【人工智能实验报告】人工智能实验报告精选八篇
人工智能第二次实验报告
一.实验题目:
遗传算法的设计与实现
二.实验目的:
通过人工智能课程的学习,熟悉遗传算法的简单应用。
三.实验内容
用遗传算法求解f(x)=x2的最大值,x∈
[0,31],x取整数。
可以看出该函数比较简单,只要是为了体现遗传算法的思想,在问题选择上,选了一个比较容易实现的,把主要精力放在遗传算法的实现,以及核心思想体会上。
四.实验过程:
1.实现过程
(1)编码
使用二进制编码,随机产生一个初始种群。L表示编码长度,通常由对问题的求解精度决定,编码长度L越长,可期望的最优解的精度也就越高,过大的L会增大运算量。针对该问题进行了简化,因为题设中x∈[0,31],所以将二进制长度定为5就够用了;
(2)生成初始群体
种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20―100。
(3)适应度检测
根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数;
(4)选择
从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比;
(5)交叉
遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉概率通常应取较大值;但若过大的话,又可能破坏群体的优良模式。一般取0.4到0.99。
…………余下全文
【遗传算法实验报告】遗传算法实验报告精选八篇
遗传算法实验报告
专业:自动化姓名:张俊峰学号:13351067
摘要:遗传算法,是基于达尔文进化理论发展起来的一种应用广泛、高效的随机搜索与优化方法。本实验利用遗传算法来实现求函数最大值的优化问题,其中的步骤包括初始化群体、个体评价、选择运算、交叉运算、变异运算、终止条件判断。该算法具有覆盖面大、减少进入局部最优解的风险、自主性等特点。此外,遗传算法不是采用确定性原则而是采用概率的变迁规则来指导搜索方向,具有动态自适应的优点。
关键词:串集最优化评估迭代变异
一:实验目的
熟悉和掌握遗传算法的运行机制和求解的基本方法。
遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下:
(1)随机产生一个确定长度的特征字符串组成的初始种群。。
(2)对该字符春种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止:
a计算种群中每个个体字符串的适应值;
b应用复制、交叉和变异等遗传算子产生下一代种群。
(3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一
个解。
二:实验要求
已知函数y=f(x1,x2,x3,x4)=1/(x12+x22+x32+x42+1),其中-5≤x1,x2,x3,x4≤5,用遗传算法求y的最大值。
三:实验环境
操作系统:MicrosoftWindows7
软件:MicrosoftVisualstudio2010
四:实验原理与步骤
1、遗传算法的思想
生物的进化是以集团为主体的。与此相对应,遗传算法的运算对象是由M个个体所组成的集合,称为群体。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代过程,第t代群体极为P(t),进过一代遗传和进化后,得到第t+1代群体,他们也是由多个个体组成的集合,记做P(t+1)。这个群体不断地经过遗传和进化操作,并且每次都按照有优胜劣汰的规则将适应度较高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X,它所对应的表现性X将达到或接近于问题的最优解。
…………余下全文