博舍

AI人工智能三要素:数据、算力和算法 人工智能发展阶段中数据驱动阶段包括大数据、运算能力

AI人工智能三要素:数据、算力和算法

人工智能这两年的火爆大家有目共睹,取得的一些技术进步大家想必也有所耳闻。这里就来谈谈人工智能的三要素:数据、算力和算法。

首先,这三要素缺一不可,都是人工智能取得如此成就的必备条件。如果非要给这三者排个序的话,我认为应该是数据、算力和算法。

第一是数据。因为人工智能的根基是训练,就如同人类如果要获取一定的技能,那必须经过不断地训练才能获得,而且有熟能生巧之说。AI也是如此,只有经过大量的训练,神经网络才能总结出规律,应用到新的样本上。如果现实中出现了训练集中从未有过的场景,则网络会基本处于瞎猜状态,正确率可想而知。比如需要识别勺子,但训练集中勺子总和碗一起出现,网络很可能学到的是碗的特征,如果新的图片只有碗,没有勺子,依然很可能被分类为勺子。因此,对于AI而言,大量的数据太重要了,而且需要覆盖各种可能的场景,这样才能得到一个表现良好的模型,看起来更智能。

第二是算力。有了数据之后,需要进行训练,不断地训练。AI中有一个术语叫epoch,意思是把训练集翻过来、调过去训练多少轮。只把训练集从头到尾训练一遍网络是学不好的,就像和小孩说一个道理,一遍肯定学不会,过目不忘那就是神童了,不过我至今还没见到过。当然,除了训练(train),AI实际需要运行在硬件上,也需要推理(inference),这些都需要算力的支撑。

第三是算法。其实大家现在算法谈得很多,也显得很高端,但其实某种程度上来说算法是获取成本最低的。现在有很多不错的paper,开源的网络代码,各种AutoML自动化手段,使得算法的门槛越来越低。另外提一点,算法这块其实是创业公司比较容易的切入点,数据很多人会觉得low,会认为就是打打标签而已,所以愿意做的不多;算力需要芯片支撑,是大公司争夺的主要阵地,留下的只有算法了。

不过,如果想做一个非常成功的AI应用,这三者都需要具备,所谓天时地利人和。

 

联系我:guanxs_ai@126.com

微信公众号:

人工智能三个发展阶段的驱动力:技术、数据与场景

▌人工智能2.0:数据驱动

人工智能发展的第二个阶段,是数据推动人工智能更新迭代的阶段。这个阶段,可获得和分析的数据飞速增长,不仅磨练和提高了计算的能力,使人工智能的大规模运算成为可能,并且也反过来倒逼了数据的采集、清洗和积累,以及相应的软硬件基础设施的发展——这些都带动了大数据行业的腾飞。大企业在这个阶段发挥出了规模优势,成为了推动人工智能发展第二波高潮的主要动力。

从1981年IBM推出第一台个人电脑起,到1993年美国政府宣布实施“国家信息基础设施”计划,也就是我们常说的信息高速公路,电子计算机与信息数据从实验室走进普通人的生活,人工智能的研究不再只是局限于实验室的理论,针对日常生活的具体应用也在不断增多。在这一阶段,数据主要从两方面来影响人工智能的发展:

一方面,大量的数据要求人工智能不断提高其计算能力。信息时代数据量的快速增长,对整个人工智能的处理水平提出了更高的要求。人类大脑对数据的处理是十分强悍的,人的大脑拥有几百亿个脑细胞,每个脑细胞大约有几百条脑神经,每条脑神经上又有几百个突触,每个突触的作用又相当于一块计算机芯片。

计算机人工智能如果想要实现与人类相似的智能水平,就必须要具备相应的计算能力。1997年,IBM“深蓝”在世界象棋中战胜世界棋王卡斯帕罗夫,最重要原因就是其强悍的数据处理能力。在研发过程中,IBM研制小组向”深蓝“输入100年来所有国际特级大师开局和残局的下法。“深蓝”每秒能够进行2亿次的运算,能够通过计算预判之后的12步,对比做出最优的决策。

另一方面,大量的数据也在不断地训练着人工智能。数据量的增加对人工智能而言,不是负担,而是财富,因为数据能帮助训练人工智能,使结果更加精准。回顾“深蓝”,令人惊叹的计算能力并不意味着它就是坚不可摧的。深蓝在1996年第一次挑战时,就以2:4败给卡斯帕罗夫。在之后的一年,研发团队引入美国特级大师本杰明,将他对象棋的理解变成程序教给“深蓝”。此外,在与卡斯帕罗夫每一场对战后,都不断挑战系统参数,强迫“深蓝”进行学习。

如果说主要作为实验室研究成果的“深蓝”并不足以说明数据对于人工智能的重要性,那不妨看看目前占据位居全球市值TOP5中的谷歌与亚马逊。谷歌的搜索引擎与亚马逊的智能推荐系统都是人工智能的具体应用领域,在大量数据的训练下,无论是谷歌的搜索结果,还是亚马逊的推荐结果,都越来越精准——这构成了两家数据公司的核心竞争力。

▌人工智能3.0:情景驱动

人工智能发展的第三个阶段,是情境推动人工智能更深入到具体应用的阶段。随着人工智能的技术发展和数据积累,行业逐渐发现短期内通用智能和强人工智能是难以实现的,数据分布的情境化特性使得人工智能在特定情境下的垂直发展成为了可能。

这个阶段,新的实用情境的识别与发现,以及对该情境的人工智能解决方案的研究,极大的推动了人工智能行业的前进。移动互联网时代,各种移动终端设备的出现,使得数据呈现指数级的增长。相对于之前,现阶段的“数据”包含的信息量越来越大、维度越来越多,从图像、声音等富媒体数据,到动作、姿态、轨迹等人类行为数据,再到地理位置、天气等环境数据……按照以往数据处理的思路已经难以适应“数据”本身的发展。这对于人工智能应用者来说,既是惊喜,又是挑战,因为一个融合人类智慧、人工智能以及海量数据的智能数据时代已经来临。

在围棋领域战胜人类的AlphaGo已是人工智能的典型代表,但除了AlphaGo,人工智能研究中更多的是各种具体应用。2011年,苹果推出语音虚拟助手Siri,让人们开始体验“人机对话”,当用户懒得输入时,便可以直接询问Siri。尽管Siri刚推出时的回答经常让人啼笑皆非,但是大量的数据训练使Siri的语音识别越来越精准,反馈的答案也让用户越来越满意。2014年,亚马逊推出语音智能家庭管家Echo,人们无需触碰手机,就能直接唤醒Echo,让其完成指令,享受智能家居。

人们更能感受到的是生活中的各类推荐系统(比如图书、音乐、新闻相关的手机App),在搜集用户的个性化数据之后,利用机器学习,为用户反馈出独一无二的结果。一直将自己定义为科技公司而非媒体公司的“今日头条”便是利用数据获取成功的典型案例。大量场景化的数据为人工智能应用于各种情景提供了发展的土壤,没有数据就不会有智能。李开复也曾提到,人工智能更适合于拥有大数据、且数据量可以实现自我推动的公司,没有数据的人工智能是无法前行的。

情景驱动对应用型人工智能企业的数据处理能力提出了要求。企业不仅需要采集数据,还需要利用深度学习将这些数据转化为人工智能的“知识”,最后根据企业的需求,转化为相应的应用决策。

也就是说,应用型的企业至少要形成纵向的生态链,才能实现完成整个场景闭环。令人庆幸的是,有些公司提供的智能数据平台能够协助企业完成整个数据流程的服务,让企业无需重新开发一套自己的平台系统。以TalkingData的智能数据平台(SmartDP)为例,SmartDP能够提供数据管理、数据科学、数据工程的能力,企业能够利用这一平台与自己的具体产业行业相结合,全面利用数据创造更多商业价值。

▌结语

互联网的发展将大家带入了大数据的时代,而智能数据时代是大数据时代的新的阶段。人工智能与大数据一样,对社会经济起到赋能的作用,帮助人类感知、认知、分析和预测这个世界。

对于人工智能这艘火箭,算法是引擎,数据是燃料。当行业日渐开放,越来越多的算法选择了开源,此时数据便成为了影响人工智能成败的关键点。丰富、多维度的情景化数据使人工智能更多更深的被应用起来,而人工智能的深度应用,又产生了更加海量、精准、高质量的面向情景的数据,为模型的进一步优化提供了条件。

对于未来,我们相信,人工智能和大数据将会共同发展,给人类带来更加智能的生活。

返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇