博舍

人工智能的三次浪潮与三种模式 人工智能四个流派是指什

人工智能的三次浪潮与三种模式

■史爱武

谈到人工智能,人工智能的定义到底是什么?

达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。

百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。

2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

人工智能的三次浪潮

自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。

第一次浪潮(1956-1976年,20年),最核心的是逻辑主义

逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。

早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。

在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。

虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。

第二次浪潮(1976—2006年,30年),联结主义盛行

在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。

在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。

这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。

第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破

如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。

若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。

经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。

为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。

伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。

深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。

深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。

人工智能的3种模式

人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。

(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。

(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。

(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。

我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!

人工智能的各路流派之争

0分享至

一般来讲,我们可以把人工智能研究划分为四大流派。每个流派的目标稍有不同,研究方法常常大相径庭。第一个流派我们称之为“传统人工智能”。这个流派确实试图构建能复制人类行为的计算机系统,指责其想用机器取代人类还不算冤枉。传统人工智能的历史与计算科学一样悠久,通常认为,它的创建者是像约翰·麦卡锡(JohnMcCarthy)和马文·明斯基(MarvinMinsky)等在20世纪50年代中期就职于麻省理工学院的那些人。

起初,传统人工智能的研究者们关注自然语言翻译、符号推理(symbolicreasoning)和博弈论(gameplaying)等问题。这一流派发明了一些有趣且实用的技术,但常常没有达到其自我设定的预期目标。这类早期系统的一个例子要算二十世纪七八十年代研究出来的专家系统(expertsystems)。专家系统本意是期望运用一套规则来记录人类专家的经验。这种系统的一个早期案例是试图建立医生诊断经验的模型。它运行于一个受限的框架内,展现出类似于医生的行为,但得出的诊断结果常常与医疗常规相悖。因此,很少看到这些专家系统取代医生或者其他专家,不过它们为我们提供了有用的技术,在生产管理中得到了一些应用。从一开始,传统人工智能研究就因为设定的目标过高而陷入窘境。研究者们常常错误估计了为实现自己设定的目标所需要付出的努力。20世纪60年代,一些研究者从复制人类智能转向研究能增强人类智能的计算机系统。通常认为这一领域的创建者是约瑟夫·利克莱德(J.C.Licklider),他曾在位于麻省剑桥的一个研究单位——博尔特·贝拉尼克-纽曼公司(Bolt,BeranekandNewmanInc.)工作。他在一篇称为“人机共生”(Man-ComputerSymbiosis)的论文中写道,“希望用不了几年,人的大脑和计算机器能够紧密配合,由此形成的合作将是人类大脑从未想到过的,处理数据的方式将是我们当前所知的信息处理机器无法达到的”。这个第二个领域逐渐发展成广为人知的“人机交互”(humancomputerinteraction),它是当今计算机科学的几个较大分支学科之一。相比于传统人工智能,它提出的目标比较低调,在实现自己设立的预期目标方面做得较好。它在我们普遍使用的图形用户界面方面做出了贡献,并在算法和流程上做了很多研究,正是这些研究才使得手机和移动平台对我们有如此大的吸引力。第三个领域出现于20世纪80年代中期,被称之为“机器学习”(machinelearning)。这一领域的引领者们认识到,虽然传统人工智能没有实现它的目标,但是计算机系统所能达到的本应远远超过目前人机交互领域所完成的。机器学习创建者们的灵感可以追溯到卡内基梅隆大学司马贺(HerbSimon)的工作(不管怎么看,司马贺确实是一个对计算领域有深远影响力的贡献者,他提出的思想影响了计算机科学许多方面的发展)。这一流派并不试图复制人类智能,而是力图开发“在执行某些类任务时能提高性能”的程序。他们收集信息,用这些信息改善自身的操作。机器学习大量借鉴数理统计工具来开发各种不同的识别和分类算法。人工智能研究的先驱者之一,爱德华·费根鲍姆(EdwardFeigenbaum)认为这些算法已被证明“相当成功”。它们被应用于实际系统中来识别目标、发现数据中的模式和开发用于机器人的策略。人工智能的最后一个分支领域是一个最新的领域。它翻转了计算机和人类的关系。在传统人工智能中,计算机系统试图复制人类的行为。而在这一领域,人类试图处理一些计算机尚无法处理的任务。医疗文件的记录(transcription)或许就是一个最好的例子。许多医疗记录系统依靠人工来记录医生所说的话,然后再用传统的计算方法来处理这些信息。这个分支领域的创建者之一,卡内基梅隆大学教授路易斯·冯·安(LuisvonAhn),把这一领域称为“人造的人工智能”(artificialartificialintelligence)这一领域,更众所周知的是“集体智慧”(collectiveintelligence)。集体智慧设计计算系统时,充分发挥了人类行为的两个不同方面的优势。首先,人类能以难以计算的方式识别出复杂模式。人类从这些模式中联想,进而推理得出复杂的结论。例如,一个简单的旋律就能引发人脑一连串的想法。其次,集体的知识广度一般远高于个人。集体拥有大量的观点、假设和推导方法。经验表明,这些不同的想法汇聚起来会带来对问题更全面的理解。根据该领域的创建者之一,麻省理工学院的教授汤姆·马龙(TomMalone,是麻省理工学院斯隆管理学院教授,组织结构与团队智能专家,MIT集体智慧研究中心主任)所说,“集体智慧就是由许多个人组成的群体以智能方式集体行动”。或许集体智慧最著名的产品之一就是在线百科全书——维基百科。维基百科由成千上万的个人贡献而成。由于它经常为人工智能系统提供常识性信息,所以与人工智能关系密切。IBM的那个会玩“危险边缘”(Jeopardy!)问答游戏的计算机系统沃森(Watson),就是用维基百科作为它的主要信息来源。所有这四个部分形成了人工智能领域。因此,当我们讨论人工智能将会怎样改变人类以及人类社会时,实际上涉及到和人工智能有关的四种不同方法,每种方法有不同的前景。第一种方法想用计算机系统模拟人类智能,第二种想增强人类的智能,第三种想从自然世界学习如何高效地执行任务,而最后一个则想聚合许多人一生的经验。虽然看起来这四个领域都将彻底改变人类的体验,但似乎也很难看出它们会完全取代人类。从本质上来说,人类的经验依旧是这些方法创建的基础。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

新一代人工智能的发展与展望

    随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

    人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

    当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

    事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

    未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

#笔记:人工智能三流派

什么事人工智能

人工智能还没有大家一致认同的精确定义。相对来说,个人更喜欢尼尔森的定义:人工智能是关于知识的科学,知识的科学就是研究知识的表示、知识的获取和知识的运用。知识的基本单位是概念。精通掌握任何一门知识,必须从这门知识的基本概念开始学习,而知识自身也是一个概念。人工智能的问题就变成了如何定义三个问题:一是概念的符号表示,即概念的名称;二是概念的内涵表示,由命题来表示;三是概念的外延表示,由经典集合来表示。

三个流派

一是符号主义。只要在符号计算上实现了相应的功能,那么现实世界就实现了对应的功能。符号主义认为,只要在机器上是正确的,现实世界就是正确的。二是连接主义。连接主义认为大脑是一切智能的基础,主要关注与大脑神经元及其连接机制,试图返现大脑的结构及其处理信息机制、解释人类智能的本质机理,进而在机器上实现相应的模拟。三是行为主义,假设智能取决于感知和行动,不需要知识、表示和推理,只要将智能行为表现出来就好,即只要能实现指物功能就可以认为具有智能了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇