101,1011,1010,0101,0001,0010,0100;不合法状态有:0111,1000,1100,0011,0110,1001

设计二类操作算子:Lx、Rx,x为m、f、s、v时分别指示农夫独自,带狐狸,带小羊,带菜过河;状态空间图如下所示.由于Lx和Rx是互逆操作,故而解答路径可有无数条,但最近的只有二条;都是7个操作步

五.综述题(20分)

1.(本题10分)对于八数码难题按下式定义估价函数:

f(x)=d(x)+h(x)

其中,d(x)为节点x的深度;h(x)是所有棋子偏离目标位置的曼哈顿距离(棋子偏离目标位置的水平距离和垂直距离和),例如下图所示的初始状态S0:8的曼哈顿距离为2;2的曼哈顿距离为1;1的曼哈顿距离为1;6的曼哈顿距离为1;h(S0)=5。

(1)用A*搜索法搜索目标,列出头三步搜索中的OPEN、CLOSED表的内容和当前扩展节点的f值。

(2)画出搜索树和当前扩展节点的f值。

解:(1)如下表

(2)搜索树如下图,右上角的数字是其估价函数值

2.(本题10)您认为《人工智能》课程的哪一部分内容对您的毕业设计或者您以后的工作特别有用?如果有,请叙述其原理;如果没有,请您谈谈人工智能的发展对人类有哪些的影响?

答:我认为人工智能的发展对人类的影响主要有以下五个方面

(1)劳务就业问题。由于人工智能能够代替人类进行各种脑力劳动,例如用专家系统代替管理人员或医生进行决策或诊断与治疗病人疾病,所以,将会使一部分人不得不改变他们的工种,甚至造成失业。人工智能在科技和工程中的应用,会使一些人失去介入信息处理活动(如规划、诊断、理解和决策等)的机会,甚至不得不改变自己的工作方式。

(2)社会结构变化。人们一方面希望人工智能和智能机器能够代替人类从事各种劳动,另一方面又担心它们的发展会引起新的社会问题。实际上,近十多年来,社会结构正在发生一种静悄悄的变化。

(3)思维方式与观念的变化。人工智能的发展与推广应用,将影响到人类的思维方式和传统观念,并使它们发生改变。过分地依赖计算机的建议而不加分析地接受,将会使智能机器用户的认知能力下降,并增加误解。

(4)心理上的威胁。人工智能还使一部分社会成员感到心理上的威胁,或叫做精神威胁。人们一般认为,只有人类才具有感知精神,而且以此与机器相别。如果有一天,这些人开始相信机器也能够思维和创作,那么他们可能会感到失望,甚至感到威胁。他们担心:有朝一日,智能机器的人工智能会超过人类的自然智能,使人类沦为智能机器和智能系统的奴隶。

(5)技术失控的危险。任何新技术最大危险莫过于人类对它失去了控制,或者是它落入那些企图利用新技术反对人类的人手中

人工智能广泛应用于五大领域

2017年,各大巨头纷纷聚焦智能音箱。因此,2017年成为了百箱大战的一年。

我国的智能音箱市场目前形成了三类格局:一是以喜马拉雅小雅为代表的内容基因公司,他们和传统音箱最为接近,但内容的智能播放提升了用户在聆听场景下的交互体验。二是包括Rokid、出门问问、Broadlink等在内的智能公司,在他们的产品里,音乐内容只是众多功能之一,更多的亮点在语音交互、连接智能家居上。三是小米、阿里、京东、联想等大公司,他们背后是庞大的商业生态。

三、智慧医疗

AI+医疗是近年来资本投资和企业拓展新业务的热点,主要的应用在两个方面,一是医疗影像技术,二是人工智能深度学习技术。

医疗影像是所有大病诊疗的入口和基础,放射科医生的短缺促成了AI医疗影像技术的研发。而人工智能技术爆发的核心——深度学习,正好最擅长分析影像类数据。智慧医疗的概念落地,可以极大地缓解主治医生的工作压力,降低误诊率。

早在今年下半年,科技巨头们就已经纷纷进军医疗。先是科大讯飞,2017年8月20日,与安徽省立医院合作,正式成立我国第一家人工智能医院——安徽省立智慧医院!然后是马云,在推出无人超市之后又提出了无人医院概念。2017年10月13日,阿里巴巴分别与浙江大学医学院附属第一医院、第二医院,以及上海交大医学院附属新华医院这三家医院分别签约,开始向AI医疗进军。

2017年11月15日,科技部公布了首批国家新一代人工智能开放创新平台名单,其中,依托腾讯建设的医疗影像诊断平台也提上了日程。

四、安全防护技术

当人脸识别技术被大家熟知的时候,千万不要以为它仅仅应用于交易支付环节,它同样可以运用于安全防护和监管。

目前,经过多年的发展,安防领域已经积累了大量的数据资源,满足了人工智能基于大数据为基础的算法模型训练要求。而安防行业中事前预防、事中响应、事后追查的特性刚好吻合了人工智能的算法和技术。

最近火遍全网的贵阳市天网系统,就是AI技术应用于安防的典型例子。BBC记者约翰·苏得沃斯听说天网系统可利用近6万个各类视频镜头实现人脸识别,表示不服,亲自来贵阳挑战中国天眼——天网系统,不料短短7分钟内就被中国民警抓获,直接打脸。一时之间,轰动国内外!

由此可见,AI+安防在提前预防犯罪和保障社会安全方面可以起到非常重要的作用,拥有着很好的发展情景。当老外们惊叹未来科技已经在中国变为现实的时候,我们正在将这一技术推进到公安、交通、楼宇、金融、工业、民用等各个方面。中国科技,正在大步向前!

五、语音交互

2017年,很多业内专家都认为,语音将会成为下一代人机交互的主要方式。同时,语音交互技术也是人工智能发展迈入下一阶段的必要环节。因为智能语音交互,不需要对App、浏览器进行点击操作,而是直接通过语音操作,直接跟机器完成任务指令。

这样一来,我们就摆脱了浏览器、App等其它应用入口,语音成为一个新入口,而这个入口,将会变革更多的产业,诸如信息搜索和分发等。

目前,以科大讯飞、捷通华声、车音网、思必驰等语音技术提供商正在这一技术上寻求突破,未来最早实现应用的,可能是汽车驾驶场景。

六、展望未来,未来已来

2017年,人工智能成为互联网行业最热门的关键词。中国在2017年里,人工智能技术取得了突飞猛进的发展。研究预测,2018年全球人工智能市场规模将达到2697.3亿元,增长率达到17%。

作为一项改变世界的技术,人工智能已经到了从实验室走入真实的生产环境和日常生活的临界点。

展望未来,我们期待,2018年的人工智能能为我们带来更多的惊喜!

摘自《财经早餐》,作者橙哥,编辑傅光平

版权归原作者所有,如有侵权请联系我们删除

返回搜狐,查看更多

人工智能导论——人工智能学科研究的基本内容及主要研究领域

一、人工智能研究的基本内容

(1)知识表示

人工智能研究的目的是要建立一个能模拟人类智能行为的系统,但知识是一切智能行为的基础,因此首先要研究知识表示方法。只有这样才能把只是存储到计算机中去,供求解现实问题使用。知识表示方法可分为两类:符号表示法(用各种包含具体含义的符号以各种不同的方式和顺序组合起来表示知识的方法)和连接机制表示法(用神经网络表示知识)。

(2)机器感知

所谓机器感知就是使机器(计算机)具有类似于人的感知能力,其中以机器视觉和机器听觉为主。机器感知是机器获取外部信息的基本途径。

(3)机器思维

所谓机器思维是指通过感知得来的外部信息及机器内部的各种工作信息进行有目的的处理。

(4)机器学习

机器学习就是研究如何使计算机具有类似于人的学习能力,使它能通过学习自动的获取知识。

(5)机器行为

机器行为主要是指计算机的表达能力,即“说”、“写”、“画”等能力。对于智能机器人,它还应具有人的四肢功能,即能走路、能取物、能操作等。

二、人工智能的主要研究领域

目前,随着智能科学和技术的发展和计算机网络技术的广泛应用,人工智能技术应用到越来越多的领域。下面简要介绍几个主要领域:

(1)自动定理证明

自动定理证明是人工智能中最先进行研究并得到成功应用的一个研究领域,同时它也为人工智能的发展起到了重要的推动作用。实际上,除了数学定理证明以外,医疗诊断、信息检索、问题求解等许多非数学领域问题,都可以转化为定理证明问题。

(2)博弈

诸如下棋、打牌、战争等一类竞争性的智能活动称为博弈(gameplaying)。人工智能研究博弈的目的并不是为了让计算机与人进行下棋、打牌之类的游戏,而是通过对博弈的研究来检验某些人工智能技术是否能实现对人类智慧的模拟,促进人工智能技术的深入研究。

(3)模式识别

模式识别(patternrecognition)是一门研究对象描述和分类方法的学科。分析和识别的模式可以是信号、图象或者普通数据。模式是对一个物体或者某些其他感兴趣实体定量的或者结构的描述,而模式类是指具有某些共同属性的模式集合。

模式识别方法有统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等。

(4)机器视觉

机器视觉(machinevision)或者计算机视觉(computervision)是用机器代替人眼进行测量和判断,是模式识别研究的一个重要方面。计算机视觉通常分为低层视觉和高层视觉两类。

(5)自然语言理解

自然语言理解(naturallanguageunderstanding)就是研究如何让计算机理解人类自然语言,是人工智能中十分重要的一个研究领域。它是研究能够实现人与计算机之间用自然语言进行通讯的理论与方法。

(6)智能信息检索

数据库系统是存储大量信息的计算机系统。随着计算机应用的发展,存储的信息量越来越大,研究智能信息检索系统具有重要的理论意义和实际应用价值。智能信息检索系统应具有下述功能:能理解自然语言、具有推理能力、系统拥有一定的常识性知识。

(7)数据挖掘与知识发现

知识发现系统通过各种学习方法,自动处理数据库中大量的原始数据,提炼出具有必然性的、有有意义的知识,从而揭示出蕴涵在这些数据背后的内在联系和本质规律,实现知识的自动获取。知识发现是从数据库中发现知识的全过程,而数据挖掘则是这个全过程的一个特定的、关键的步骤,数据挖掘的目的是从数据库中找出有意义的模式。

(8)专家系统

专家系统是一个智能的计算机程序,运用知识和推理步骤来解决只有专家才能解决的疑难问题,是目前人工智能最活跃、最有成效的一个研究领域。可以这样定义,专家系统是一种具有特定领域内大量知识和经验的程序系统,它应用人工智能技术模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过人类专家的水平。

(9)自动程序设计

自动程序设计是将自然语言描述的程序自动转换可执行程序的技术,包括程序综合和程序正确性验证两个方面的内容。

(10)机器人

机器人是指可模拟人类行为的机器。它可分为三代:程序控制机器人(第一代)、自适应机器人(第二代)、智能机器人(第三代)。

(11)组合优化问题

组合优化问题一般是NP完全问题。NP完全问题是指:用目前知道的最好的方法求解,问题求解需要花费的时间(称为问题求解的复杂性)是随问题规模增大以指数关系增长。组合优化问题的求解方法已经应用于生产计划与调度、通信路由调度、交通运输调度等。

(12)人工神经网络

人工神经网络是一个用大量简单处理但愿经广泛连接而组成的人工网络,用来模拟大脑神经系统的结构与功能。

(13)分布式人工智能与多智能体

分布式人工智能(DAI)是分布式计算与人工智能结合的结果。分布式人工智能的研究目标是要建立一种描述自然系统和社会系统的模型。

(14)智能控制

智能控制就是把人工智能技术引入控制领域,建立智能控制系统。

(15)智能仿真

智能仿真就是将人工智能技术引入仿真领域,建立智能仿真系统。

(16)智能CAD

智能CAD就是将人工智能技术引入计算机辅助设计领域,建立智能CAD系统。

(17)智能CAI

智能CAI就是将人工智能技术引入计算机辅助教学领域,简历智能CAI系统即ICAI。

(18)智能管理与智能决策

智能管理就是将人工智能技术引入管理领域,建立智能管理系统,研究如何提高计算机管理系统的智能水平,以及智能管理系统的设计理论、方法和实现方法。智能决策就是将人工智能技术引入决策过程,建立智能决策支持系统。

(19)智能多媒体系统

智能多媒体实际上是人工智能与多媒体技术的有机结合。

(20)智能操作系统

智能操作系统就是将人工智能技术引入计算机的操作系统之中,从质上提高操作系统的性能和效率。

(21)智能计算机系统

智能计算机系统就是人们正在研制的新一代计算机系统,它将全面支持智能应用开发,且自身就具有智能。

(22)智能通信

智能通信就是将人工智能技术引入通信领域,建立智能通信系统,在通信系统的各个层次和环节上实现智能化。

(23)智能网络系统

智能网络系统就是将人工智能技术引入计算机网络系统。

(24)人工生命

人工生命是以计算机为研究工具,模拟自然界的生命现象,生成表现自然生命系统行为特点的仿真系统。

 

 

----内容来自于《人工智能导论(第四版)》

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇