我们该如何应对人工智能带来的伦理挑战
返回基金会动态列表>我们该如何应对人工智能带来的伦理挑战?作为第四次科技革命和产业变革的重要推动力量,人工智能技术正以一种迅猛发展的态势,推动社会生产力水平的整体跃升。然而,人工智能在为经济发展与社会进步带来重大发展机遇的同时,也会带来一系列伦理风险和挑战。
人工智能的广泛应用对人类社会的不同领域的伦理存在有什么影响?
我们应该制定什么政策来前瞻性地应对人工智能可能带来的伦理挑战?
2022年4月25日,中国发展研究基金会《人工智能时代的伦理:关系视角的审视》报告发布会线上举办,中国发展研究基金会副秘书长俞建拖介绍报告主要内容,多名相关专家学者以报告为基础,围绕上述议题展开深入探讨。
人工智能的伦理影响
《人工智能时代的伦理:关系视角的审视》(下称“报告”)从关系论视角出发,对人类智能、社会与伦理进行概述,解读关系论下人工智能伦理讨论框架,同时从市场经济、家庭、一般社会、国家和社会、国际关系、人与自然六方面分析人工智能的伦理影响,并在此基础上提出面向未来人工智能伦理发展的建议。
报告指出,人工智能在经济社会生活中的全面渗入有助于促进个人和组织的赋能,促进弱势群体的社会参与,扩展人的机会空间和自由,促进经济的繁荣,减少绝对贫困和剥夺,这些可以视为伦理增益。但是,人工智能的使用可能也会带来一系列伦理风险和挑战,包括失控风险、恶意使用、适应性风险、认知风险等,这些风险在不同的领域有不同的表现。
市场经济方面,人工智能在改善劳工工作环境、维护人的尊严、促进人力资本积累和经济繁荣等方面有积极作用,但同时也存在垄断、过度榨取消费者剩余、劳动力替代、阶层分化和固化等问题,并有可能深刻影响市场经济中的雇佣关系、竞争关系、合作模式、所有关系(所有权)以及相关的伦理规范。
家庭关系方面,人工智能的积极成果是使得一些家庭成员得以被解放,从而可以从事对家庭福祉更有益的事,但功能的疏解可能会使家庭成员之间的关系更加疏远、联系更松散。
随着社会需求的多样化,可能会出现人工智能扮演家庭成员角色的需求,如人工智能儿童、人工智能伴侣、人工智能长辈等,当人工智能开始介入家庭内部人际关系,原来用来规范人类家庭成员的伦理很难再直接适用,而且关系身份的传递也可能导致认知上的混乱。
社会伦理关系方面,一方面,人工智能广泛使用,可能会根本上重塑组织性互动,比如学校作为最重要的伦理再生产组织的教学理念、教学内容、教学方式也有可能发生重要变化。
而在一般非组织性的社会活动中,人工智能的应用以及数据信息环境的改变,社会可能更难在什么是真相和真实知识上达成共识,人们更容易陷入“信息茧房”,机器决策可能会产生“无用阶级”,“大数据+人工智能”对个人隐私侵犯也可能会逼迫人们采取面具化生存策略。
国家和社会层面,人工智能可以被广泛用于公共管理以及公共服务供给,使国家治理变得更加具有公平公正、民主参与、透明、负责任以及高效,促进国家的善治。
但是随着人工智能时代的到来以及虚拟生活方式的普遍流行,国家认同可能会被削弱,机器人税和普遍基本收入会被越来越多的考虑,但是也引发政府规模和权力的扩大,以及随之而来的政府与社会关系的调整,譬如公民对政府的高度依赖、政府社会监控的强化以及个人自由空间的压缩等。
来源:央视网
国际关系层面,人工智能正在成为大国竞争的胜负手和重要领域。从全球实现可持续发展目标的需求看,人工智能可以发挥重要的作用,但是地缘政治竞争的加剧可能会制约其潜能的发挥。人工智能在发达国家的开发和应用,也可能导致全球价值链发展趋势被重置,导致发展中国家被边缘化以及对发达国家的依附。
人工智能在军事领域的应用,包括智能武器的开发与部署、智能军事决策系统、非常规智能战争等,可能会引发军事战略的根本性变革,给国际秩序带来巨大的不确定性。
人与自然关系方面,人工智能的发展对提高资源的利用效率和减少攫取、减少对环境的破坏、更好地顺应和应对自然界挑战具有重要的意义。但是人工智能的发展也可能助长人类创造的雄心,特别是人工智能在生物改造领域的应用,对既有生态体系的影响具有很大的不确定性。
真知灼见:如何应对人工智能可能带来的伦理挑战?
来源:央视网
报告发布会上,北京大学哲学系教授何怀宏指出人工智能是一种区别于传统人造物的机器,其能力对人类而言还有很多未被发掘的部分,我们应该进一步思考人和人工智能这一特殊关系,思考如何促进人工智能发展、人工智能如何给人类赋能、如何深入具体地将人工智能运用到各个领域、以及人工智能的运用会带来哪些新的问题。
中国社会科学院哲学所科技哲学研究员、中国社会科学院科学技术和社会研究中心主任段伟文探讨了人工智能伦理治理的主体问题。他指出,当前实践人工智能领域的伦理规范主要是以科技公司为主体,政府也应积极的参与到该领域的伦理治理中,扮演积极的角色,更加灵活地进行适应性治理。
暨南大学教授、海国图智研究院院长陈定定认为当前社会的主要问题是伦理规范泛滥和冲突,应该建立一个通用的、全面的人工智能伦理规范。
武汉大学计算机学院教授、卓尔智联研究院执行院长蔡恒进指出,未来三五年内人工智能会有重大突破,元宇宙和Web3.0可以看作是人工智能的重要进展。在Web3.0时代,个体、企业、国家将会成为机器节点并融合为超级智能,这有可能会对社会伦理关系产生影响。
北京大学法学院副教授、北京大学法律人工智能研究中心副主任江溯指出,随着智能性技术广泛使用,社会可能会慢慢变成“全景敞视监狱”,个人的自由空间可能会被压缩。我们应该在法律领域探讨相关问题,研判人工智能应用的法律限度并加以约束。
如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
人工智能的伦理挑战
原标题:人工智能的伦理挑战控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。
一
维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?
实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。
首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。
然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。
二
所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。
不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。
三
这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。
(作者:蓝江,系南京大学哲学系教授)
人工智能技术的发展趋势及挑战
人工智能作为一项具有代表性的颠覆性技术,逐渐改变着我们的生活方式。接下来我会从几个方面来介绍一下我对人工智能发展的看法,包含什么是人工智能,人工智能的发展,人工智能所面对的挑战等内容。
什么是人工智能。
人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”即由人设计,为人创造、制造。
而关于什么是“智能”,较有争议性。这涉及到其它诸如意识、自我、心灵,包括无意识的精神等等问题。人们唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能必要元素的了解也很有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
有上述定义所得,人工智能本质就是算法,是一类可以自己学习的算法。
接下来说人工智能的发展。
1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点同年,“计算机之父”阿兰·图灵提出设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。
1956年,计算机专家约翰·麦卡锡提出“人工智能”一词。这被人们看做是人工智能正式诞生的标志。麦卡锡与明斯基两人共同创建了世界上第一座人工智能实验室——MITAILAB实验室。
50年代,人工智能迎来高峰期。计算机被广泛应用于数学和自然语言领域,这让很多学者对面机器发展成人工智能充满希望。
70年代,人工智能进入低谷期。科研人员低估了人工智能的难度,美国国防高级研究计划署的合作计划失败,还让大家对人工智能的前景望而兴叹。主要技术瓶颈:计算机性能不足;处理复杂问题的能力不足;数据量严重缺失。
80年代,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。它具有完整专业知识和经验的计算机智能系统。在1986年之前能为公司每年节省下来超过四千美元经费。
1987年,苹果和IBM公司生产的台式机性超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。80年代末,美国国防先进研究项目局高层认为人工智能并不是“下一个浪潮”。至此,人工智能再一次成为浩瀚太平洋中那一抹夕阳红。
1997年,IBM的深蓝战胜国际象棋世界冠军卡斯帕罗夫;2009年,螺丝联邦理工学院发起的蓝脑计划,生成已经成功模拟了部分鼠脑;以及2016年谷歌AlphaGO战胜韩国李世石。
回顾了人工智能60余年的发展历程,科研技术人员不断突破阻碍,让我们可以看到今天人工智能所取得的辉煌成果。随着人工智能的不断发展,科学界对人工智能的看法也渐渐分成两种——悲观学派和乐观学派。
悲观学派的代表是天文物理学家史蒂芬·霍金(StephenHawking),以及特斯拉首席执行官伊隆·马斯克(ElonMusk)。霍金认为AI对人类将来有很大的威胁,主要有以下理由:
AI会遵循科技发展的加速度理论AI可能会有自我改造创新的能力AI进步的速度远远超过人类人类会有被灭绝的危机存在乐观学派主要是Google、Facebook等AI的主要技术发展者,他们对AI持乐观看法的理由:
人类只要关掉电源就能除掉AI机器人任何的科技都会有瓶颈,“摩尔定律”到目前也遇到相当的瓶颈,AI科技也不会无限成长,依然存在许多难以克服的瓶颈。依目前的研究方向,电脑无法突变、苏醒、产生自我意志,AI也不可能具有创意与智能、同情心与审美等这方面的能力。这两种学说各有各的道理,目前很难判断那种学派是正确的。就目前的弱人工智能来说,乐观派或许是对的。但我们很难保证之后的强人工智能不会对我们的生存产生威胁。
《新一代人工智能治理原则——发展负责任的人工智能》是为促进新一代人工智能健康发展,更好协调发展与治理的关系,确保人工智能安全可靠可控,推动经济、社会及生态可持续发展,共建人类命运共同体,人工智能发展相关各方应遵循的原则。由国家新一代人工智能治理专业委员会于2019年6月17日印发实施。这份文检里明确指出了人工智能的发展应遵循的原则:和谐友好,公平公正,包容共享,尊重隐私,安全可控,共担责任,开放协作,敏捷治理。文件的主题还是“负责任”,如薛澜所说:“比如我们提出的‘和谐友好’等原则,强调无论是人工智能提供的产品还是服务,都应该是负责任的、全面的,应以增进人类共同福祉为目标,应该符合人类的价值观和伦理道德,避免误用,禁止滥用、恶用。”负责任就是以人为本,一切以服务人类为主。目前还处于弱人工智能阶段,主要需要被约束的还计算机工程师。计算机工程师要负起自己的责任,确保人工智能安全可控可靠,规避风险隐患,做到为人服务,不侵犯用户的权益和隐私。
“考虑到人工智能发展的高度复杂性和不确定性,要按照渐进性的思路推进人工智能的治理。”薛澜表示,《治理原则》是一份框架性文件,对人工智能健康发展主要发挥宏观引导作用,今后还将根据形势的变化和需要,不断进行充实和调整。在薛澜看来,人工智能的发展过程中也面临着一些基础性的工作,立法就是其中之一。“我们发布的《治理原则》,也为今后的立法工作提供了重要基础。”他认为,人工智能发展非常快,而立法的周期较长,因此也很难只用法律框架来支撑人工智能的发展,“这就需要相关的原则准则、行业规范,包括从业者的自律,来协同推进其健康发展。”
防范风险隐患,发扬科技之善,人工智能发展迅速,它只会不断渗透进我们生活,计算机工程师要从八项原则出发,规范自己的道德标准,遵守法律法规,做好应对人工智能“觉醒”的准备,以人为本的发展人工智能,让人工智能为人民服务,才能更好地,健康地发展人工智能。
人工智能未来的挑战
所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。
所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。
不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。
处理好人工智能思维和人类思维的关系,是人工智能发展的最大挑战。模仿人类思维,会显得有局限性;发展机器思维,又会不可控,这两者的平衡如何把握,就看以后的计算机工程师怎么选择了吧。
ChatGPT来了,中国人工智能该如何应对—中国经济网
【两会声音】
◎本报记者刘园园
在几年前召开的全国两会上,来自谷歌的围棋人工智能“阿尔法狗”曾引发高度关注。今年两会,人工智能研究机构OpenAI发布的ChatGPT聊天机器人站在镁光灯下,又成为代表委员们的热议对象。
在持续刷屏的热闹背后,ChatGPT到底将带来什么样的产业变革?中国人工智能行业又该如何应对?
不仅仅是聊天机器人
“ChatGPT不仅仅是搜索引擎的加强版,也不仅仅是一个聊天机器人。”全国政协委员、360集团创始人周鸿祎认为,ChatGPT通过软件运营服务(SaaS)方式所提供的人工智能服务,将重塑数字化应用和行业,为我们带来一场新的革命。
“ChatGPT标志着人工智能成为当前科技革命的核心技术,将极大提高生产力。”全国政协委员、奇安信科技集团董事长齐向东评价。
这款聊天机器人由人工智能研发机构OpenAI推出。周鸿祎概括,ChatGPT的成功是大型企业+科研机构协同创新的典范,是开源、合作和众包的开放创新模式的典范,是以通用大模型为中心的生态创新模式的典范。
“ChatGPT是一个通用的大语言模型,能够在此之上开发出各种各样的垂类应用,连接百行千业,服务于传统产业的数字化、智能化转型。”周鸿祎分析,ChatGPT已面向创业者和创新型中小企业开放,扶持中小公司专注开发垂直领域的智能化应用。
在齐向东看来,未来人工智能就像水、电、气一样,是数字社会、数字经济的基础设施,会渗透到大众生活的每一个场景。任何一个行业,只要有场景、有算力、有积累的数据,人工智能都可以在其中落地应用。“今后,人工智能技术和垂直场景、具体产品的结合,会发生质的变化,会改变整个社会。”齐向东判断。
不过,齐向东提醒,人工智能技术可以极大提高生产力,同时也会提高黑客的攻击水平,带来新的安全隐患。“人工智能降低了攻击的门槛,会让攻击的数量激增,给网络安全带来了巨大挑战。”齐向东说。
伦理问题是另一个需要关注的维度。今年两会,民进中央的一份提案指出,随着人工智能技术的快速发展,人类面临的科技伦理挑战日益凸显,近期火爆全网的ChatGPT再次引发了国际社会对人工智能领域伦理问题的担忧。
更应关注技术背后的创新模式
“面对以ChatGPT为代表的人工智能大模型技术的巨大跃升,我国应迎头赶上,奋起直追。我们在关注技术层面创新的同时,更要关注技术突破背后所依赖的创新模式。”周鸿祎说。
周鸿祎建议,建立大型科技企业+重点科研机构的产研协同创新模式,引领大模型技术攻关。“建议从建设国家战略科技力量高度出发,筛选技术基础好的产研机构,组成优势互补的产业协同组合,发挥科研机构在关键核心技术上的研究优势,同时发挥大型科技企业在产品化、工程化、场景化、商业化和数据化方面的优势,打造大模型技术攻关和应用的引领龙头。”他表示。
周鸿祎还提出,可以针对多条技术路线,以开源模式设立多个国家级长期项目,以大型科技企业+重点科研机构为龙头,通过开源、合作、众包等创新模式,引导高校、科研机构和创新型企业形成多个技术路线的创新生态群。
“我们正在训练专有的类ChatGPT安全大模型,并且在人才培养上进行了超前布局,通过‘人+机器’的配合来应对未来的安全挑战。”谈到如何应对ChatGPT带来的网络安全挑战,齐向东表示。
民进中央在上述提案中指出,当前,我国人工智能领域伦理治理仍存在一些问题,建议构建多方参与的治理体系,设计人工智能领域伦理治理顶层架构;开展多维度、多层次的伦理建设;鼓励企业自主参与治理,支持企业内部设立伦理委员会。