博舍

人工智能心得体会(精选14篇) 人工智能导论心得体会800字

人工智能心得体会(精选14篇)

人工智能观后感推荐度:榜样的心得体会推荐度:《榜样》心得体会推荐度:创业心得体会推荐度:考察的心得体会推荐度:相关推荐

人工智能心得体会(精选14篇)

某些事情让我们心里有了一些心得后,往往会写一篇心得体会,这样有利于我们不断提升自我。那么好的心得体会是什么样的呢?以下是小编帮大家整理的人工智能心得体会,仅供参考,大家一起来看看吧。

人工智能心得体会篇1

一、研究领域

在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

二、各领域国内外研究现状

近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。

1、分布式人工智能与艾真体

分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。

分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。

mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。

2、计算智能与进化计算

计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。

进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。

达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。

直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。

3、数据挖掘与知识发现

知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。

从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。

机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。

比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。

4、人工生命

人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。

人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。

人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。

人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。

三、学了人工智能课程的收获

(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。

(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。

(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。

(6)基本了解人工智能程序设计的语言和工具。

四、对人工智能研究的展望

对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。

人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。

当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。

五、对课程的建议

(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。

(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。

(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。

(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。

人工智能心得体会篇2

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:

第一教材的缺乏,

第二师资的缺乏,

第三课程实施的场地缺乏,

第四怎么教的问题。

在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,

针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;

针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;

针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,

分为三个阶段:

第一阶段大班STEM基础教学,

第二轮实践教学建立社团校队,

第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇3

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1、人工智能学科的诞生

12世纪末13世纪初,西班牙罗门・卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯・诺依曼提出存储程序的思想和建立通用电子数字计算机的冯・诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2、逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(G.LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3、逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4、人工智能――当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5、结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会篇4

人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会篇5

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会篇6

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay―ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

对人工智能对世界的影响的感受及未来畅想

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生

在当前社会中的呢?

在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

人工智能心得体会篇7

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

人工智能心得体会篇8

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇9

一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:

1、促进教育方式的变革,培养学生的综合能力

在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

3、培养学生的团队协作能力

机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的.教育方式、方法更加有效。

4、扩大知识面,转换思维方式

在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识

二、中小学机器人教学活动的几点做法:

考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

人工智能心得体会篇10

在看李开复老师的《人工智能》之前,我有许多疑惑,人工智能是什么?是男是女,长什么样儿?漂亮吗?会不会生病?会不会老?人工智能聪明吗?会下象棋吗?会打麻将吗?会玩dota或者王者荣耀吗?会打乒乓球吗?会打篮球吗?会游泳吗?人工智能有记忆吗?能不能教他说话、拿筷子夹花生米?人工智能好玩吗?怎么玩?怎么跟它交流?它会不会说话?能陪我唱歌吗?要不要吃饭?要不要充电?人工智能有什么用?能帮我写文章/搬砖/做报表/开车吗?能用来赚钱吗?人工智能怕什么?下雨天能出门吗?天热会不会出汗?从楼上摔下去会不会变形?能修好吗?人工智能有什么危险?会不会吃了我?它要是想伤害我,我该怎么办?我该怎么了解人工智能?学习人工智能?和人工智能和谐相处?人工智能有什么爱好?喜欢听什么歌?吃豆腐脑喜欢咸的还是甜的?会看书吗?能不能体会“今宵酒醒何处,杨柳岸,晓风残月”的寂寞和“醉卧沙场君莫笑,古来征战几人回”的豪迈?人工智能有感情吗?会喜欢我吗?我离开它的时候,它会不会难过,会不会想我?

通过学习李开复老师的《人工智能》,我获益良多,很多问题也有了答案。我认为这是一本很好的面向大众的科普读物,介绍了人工智能的基本理念,发展历程和对未来的展望。

下面以问答的形式,记录学习心得。

1.人工智能是什么?在哪里?

其实,人工智能已经到处都是,什么都做:可以陪人聊天,可以写标准新闻,能画画,能翻译,能开车,能认出人的样子,能在互联网上搜答案,能在仓库搬货,能送快递到家。

人工智能是什么,众说纷纭,一般有以下五种定义(可能有交叉):1)在某方面特别聪明的计算机程序,比如AlphaGo,下围棋下得特别好,世界冠军也下不过它。

2)试图像人一样思考的计算机程序。但这事儿太难,人的意识,连人自己都搞不清楚,更别说教给自己编出来的程序了。

3)怎么想的不知道,行为方式倒是很像人,比如可以和人聊天的ELIZA。

4)会自己学习的,刚开始笨笨的,慢慢地就越来越聪明。AlphaGo也是因为头悬梁锥刺股,苦学了海量棋谱才变得这么厉害的。

5)根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。

这五种定义各有根据和局限,也可以认为人工智能首先是感知,包括视觉、语音、语言;然后是决策,根据识别的信息,做出预测和判断;最后是反馈,就像机器人或自动驾驶。

我的理解:人工智能是高性能的计算机程序,或者使用了人工智能的产品、服务和应用。

2.人工智能包含什么?

人工智能有很多分支,其中之一是机器学习,机器学习里面有一个分支是深度学习,深度学习是当今乃至未来很长一段时间内引领人工智能发展的核心技术。

深度学习是一种神经网络,把计算机要学习的东西看成数据,把数据丢进多个层级的数据处理网络,然后检查经过网络处理的结果数据是否符合要求。如果符合,就保留网络作为目标模型,如果不符合,就反复修改参数,直到符合为止。

书中举了一个例子,非常形象生动:把数据看成水流,深度学习网络看成多层水管网络,通过调节管道和阀门,使输出满足要求。

3.人工智能的发展历程是怎样的?

历史上有过3次AI热潮,第一次因为图灵测试,第二次因为语言识别,都热了一段时间又沉寂下去。

目前,深度学习携手大数据引领的第三次热潮,处于技术曲线的攀升和成熟期,前景极为广阔。

4.人工智能有什么用处?

人工智能不仅是技术革命,还与经济变革、教育变革、思想变革、经济变革、文化变革等同步,可能成为下一次工业革命的核心驱动力。主要的商业应用场景:

l.自动驾驶:这个不用多说,Google,Tesla,百度。都在研究2.智慧金融:量化交易与智能投顾、风控、安防与客户身份认证、智能客服、精准营销

智慧生活:机器翻译、智能家居、智能超市

智慧医疗:辅助诊断疾病、对疑难病症的医疗科学研究

艺术创作:机器音乐、机器绘画、机器文学创作

5.人工智能可能有什么负面影响?会不会失控,威胁人类的安全?可能会引起失业。根据开复老师提出的“五秒钟准则”,一项人从事的工作,如果可以在5秒钟内完成思考并做出决策,那么这项工作很可能会被人工智能取代。如保安、股票交易员、司机、新闻报道、翻译。但人工智能也会带来新的工作。

人工智能分三个层级:

1)弱人工智能:在某方面很聪明,但只在这方面聪明,别的事啥也不会。比如AlphaGo,下围棋世界第一,别的方面就是个弱智,连棋子都得别人帮它拿。

2)强人工智能:人能做什么,它就能做什么。跟美剧《西部世界》里的机器人差不多,但它有没有意识,不好说。

3)超人工智能:比最聪明的人类还要聪明100000000倍。都不止,它的NB,超乎你想象。我们不知道它是谁,不知道它在哪里,不知道它什么时候出现,也不知道它会干什么。

可能在某个时刻(奇点)之后,超人工智能就会天神降临,整个世界笼罩在它无边的法力之下。

也可能,因为物理学和生物学的限制,超人工智能永远不会来。

无论如何,人工智能,或者说,对人工智能的研究和使用,需要受到监管和限制,也需要应对转型过程中对失业的冲击。

6.哪些领域是今天的人工智能做不到或者做不好的?

跨领域推理,人类强大的跨领域联想、类比能力,可以举一反三,触类旁通。不过迁移学习也正在发展,可以将计算机在一个领域学到的经验转换到另一个领域

1.抽象能力知其然,也知其所以然,了解事物运行的本质规律

2.常识

3.自我意识

4.审美

5.情感

不过,已经有软件可以吟诗作词,而且相当高明。比如这首根据遗传算法生成的《清平乐-黄菊》:

“相逢缥缈,窗外又拂晓.长忆清弦弄浅笑,只恨人间花少.黄菊不待清尊,相思飘落无痕.风雨重阳又过,登高多少黄昏.”平仄相符,语句通顺,很有意境。

7.人工智能创业的形势如何?

形势一片大好:国家大力支持,业界投入巨大的人力和财力进行研究,软硬件技术都已经成熟。

AI的商业路线分三步走:线上业务(3年)、线下业务(5~7年)和个人业务(10年以上)

AI创业的五大基石:

1)清晰的领域界限(业务场景)

2)闭环的、自动标注的数据

3)海量的数据量(千万级)

4)超大规模的计算能力

5)顶尖的AI科学家(算法)

AI产业发展的六大挑战:

1)前沿科研与工业界尚未紧密衔接

2)人才缺口巨大,人才结构失衡

3)数据孤岛化和碎片化问题明显

4)可复用和标准化的技术框架、平台、工具、服务尚未成熟

5)一些领域存在超前发展、盲目投资等问题

6)创业难度相对较高,早期创业团队需要更多支持

中国在AI创业中的优势:

1)中国人/华人处于人工智能研究的领先地位

2)中国有庞大的理工科学生基础,数学知识扎实,具备人才优势

3)全球规模最大的互联网市场,网民人数近8亿

4)行业需求潜力巨大,

5)海量数据和充沛资金

对应上面提到的五大基石,人才、海量数据、闭环标注数据、应用场景、计算力都有解决方案,再加上开复老师创立的微软亚洲研究院和创新工场提供的人才和资金优势,我也觉得中国发展AI的前景一片光明。

另外,创新工场成立了人工智能研究院,这是专门面向人工智能的创业人才培养基地和创业项目孵化实验室。

主要工作任务包括:

1.对接科研成果与商业实践,帮助海内外顶级人工智能人才创业

2.培育和孵化高水准的人工智能技术团队

3.积累和建设人工智能数据集,促进大数据的有序聚合和合理利用

4.开展广泛合作,促进人工智能产业的可持续发展

未来AI是风口。有人总结,只要以ai域名为后缀,融资过程都会比较快,或者融到的钱会比较多。

9.AI时代,我该怎么学?

借鉴了密涅瓦大学的“沉浸式全球化体验”教学方式和清华大学姚期智院士创办的清华学堂计算机科学实验班(姚班)的教学模式,开复老师提出AI时代的学习方法:

1.主动挑战极限

2.从实践中学习

3.关注启发式教育,培养创造力和独立解决问题的能力

4.互动式的在线学习将愈来愈重要

5.主动向机器学习

机器越来越像人,人越来越像机器,随着生物科技和量子科技的发展,人机融合,达到了生命的大和谐。

10.AI时代,我该学什么?

AI时代,程式化的、重复性的、仅靠记忆与练习的技能将越来越没有价值。

最能体验人的综合素质的技能,将最有价值,最值得培养、学习,比如:

1.对于复杂系统的综合分析、决策能力

2.对于艺术和文化的审美能力和创造性思维

3.由生活经验及文化熏陶产生的直觉、知识

4.基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力要想获得以上这些能力,大部分都是个性化培养,而非大规模圈养教育系统的设计,也要考虑到个性化、定制化、可持续化和公平。可能感性思维很难被机器取代,理性思维人类是干不过AI的。11.AI无处不在的年代,人生还有意义吗?

开复老师通过自己康复的经验,在书中进行了富有哲理,诗意盎然的阐述。

我的答案:我思故我在。今天我坐在这里打完这份读后感,说明我的人生就是有意义的。

AI不过是新的工具,正如小石锤、轮子、蒸汽机、航天飞机、计算机和互联网,不会取代,只会丰富。

人工智能心得体会篇11

1.辐射世界里的机器人到底具不具备自由意识?

首先,自由意识是受者的感受,如果你于一台放在黑屋子里的机器一直对话,并一直以为对方是人,那么,便可以说它或具有自由意识,这也就是所谓的人工智能初期想要达到的效果。

辐射的世界不缺机器人,他们能胜任不同的工作,有的单一,有的复杂,甚至有的还貌似发展出了自己的个性,那么他们是不是具有自我意识的人工智能呢?在辐射宇宙中,这些机器都是编程的产物,程序模拟的思维,和学习方式,并不能和AI(人工智能)比,这就好像要拿把小黄鸡说成是人工智能一样。

个性化最明显的是巧手管家,因为要服务的是人而不是机器,所以良好的用户交互是必要的,这也就是为什么,3代的巧手管家会讲笑话,但却有些生冷。四代中的机器人管家会搞不清真实状况,但却一直能记得猪脚一家,船长是宪兵机器人,但却有一套语言系统,这些机器人会很有个性,然而归根结底,都是程序员的功劳,仔细看,他们都有一个特点,就是对周遭的大变迁不以为然,那是因为它们多是战前的产物,所谓的程序模拟学习,逻辑是固定的,并不能和自由意识挂钩。

2.合成人与机器人的区别

很多人都知道合成人出自学院,但其实机器是大多也是,机器人在战前便已经开始批量生产,而合成人的诞生,或多或少是学院对人类失望的结果,他们分为3代,最原始的和机器无差别,之后,有了合成皮肤,甚至是血肉,这都是因为我开始提到的那个自由意识的定义,也就是所谓的图灵测试,如果受者认为他是个人,那么它就具备了所谓的自由意识,可见,它与编程了服务于人类的机器人的设计创造理念本身就是不同的,在辐射的宇宙中,真正具有自由意识的机器是解开代码枷锁后的合成人,而机器人只是人类的工具而已,这也就是为什么废土客一般都会信任机器人,或者开枪就好,不会咒骂他们,因为没有人会对手中的工具有过多的感情纠葛,而从人类的进化史上看来,每一次更强的自由意识的诞生,都伴随着一个相近但较低智慧的群体的灭绝,智慧性自由意识,意味着威胁。

之后再看看,为什么说机器人的希望只是场梦?

老宪法号是美国服役过的,依旧能够航行的,最受人尊敬的海军战舰,可以说是美国的爱国标志之一。

并存在于自由之经的“绿色"旅游线路之上,是波士顿的骄傲,之所以机器人背后的程序员会基于某种方式,保护宪法号,并让她升天,更多的是希望能再一次的点燃人们的爱国情绪,然而今日的废土,势力割据,每个都有自己得信仰,能记得宪法号所象征的自由与自豪的,除了几只尸鬼外,还会又有几个人。

执着的是程序,但选择关机否的,确实只能是人类自己,梦很美,但已经时过境迁了。

B社对《辐射4》充满信心销量将超《上古卷轴5》

对于即将在2015年11月10日发售的《辐射4》,Bethesda是绝对的信心十足,其营销副总裁在接受外媒采访时甚至表示游戏的销量会超越《上古卷轴5:天际》。

peteHines表示:“我认为《辐射4》的销量将会突破《上古卷轴5:天际》,这是一款更加壮观的RpG游戏,出色到无法形容,我的工作是负责推广这款游戏,而游戏自身将决定它能够走多远,能造成多大影响力,这些目前都是不确定的,因为《上古卷轴5:天际》的影响力的确很大,但我们对《辐射4》有信心。”

《上古卷轴5:天际》的全球销量超过2000万份,是RpG界的一个奇迹,首先让我们看看《辐射》系列近期作品的销量,《辐射3》销量为920万套,《辐射:新维加斯》为750万套,前两作的销量已经不错,相信凭借玩家多年对于游戏的期待,游戏大卖是毫无疑问的,但是否能够达到2000万还有待时间为我们公布答案。

《辐射4》是否能击败《老滚5》?

Bethesda称《辐射4》好到无法形容销量要创新高

对于即将在2015年11月10日发售的《辐射4》,Bethesda是绝对的信心十足,其营销副总裁在接受外媒采访时甚至表示游戏的销量会超越《上古卷轴5:天际》。

peteHines表示:“我认为《辐射4》的销量将会突破《上古卷轴5:天际》,这是一款更加壮观的RpG游戏,出色到无法形容,我的工作是负责推广这款游戏,而游戏自身将决定它能够走多远,能造成多大影响力,这些目前都是不确定的,因为老滚5的影响力的确很大,但我们对《辐射4》有信心。”

vs

《上古卷轴5:天际》的全球销量超过2000万份,是RpG界的一个奇迹,首先让我们看看《辐射》系列近期作品的销量,《辐射3》销量为920万套,《辐射:新维加斯》为750万套,前两作的销量已经不错,相信凭借玩家多年对于游戏的期待,游戏大卖是毫无疑问的,但是否能够达到2000万还有待时间为我们公布答案。

人工智能心得体会篇12

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇13

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会篇14

大学的时光,我们不能只是埋头学习!还需要抬眼望世界。如今AI行业崛起,这是一个大好的就业趋势。

AI人工智能已经成为科技发展的最新风口,和手机的结合应该也是自然的趋势。有了AI加持,智能手机或许会成为“智慧手机”,依靠麦克风、摄像头等传感器,能够“看懂”、“听懂”周边的环境,理解用户的需求,甚至主要预测用户的动作等等。

AI开放生态加快人工智能普及

以往的实际经验已经证明,任何新技术的普及都需要整个行业的共同努力,只有构建完整的生态才能带来良好的用户体验。

AI降噪有望实现真正的人机互动

通过语音交互来实现人机互动,一直是众多手机厂商探索的方向,特别是在iPhone集成了siri之后,几乎所有的旗舰手机都集成了自家的语音识别助手,但是无论是苹果,还是三星小米,都没有真正让消费者接受语音交互。主要原因有两点:

1、语音识别还很初级,远远达不到交互的目的;

2、语音识别对周围环境的要求比较高,有一点噪音就会造成识别不准确。

AI图像识别助力消费者拍出好照片

如何让消费者随手一拍都是好照片一直是手机厂商最为关注的点,传统的做法是预先内置几十上百个场景,然后根据不同的场景配合不同的算法,但是实际生活的场景远远不是内置的场景可以覆盖的。

而在移动处理器集成了人工智能处理单元之后,则可以根据不同的场景配合不同的算法,就好像真正的专业摄影师调教一样,不同的背光、不同的时间、不同的场景甚至不同的装扮,都能做出最细微同时又最适合的的算法,这样即使是摄影小白,都能拍出接近专业水准的照片。

未来人工智能最有效的载体,是人工智能+智能手机,即我们所说的“智慧手机”。从手机到智能手机的智慧,虽然只有一字之差,但有本质区别,智能手机之间的自学习能力,能够真正了解用户的需求,用户可以享受到智能化服务颠覆所带来的体验,而不是机械的执行已经写好的代码。例如,人工智能可以帮助用户在拍摄和快速识别拍摄物体和场景的过程,并自动拍摄的最佳参数,帮助用户拍出更好的照片;例如,通过分析用户的行为习惯,有针对性的资源配置,提供经验,为系统用户更顺畅。在智慧手机时代,手机远远超越了通话和上网设备的功能,不仅成为每个个体的贴身、贴心的助理,甚至成为人的分身。

人工智能将会改变人们的生活方式,成为一种新的体验。我国首颗互联网卫星发射成功,现在可以服务于普通的个人用户,比如随身带着wifi的转接器,就可以把卫星信号变为wifi,只需打开手机,就可知道世界发生什么。不难想象,人工智能的进步速度将是惊人的,未来我们将开始与人工智能并肩工作。

【人工智能心得体会】相关文章:

人工智能心得体会11-12

《人工智能》心得体会08-19

人工智能心得体会9篇11-28

人工智能心得体会(9篇)11-28

人工智能心得体会7篇11-29

人工智能心得体会(7篇)11-29

人工智能心得体会精选9篇11-29

人工智能心得体会8篇11-29

人工智能心得体会(7篇)11-30

人工智能心得体会(通用11篇)

人工智能观后感推荐度:烘焙的心得体会推荐度:读书的心得体会推荐度:合唱的心得体会推荐度:服务心得体会推荐度:相关推荐

人工智能心得体会(通用11篇)

我们从一些事情上得到感悟后,不如来好好地做个总结,写一篇心得体会,这样我们可以养成良好的总结方法。怎样写好心得体会呢?以下是小编帮大家整理的人工智能心得体会,供大家参考借鉴,希望可以帮助到有需要的朋友。

人工智能心得体会篇1

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会篇2

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1、人工智能学科的诞生

12世纪末13世纪初,西班牙罗门・卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯・诺依曼提出存储程序的思想和建立通用电子数字计算机的冯・诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2、逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(G.LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3、逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4、人工智能――当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5、结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会篇3

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay―ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

人工智能心得体会篇4

一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:

1、促进教育方式的变革,培养学生的综合能力

在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

3、培养学生的团队协作能力

机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。

4、扩大知识面,转换思维方式

在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识

二、中小学机器人教学活动的几点做法:

考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

人工智能心得体会篇5

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

人工智能心得体会篇6

人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。

人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的`人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会篇7

今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。

人工智能心得体会篇8

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇9

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生在当前社会中的呢?

在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

人工智能心得体会篇10

一个叫阿尔法狗的智能机器人战胜了人类的围棋高手李世石,这件事情让很多人感到恐慌。我的一位朋友说,阿尔法狗彻底改变了她的世界观。未来人类该怎么办?教育该怎么办?今天我们就来说说这方面的话题。

首先我们先了解一下什么是人工智能?最开始计算机科学家们想让发机器人能像人那样思考,他们想让计算机网络像人的大脑神经网络一样工作。但其实人类对自己到底是如何思考的至今也没有弄清楚,所以按照这种思路开发的人工智能进展不大。

后来一些科学家转变思路,开始让计算机按照自己的方式思考。他们让计算机学习大量的数据,然后分析各种数据之间的相关性,从相关性中发现规律。

比如阿尔法狗就是学习了人类围棋高手的大量的对弈棋谱,找出每一种下法与最终获胜的概率之间的关系,然后选择获胜概率最高的那一种下法,并且自己与自己反复练习,人类在这样的智能机器人面前完全没有获胜的希望。

因为人类不是这样思考的,人类不可能记住那么庞大的数据,也不可能进行那么复杂的计算。人类思考是基于分析推理的,是从小样本研究中发现因果关系,有时还要依赖直觉。既然是小样本,就有可能出现抽样误差;直觉有很多时候也是错的。而且人类还要受体力精力和情绪的影响,很难不出差错。所以我们现在已经不好意思说,计算机是人工智能了,更准确的说法是机器智能。

事实上,机器智能在很多方面已经超越了人类智能,它甚至能替代人类完成很多以前只有人才能完成的工作。专家预言,未来有很多职业会消失,其中包括教师!

举个例子,现在学校里老师教小学生认字,要告诉他们这个字的读音、书写的方法、字的意思是什么,可以组成哪些词组等等。未来会有一款智能机器人一对一地教孩子们做这些事情,它可以发出中央电视台播音员的声音,也可以发出孩子们喜欢的明星或爸爸妈妈的声音,它的笔顺永远不会写错,而且从来不会不耐烦。事实上现在有些电脑学习软件已经可以部分完成这样的工作了。

又比如说,数学的公式、物理的定律、化学的反应式、历史事件与人物,这些中小学教科书上的知识,智能机器人能不能教呢?我相信大家也说能!不仅能教,而且会比人类的教师教得更好,它可以把各学科教学名师的知识和经验都深度学习一遍,然后根据学生学习的表现,选择最合适的指导方法。这跟阿尔法狗学习下围棋没有多少本质上的不同。

到了这个时候,还有多少人认为教师的职业不会消失呢?即使教师的职业不会消失,今天教师的大部分工作将被智能机器人取代,这一点应该没有多少人怀疑了吧?

如果教师的大部分工作都被智能机器人取代,那么学校会不会消亡呢?这是一个更让人揪心的问题。

我们现在的教育体系,是工业时代的产物。工业时代需要培养大量的流水线上的工人,和各行各业的专业人士。这些职业都有一定的标准和规范,需要从业者牢记这些标准和规范,以便在做这类重复度很高的工作时,效率高,不容易出错。

人工智能心得体会篇11

科技在现代社会发展中愈发重要,人工智能作为其具象体现,在各大领域大放异彩。在美剧《机器少女法兰姬》中,西格博士所创造的最新一代机器人frankie,在人与人的交往中收获了友谊,渐渐拥有了情感,学会了像人类一样思考。让人不禁沉思:“人工智能朝人类发展的同时,人类是否会向人工智能(ai)靠拢?”当人类失去了所谓价值观与同情心,与机器又有什么两般?

人与机器人/人工智能最大的差异在于思考方式:ai是通过数据的理性分析,得出结论;而人类则复杂得多,他综合了个人的主观判断与数据分析,理性与感性的权衡之下,方作出决定,故总是于情于理。然而两种方式皆无优劣之较,唯有其二者相互权衡综合,方能创造更美好的未来。

价值观,是人生态度的抽象概念。它代表了个人面对大千世界的自我思考与思考。倘若人失去了所谓“价值观”,便将成为一具毫无精神可言的躯体,仿佛行尸走肉般游走。“人是一株会思考的芦苇”。或许有人会反驳,ai也会思考,但它的所谓思考,不过是自己数据库中所载入的数据所分析出的结果,是由二进制所推动的程序运行,丝毫没有“个人”的情感,是冷冰冰的数据代码,更别提是否拥有价值观的体现了。

同情心,即为“恻隐之心”,可谓人皆有之。试问ai:当你面对奄奄一息的花木,你是否会亲手相植?面对瑟瑟发抖的小雀,你是否会以温柔相助?面对踉跄倒地的孩童,你是否会以怀抱相拥,面对病危的至亲,你是否会不顾一切地陪伴左右……即便你亲手一件件完成了诸事,亦不过是在执行人类所编写的代码罢了,你的心不会为之动跳,不会为之动容。试想,若人类失去了同情之心,世界又怎会温情脉脉?想至此,不禁毛骨悚然充斥着冷漠的世界,谈何“但愿人长久,千里共婵娟”,谈何“日日思君不见君,共饮长江水”,谈何“谁演寸草心,报得三春晖”,谈何“曾经沧海难为水,除却巫山不是云”?

“面对窗口调皮的小猫咪,你是否会莞尔?”我试问。人工智能表示,将来会有的而我,亦希望人类别丢了那份最本质的,欣赏美,体悟生活的态度。正如萧寒所言:

正是现实将我们推得快速甚至踉跄,让我们突然意识到,认真慢下来是多么的难能可贵。愿我们都能在自我的思考与体悟中享受人生百态,不向机器的方向靠拢,成为一个饱含激情与热血,拼搏进取的,人类。

愿人们不要丢弃了心中最纯粹的情感,那份价值观,那份同情心,正如库克所言,“我更担心人类像计算机一样思考,失去了价值观和同情心,罔顾后果。”

【人工智能心得体会】相关文章:

人工智能心得体会06-10

《人工智能》心得体会08-19

人工智能心得体会11-03

【推荐】人工智能心得体会11-21

【热】人工智能心得体会11-20

人工智能心得体会3篇06-10

人工智能心得体会(精选15篇)11-17

人工智能心得体会(精选8篇)11-19

人工智能心得体会3篇11-13

人工智能心得体会(8篇)11-16

【智能机器人心得体会 800字】范文118

人工智能心得体会400字人工智能学习心得3300字智能控制技术的发展现状及心得体会5000字计算智能学习心得体会3700字企业员工学习心得体会3000字车间工作心得体会1200字

很庆幸能够选修《智能机器人》这门课,通过了这门课使我对智能机器人有了一个更加清晰的认识,同时也激起了我对此方面的研究的兴趣。之前就对机器视觉,认知心理学,机器学习和人工智能颇感兴趣,并对此进行了深入的了解,通过这门课,我认识到,智能机器人作为这些学科的交叉产物,是个综合应用这些知识的最好的平台。通过这门课,我也从新认识了智能机器人制作的艰辛和困难性,使我认识到之前对此不以为然,眼高手低态度得幼稚。同时也教育我,任何一个项目本身所呈现的问题只是完成该项目所需工作的冰山一角,做任何事,都必须以谦恭,认真的态度对待。同时也是我懂得了,再将事情坐完之前不可轻易对此做出评价。

通过这门课我系统的认识了机器人的感念,综上所述,目前机器人无碰路径规划大致可分为两类:全局规划方法和局部规划方法.在全局规划方法中,主要是基于构形空间的自由空间法:将机器人和障碍物映射到构形空间,得到障碍区域和自由区域,然后在自由区域里寻找最佳路径;在局部规划方法中,主要是人工势场法:对障碍物建立排斥势场,对目标点建立吸引势场,根据传感装置反馈回来的机器人与障碍物之间的距离,在排斥力和吸引力的共同作用下,机器人绕开障碍物向目标点移动.

通过这门课使我了解到智能机器人所必需的三部分,就如上面所列的,人工智能,超级计算机和机械结构。三者是组成智能机器人不可或缺的部分,人工自能赋予机器人,判断,推理,学习的能力。超级计算机提供强大的处理数据的能力,使的机器人能够快速对传感器信

号经处理,同时对人工智能技术提供支持。机械结构是机器人的物理组成部分,一个机器人机械结构所具有的自由度数的多少,以及结构强度的大小,决定了机器人活动的灵活性。三者只有相互结合,紧密联系,才能实现机器人的智能化。机器人路径规划技术未来的研究重点是“仿人、仿生”智能。

虽然《智能机器人》只是一门选修课,但却是我受益匪浅,在这短短八周的时间里,这门课给我最大的帮助就是,激发了我对智能机器人相关领域的学习和研究的强烈兴趣,同时也是我认识到我们大学生所学课程的重要性,十分感谢倪建军老师的严谨教学。

1234

第二篇:创建学习型机关个人心得体会1100字

乡党委委员

自我乡开展创建学习型机关活动以来,我感受颇深、受益匪浅。从组织学习和实施情况来看,总体来说,就是坚持学习以需求为导向,牢固树立“不进则退”的危机意识,从自己做起、从现在做起,真正在“学”、“悟”和“用”字上做文章、下功夫、求实效。对此,我结合自身工作、学习情况,谈一谈我对“创建学习型机关”的认识及学习体会:

一、“创建学习型机关”要从思想上端正态度

“学以立德,提高境界;学以增智,开阔眼界;学以致用,改造世界”。当前世界瞬息万变,科技突飞猛进,要求我们更好地掌握各类知识,提高做好本职工作的本领,才能不被时代所淘汰。只有通过学习,才能进一步解放思想,与时俱进,实现思维方式、工作思路、管理模式、工作方式和工作机制的创新,做到超越自我,提升素质,不断把握机会和主动。所以,我们要一如既往地学习,丰富自己的知识,不断增强自己的本领,努力成为工作中的行家能手。

二、必须树立工作学习化、学习工作化的理念

学习是为了更好地工作,工作学习化要求把每一项工作都视为一个学习的机会,从工作中学习新技能、新方法,增长专业知识;学习工作化则视学习为一项必要的工作,像

工作一样认真刻苦学习,并养成良好习惯,使得工作学习一体化,即把学习引入工作,使工作学习有机结合,相得益彰,相互促进。以不断提高机关工作人员自身学习力、创造力,增强知识能力和综合素质。指挥中心是城市管理新模式、新体制的产物,还须更进一步地不断发展,壮大。我们作为中心的一员,理所当然的要作好各项准备,随时把所学新理念、新知识投入和运用到工作实践当中去,并不断在工作中改进,提高。

三、要树立不断创新学习的理念

学习是创新的基础,创新是学习的目的。学习不仅是为了获取知识或掌握技能,更重要的是通过学习,树立正确思想观念,学会分析解决问题的辩证思维方法和工作方法,培养创新思维,促进工作能力、工作效率和工作质量的提高。在开展学习型机关活动中,当前应更加注重团队的互动学习。加强团队互动学习,能够更好地激发每个工作人员的潜能,将分散在每个人头脑中知识、经验和信息整合成巨大的创新力量,并转化为推动创新发展,开拓各项工作新局面的动力。

四、要坚持点评和不断总结,巩固学习成效

活动开展以来,可以说指挥中心的学习形式还是灵活多

样的,内容也较为丰富多彩。但是也有不足。如现有的学习活动模式偏重于“自上而下”式的学习,中心学习小组的能动作用还需进一步发挥,学习激励机制和考核机制还有待落实。主要表现在:注重理论知识的过程学习,回头总结和点评不够;练兵项目和专题讲座偏少;调研论文不够,研究课题较少等。这些,都有可能会影响到已有的学习活动成效,需要我们更好的解决。

以上是我个人的一些学习体会。通过开展创建学习型机关活动,让我从中学到了不少好的工作方法,从书本学习开始扩展到了向社会学习、向生活学习,进一步激发了我对学习的热情。今后,我将坚持以领导为师、以同事为师、以群众为师,进一步总结活动经验,提升学习活动质量,为加强中心基础管理和队伍建设,提升管理水平创造更坚实的基础。

+更多类似范文┣ 对人工智能学习的感想3800字┣ 人工智能的发展及应用()4600字┣ 模式识别人工智能论文2800字┣ 心得体会4900字┣ 更多人工智能心得体会

人工智能导论心得1000字

人工智能导论范文3000字共14篇

人工智能导论范文3000字第一篇

摘要:为了提高“人工智能导论”课程的教学质量,协调好教与学的双边关系,结合教学实践,从教学体系、教学内容、教材、教学方法、考核方式等方面进行了探讨和总结。

关键词:人工智能;教学内容;教学方法

中图分类号:G642文献标识码:A

1引言

人工智能(AI)是二十世纪五十年代后期兴起的利用计算机模拟人类智能活动去求解问题的学科,与空间技术、原子能技术一起被誉为二十世纪三大科学技术成就,目前广泛应用于专家系统、机器翻译、语音识别、文字识别、计算机视觉、机器人、电子游戏等方面,已经成为计算机技术发展以及许多高新技术产品中的核心技术。

为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程,特别是作为计算机方面专业的核心课程之一。我校自从1993年开始为自动化专业本科生开设“智能控制”选修课,1996年为自动化、计算机、机械等专业本科生开设“人工智能导论”、“人工智能及其应用”课程。目前,我校软件学院、信息学院、机电学院都开设了“人工智能导论”课程,已经成为计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其目的是使学生了解人工智能的基本概念和基本原理,初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,为学生提供最基本的人工智能技术和有关问题的入门性知识,提高学生应用开发软件的能力和水平,为今后在相关领域的研究和应用奠定更为坚实的基础。因此,建设好“人工智能导论”课程具有重要意义和很广的受益面。

由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有望而生畏的感觉,在教学过程中,老师教、学生学都比较吃力。为了更好地实现上述教学目标,提高本课程的教学质量,协调好教与学的双边关系,使学生由望而生畏的感觉,变为有用有趣的感觉,根据已有人工智能课程在教学与实践方面的经验和方法,结合“人工智能导论”课程的近几年教学实践,对课程的教学体系、教学内容、教学方法、教学手段、考核方式等方面进行了探索总结。

2调整与优化教学体系和教学内容

“人工智能导论”是计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其研究领域及内容十分丰富,涉及的基础面广。因此如何选好教学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件重要而又困难的事情。

另外,在选择和确定教学内容时必须兼顾基础知识和新兴技术,注意与相关课程(如离散数学、数据结构、概率论、自动控制原理、Matlab系统仿真、面向对象的编程技术等)的链接,密切理论与实际的关系,通过课堂讲授和课外训练,注意学生能力培养,提高他们的学习效果和整体素质。

3加强课程立体化建设和系列教材研究

人工智能导论范文3000字第二篇

一、人工智能的定义解读

人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。

二、人工智能的发展历程

事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:

第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

三、人工智能的多元应用

1、人工智能在管理系统中的应用

人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。

2、人工智能在工程领域中的应用

人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3、人工智能在技术研究中的应用

人工智能导论范文3000字第三篇

摘要:时代是不断发展的,对于电气信息类专业的学生来说,社会岗位在综合素质和专业能力方面提出了对学生诸多新的要求。因此为了促进学生能够在毕业之后获得良好的发展,在电气信息类专业教育教学中,教师要对原有课程教育模式和课程教育手段进行有效的改革以及创新,从而促进学生专业能力的提高。为了使学生更加积极地进行知识内容的学习,教师要在电气信息类专业教育教学中充分的发挥人工智能的优势,提高课堂教学的效果。

关键词:人工智能;电气信息类;教学应用

教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。

一、人工智能时代的概述

其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业•2•本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。

二、人工智能对电气信息类专业人才需求的影响分析

三、人工智能给电气信息类专业提供的机遇

四、人工智能技术在电气信息类专业教育教学中的应用路径

(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。

(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。

(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。

(四)利用人工智能技术进行辅助性的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。

人工智能导论范文3000字第四篇

摘要:针对普通高等院校学生和人工智能课程的特点,结合DBR(DesignBasedResearch)成果,提出一种

>>引入深度学习的人工智能类课程中西合璧的人工智能课程双语教学模式可调戏的人工智能生活中的人工智能不断超越的人工智能逐渐靠近的人工智能正在落地的人工智能2035年的人工智能航天类专业“人工智能”课程的教学探索林业院校人工智能课程教学的思考人工智能导论课程的兴趣教学法人工智能概论课程的教学思考“人工智能”课程教学的实践与探索游戏开发应用中的“人工智能”课程教学方法探讨人工智能的应用研究人工智能的日常应用人工智能的应用和发展浅析电气自动化控制中的人工智能应用分析继电保护中的人工智能技术及其应用电气自动化控制中的人工智能应用分析常见问题解答当前所在位置:l)。在情境创设时,教师根据学生特点提出了多种应用需求,例如化妆品销售咨询等。学生利用该工具,兴趣盎然地开发了自己的小型专家系统,不仅理解了专家系统的特点、作用、运行方式等,还具有强烈的成就感。

面向研究的情境创设

苏霍姆林斯基认为,研究型教学法应该充分体现学生的主体地位,激励、引导和帮助学生去主动发现问题、分析问题和解决问题,激发学生学习的内在兴趣和成就动机[4]。人工智能课程中包含了大量的前沿问题,研究型课题比比皆是,如何平衡这些研究课题与兴趣、实用的关系,是教学设计中重点考虑的内容。

下面以“规划”中的路径规划内容为例,详细分析以研究为导向的情境创设过程。表2给出了整个教学设计。

综合几次研究课题完成情况,班级中有1/3的学生通过广泛查阅资料和多次与教师讨论,提交了质量尚可的标准格式论文,并因此获得了学院的科研学分。除此之外,教师还组织这部分具备一定科研潜力的学生参加科研项目,进一步磨练科研技能,极大提高了学生的学习兴趣和能力。

3DBR驱动的教学过程

人工智能课程各单元内容相对独立,难以形成统一的联系,怎样验证各单元的学习效果?从提出问题到任务解决,每个单元的学习通常要跨越几节课甚至几周,怎样在此期间保持学生的兴趣和关注?

DBR是情境设计、实施、评价、再设计、理论形成等环节多次迭代循环的过程,柯林斯称之为“不断进步的修正”(ProgressiveRefinement),以检测设计的价值。因此,评价是教学过程中非常重要的一环。本课程教学主要做好两个环节,以驱动整个教学过程的推进。

1)实践环节。

通常的实践环节是课程结束后固定时间的实际任务,而本课程的实践却贯穿整个教学过程,是单元教学、教师、学生之间的粘合剂。实践包括应用型实践和研究型实践,一般在每个单元教学开始,提出问题后,实践任务就被布置下去,例如前面所述的“黑白棋”、“路径规划算法研究”等。学生接受任务后,带着问题搜索解决途径,在此期间需要教师提供方法指导及答疑(既可固定时间,也可通过E-mail等形式)。及时地交流,特别是针对实际问题的交流,不仅有效率,而且便于教师及时调整教学设计。

2)教学评价。

除了课程考核以外,每个教学单元结束时都有反馈和评价环节。评价方式包括单元测试、编写软件测试、研讨会等。具体采用何种形式,要根据前一阶段的反馈信息决定。这些来自学生反馈信息包括前一阶段学习的接受情况、兴趣点、其他课业繁忙情况等。在学期的不同时间点采用合适的评价方式,有助于加强学习刺激,总结和发现教学设计中的问题,及时调整。

通过上述两个环节的推动,精心设计的教学内容得以顺利实施并被学生欣然接受。2/3的学生在整个学期教学中都保持了积极的态度和充分的关注度,确实感受到人工智能的魅力,并能够从技术角度看待人工智能,消除了未学或初学时的神秘感。

4教学实施效果分析

1)正效果分析。

中原工学院计算机学院作为普通工科院校,以培养实用型人才为主,人工智能并非主干课程,学生重视程度不足。两年来,经过教师与学生的共同努力,教学改革成果逐步体现。人工智能类学生人数从过去的5%上升到15%,科研论文数量从1%上升到20%。有20%的学生接触过或正在从事人工智能类项目的研究与开发,考研选择人工智能科目的学生比例从0上升到15%,考研成功人数占毕业生总人数的20%。

人工智能导论范文3000字第五篇

人工智能毕业论文_机械/仪表_工程科技_专业资料。人工智能的历史人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉......

人工智能的研究方向、领域和应用领域摘要:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的研究方向、研究领域、应用领域值得我们关注和探讨。关键字:人工智能、研究方向、......

人工智能论文_理学_高等教育_教育专区人工智能一、什么是人工智能几个世纪以...

广告语言,又称广告词,有广义和狭义之分。以下是为大家整理的关于有趣的楼盘房地产广告语的文章3篇,欢迎品鉴!【篇一】有趣的楼盘房地产广告语1天鹅苑&bu

人工智能导论范文3000字第六篇

〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。

〔关键词〕人工智能,数论,简单性原则

〔中图分类号〕N1〔文献标识码〕A〔文章编号〕1004-4175(2020)02-0005-06

人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比AI与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。

一、数论哲学为人工智能提供质料基础

人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。

“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。

毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。

毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。

二、演绎逻辑与分析哲学成为搭建人与机器联系的桥梁

除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。

集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。

人工智能导论范文3000字第七篇

《基于当前社会的人工智能初探》

本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。

弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。

人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。

第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。

人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。

第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?

以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。

强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。

人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。

有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。

人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。

人工智能导论范文3000字第八篇

2019新型冠状病毒国际病毒分类委员会,2019nCoV,世卫组织于2020年1月命名SARS-CoV-2,2020年2月11日。冠状病毒是一个大的病毒家族,

税务是税务的缩写。有广义和狭义之分。以下是为大家整理的关于2021党支部组织生活会个人对照检查材料的文章18篇,欢迎品鉴!第1篇:2021党支部组织生活会

党员领导干部要结合自己的工作和思想实际,进行深刻的自我反省,这有利于做好工作。以下是为大家整理的关于2022民主生活会党员领导干部个人对照检查材料的文章3篇

民主生活会是指党员和领导干部开展批评和自我批评的组织活动制度。以下是为大家整理的关于党史生活会意见征求表的文章5篇,欢迎品鉴!第1篇:党史生活会意见征求表

评估是汉语词汇,拼音是Kǎohé它意味着检查、检查和验证。严家训&米德省事&ldquo有一位彬彬有礼的官员对此感到羞耻,想留下来并进行了评估。以下

对比为汉语单词,拼音为Du-igravezhào、它意味着两个不同的、对立的和相关的事物,或者同一事物的两个不同的、对立的和相对的方面,被比较在一

意见是上级领导机关规划下级机关工作,指导下级机关工作活动的原则、步骤和方法的一种文体。以下是为大家整理的关于乡党委党史学习教育专题民主生活会征求意见的文章6篇

诚实,一个中国词,最早出现在《楚辞》中战国时期伟大诗人屈原的感悟:我年轻清白,不为正义所倾倒。”东汉著名学者王毅在《楚辞·章句》中评论道:如果你不接受它,你将是

门店经理是连锁经营企业指定管理单独门店的经理职位的名称。它也可以是独立商店所有者的头衔。它是商品经济浪潮中的一个新词。以下是为大家整理的关于店长的工作流程及工

人工智能导论范文3000字第九篇

摘要:大作业的设置对学生深入理解课程内容,提高求解问题的能力具有很大的帮助。文章在笔者多年从事人工智能教学的基础上,探讨人工智能导论课的大作业设置问题,提出大作业应具备的基本条件,说明选择四子棋作为大作业的理由,给出四子棋大作业的评分规则,并对学生的大作业总体情况进行分析,验证选择四子棋作为大作业题目的合理性。

关键词:人工智能;作业;博弈

现在很多课程都设置了大作业,这对学生深入理解课程内容,提高求解问题的能力以及调动学生学习的积极性有很大的帮助。多年来,我们在人工智能导论课上一直设有大作业,受到了同学们较好的评价。下面就如何设置大作业问题,谈一点我们的体会,与各位同行进行交流[1-2]。

1大作业应具备的条件

在以往的教学实践中,我们曾经选择过不同类型的题目作为大作业,比如五子棋程序、基于拼音的整句输入法、基于归结的问题回答系统等。这些题目虽然也起到了很好的效果,但存在着一些不足。比如五子棋程序,如果采用一般的简单规则,则存在先手必胜的策略,而正式比赛规则又过于复杂;而且五子棋是一个比较大众的游戏,有的同学下棋水平比较高,而有的同学则不熟悉,这样大家不在同一个起点上,对于不熟悉的同学存在着不公平。基于拼音的整句输入法、基于归结的问题回答系统等,则缺乏趣味性,少了同学之间的“竞争”,不利于调动同学们学习的积极性。

经过思考,我们认为一个好的大作业,应该具备以下几个条件:

1)与课程学习内容紧密结合。

2)趣味性强,能调动同学们学习的积极性。

3)背景知识简单易懂,以便让学生集中在与课程有关的内容中,而不是把大量的精力花费在背景知识上。

4)规模适中,不需要花费大量精力处理诸如程序的存储空间问题等。

5)尽可能对所有同学都是公平的,不存在部分同学熟悉,部分同学不熟悉的情况。

经过认真的总结和思考,最终我们选择了四子棋作为大作业的题目,并对传统的四子棋规则加以改良,使其尽可能地符合上述基本条件。大作业的最终要求是,用程序实现一个四子棋程序,并通过比赛的方式评判大作业的成绩。

2为什么选择四子棋

在说明我们为什么选择四子棋作为大作业之前,首先我们介绍一下什么是四子棋。图1是一个四子棋的棋盘,由M行N列组成。游戏双方分别持不同颜色的棋子,设A持白子,B持黑子,以某一方为先手依次落子。假设为A为先手,落子规则如下:在M行N列的棋盘中,棋手每次只能在每一列当前的最底部落子,如图中的红点处所示,如果某一列已经落满,则不能在该列中落子。棋手的目标是在横向、纵向、两个斜向共四个方向中的任意一个方向上,使自己的棋子连成四个(或四个以上),并阻止对方达到同样的企图。先形成四连子的一方获胜,如果直到棋盘落满双方都没能达到目标,则为平局。

那么,我们为什么选择四子棋作为大作业题目呢?

首先,四子棋规则简单,几句话就能说明其比赛规则;其次,四子棋的规模适中,每一步的可落子点不多;第三,四子棋是一个博弈类的游戏,趣味性强;第四,可以用博弈树搜索等方法求解,与课程内容联系密切;第五,四子棋虽然简单,但是几乎所有同学以前都没有遇到过,所以对大家都是公平的。这些都能很好地满足我们前面提到的大作业应具备的几个条件。

3对四子棋的改进

为了更好地适应大作业的要求,我们对传统的四子棋游戏规则做了一些扩展,以更利于程序求解,避免存在必胜策略,使得同学们集中在求解策略的设计上。改进的目的一是为了更好地体现算法的作用,二是尽可能减少人为的必胜策略的影响。为此,我们对传统的四子棋规则做了如下的改进。

1)棋盘大小不固定,双方博弈时,在一定的范围内,随机地产生棋盘的大小。

2)随机地增加一些不可落子点。

比如在图2所示的棋盘中,“红叉”点就是一个不可落子点。当“红叉”点的下面落满了棋子时,只能在“红叉”点的上面落子,而不能在“红叉”点出落子。

对四子棋这样的两点改进,主要是为了避免静态的必胜策略的使用,引导大家更多的关注动态策略的使用,根据当前局势,实时地计算最佳的落子策略。

图2不可落子点的说明

4大作业评判规则

如何评判大作业的成绩对学生会起到一定的引导作用,为此我们提出了“赛会制”和“探索制”两种评判机制。

所谓的赛会制,就是建立一个比赛平台,所有同学的程序提交到平台上,按照以下规则参加比赛。

1)正确性验证。要求同学们针对四子棋问题实现一个α-β剪枝程序[3],给定一些特定的节点,判断剪枝是否正确。通过正确性验证者获得基本分。

2)全体同学采用大循环的方式进行比赛,任何两个程序之间进行两局比赛,先手后手各赛一局。

3)要求5秒内必须完成一次走步。

4)胜者获得2分,负者获得0分。

5)平局时,用时少者获得1+x分,用时多者获得1-x分。

6)按照获得的总分数进行排名。

7)要求就大作业内容写一篇小论文,根据排名和论文情况给出总成绩。

为了鼓励同学创新,探索新的方法,除了“赛会制”外,我们还设立了一个“探索制”供学生选择。选择探索制的同学,要求在方法上有所创新。比如采用机器学习的方法,寻找评判局面优劣的方法、权重系数等。要求写出一篇论文,对所用方法进行介绍,对不同方法进行比较,通过实验等验证方法的可行性和有效性。选择探索制的同学,虽然也参加比赛,但是最终成绩主要体现在论文的完整性和水平上,不看具体的成绩排名。这样就可以使得学生有更多的发挥空间,对于一些优秀的同学比较有吸引力。

5结果分析

在先期少数同学实验的基础上,我们从2010年开始全面在人工智能导论课上实施四子棋大作业,共有160名同学选择了“赛会制”的方式完成了四子棋大作业。为了验证该大作业的合理性,我们对大作业总体情况做了一个简单的分析,结果如下:

1)全部同学都通过了正确性测试。这是因为我们事先给出了一些测试样例用于学生自测,通过了这些样例后再提交基本就没有问题了。通过对部分同学的调查,也确实发现一些同学在做正确性测试之前,对α-β剪枝算法理解有误,通过写程序并测试程序的正确性发现了理解上的问题。这也可以看出正确性验证在这里的重要性。

2)全部160个学生的程序中,无一人全胜,也无一人全败,即便是总成绩第一名也失败了22局,而最后一名也取得了18局的胜利。

3)平局数很少,在全部比赛中,只有176局平局,仅占全部比赛的,平均人均平局数为局,平局数少也是我们希望看到的结果。

4)先手后手胜负比较均衡,经统计,先手胜与后手胜的局数之比为10:9,虽然后手稍微劣势一点,但总的来说变化不大,再加上任何两组程序都是先手后手各赛一次,总体上可以消除先手后手所带来的影响。

通过以上分析,以四子棋作为人工智能导论课的大作业是可行的、合理的,尤其是经过了改良之后的四子棋,在各个方面都是很均衡的,适合作为大作业使用。

6结语

以四子棋作为大作业,是我们对人工智能导论课的一次尝试,通过各方面的分析可知,这次尝试是成功的,有利于提高学生学习人工智能课程的兴趣,并将所学内容应用于解决实际问题之中。在做大作业的过程中,同学们阅读了大量的论文,对有关博弈问题,甚至是人工智能问题有了更加深入的思考和理解,从中学到了很多课本上学不到的知识。在今后的教学实践中,我们将进一步总结经验,改进大作业的设置,进一步提高人工智能课程的教学水平。

参考文献:

[1]吴文虎.精心铸精品理念须先行[J].计算机教育,2008(13):46-49.

[2]张彦航,孙大烈,战德臣.通过大作业促进大学计算机基础课程教学[J].计算机教育,2007(7):24-26.

[3]马少平,朱小燕.人工智能[M].北京:清华大学出版社,2004.

[4]应宏,刘福明,熊江,等.计算机课程作业改革的实践探索[J].计算机教育,2009(2):47-48.

ExplorationonProjectDesigninIntroductiontoArtificialIntelligence

HUANGYu1,MAShaoping2

(ofComputerandInformationTechnology,BeijingJiaotongUniversity,Beijing100044,China;ofComputerScienceandTechnology,TsinghuaUniversity,Beijing100084,China)

Abstract:Courseprojecthelpsalotforthestudentstounderstandtheknowledgethoroughly,andtoimprovetheircapabilityofproblemsolving,algorithmdesignandsystemimplementation.Basedontheteachingexperienceonrelatedcoursesformanyyears,thispaperexplorestheprojectdesignforthecourseofintroductiontoArtificialIntelligence(AI),andproposesseveralessentialprerequisitestosetupacourseproject.Siziqi,whichisasimilarbutsimplerchessgametoGobang,isdesignedasthecourseprojectwithspecifiedreasonsandevaluationrules.Observationsandanalysesarefurthermadeonthestudents’solutions,whichshowthatitisfeasibletotakeSiziqiasaprojectforAI.

Keywords:ArtificialIntelligence;courseproject;game

人工智能导论范文3000字第十篇

《电脑人工智能日趋成熟》

电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。

现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。

舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。

舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。

人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”

舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。

舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测xxx维的能力。

舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?

讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。

一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。

换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”

微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。

舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。

从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。

显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”

在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。

舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。

目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。

日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。

除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。

舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。

人工智能导论范文3000字第十一篇

摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。

关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识

中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2020)01-0154-03

产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。

一、人工智能能够提升科学知识生产效率

机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。

二、人工智能擅于提取和传递默会知识

三、人工智能可以产生某种机器知识

如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGoZero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGoZero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,GregoryWheeler在《MachineEpistemologyandBigData》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]

机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。

人工智能导论范文3000字第十二篇

【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。

【关键词】STEM教育;人工智能;机器人;编程创新

随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。

一、开展人工智能教育的背景

xxx在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。

二、以课程建设为核心,提升学生的STEM素养

机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。

如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。

以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。

三、以课题研究为引领,推动师生专业化成长

课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。

以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。

四、以参加机器人赛事为驱动,搭建学生个性成长的平台

雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。

通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。

未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。

参考文献:

[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.

[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.

人工智能导论范文3000字第十三篇

关于人工智能的论文_兵器/核科学_工程科技_专业资料。关于人工智能的论文人工智能(ArtificialIntelligence,AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学......

有关人工智能的论文三篇人工智能论文1500精品文档,仅供参考有关人工智能的论文三篇人工智能论文1500随着计算机技术的快速发展和广泛应用,人工智能的思想和技术会对人类产生巨大的影响,可以应用于所有的学科领域,它的影响涉及......

人工智能综述(原创论文)人工智能及其发展***201000445模式识别与智能系统(***科技大学信息工程学院)摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。本文从人工智能的概摘要念出发,首先介绍了人工智能研究......

《人工智能》读后感1000字(通用6篇)

《人工智能》读后感1000字(通用6篇)

当细细地品读完一本名著后,相信大家的视野一定开拓了不少,此时需要认真思考读后感如何写了哦。你想好怎么写读后感了吗?下面是小编为大家整理的《人工智能》读后感1000字,希望对大家有所帮助。

《人工智能》读后感1000字篇1

因为我本人硕士毕业论文用到的就是bp神经网络,所以我也是对人工智能的底层逻辑大体上了解一些皮毛。我个人觉得人工智能就是机器或者系统可以像人一样进行学习经验、思考判断,通过输入层,中间层,输出层来最终做出决策。而其中中间层是一个设定好规则的黑箱,里面具体运算方式其实很复杂,就像人类大脑,思考了哪些、信号怎么传递的,其实一般人也是不知道的,但就是能做出决策来。

这本书介绍了人工智能的历史,基本原理,需要关注的地方,对人类社会的挑战,以及各国做出的策略。

但是我认为本书最大的作用是让我对于人工智能开拓了视野,原来只是去考虑机器怎么思考,是有形的机器还是无形的系统。实际上人工智能的安全问题(战争机器人的出现、阿西莫夫机器人三定律),伦理问题(是否要给机器人以人的地位),道德问题(由于设计人员或多或少的原因导致机器识别黑人为黑猩猩这种道德问题),法律问题(无人骑车撞人事件是处罚研发人还是拥有者还是机器本身),对人类工作的挑战,可能会导致大多数人失业等问题。

我觉得对于人工智能的时代,目前来看还是炒概念,不可否认随着阿尔法狗的出现代表着新时代的人工智能算法层级的一大进步,但是人工智能如果想进入到目前各行各业还是要走很长时间的。但是很多专业领域可以操作使用,尤其在仅仅靠系统判断的领域,比如预测,投资等。因为真正需要作业的工作,不仅仅要系统智能还要硬件上可以配套。但是人工智能的时代可期,十年后应该可以渗透到人的身边。还有上面谈的法律伦理道德等问题。这些问题的抛出者一般是政府方面,我认为如果对于新兴事物政府要是全想到了社会的前面就不会有什么创新了。等发展起来再说,就是我的想法,当然政府需要制定个像机器人三定律的类似宪法底线的东西就行了。就像说无法判断无人车撞人是谁的错,有人驾驶的车能判断出来谁的责任,但是该撞还是撞了,汽车出现了100多年了,规则还是在修改和变动的。还有机器取代人工作的问题,很多人找不到工作的事情,这是肯定的,就像以前一艘不到1万吨的船上要有几十上百人,现在20万吨的船都不需要超过20人。那些船员干啥去了?时代会进步的,有些岗位自然会被取代,但是人作为可以适应不同环境的智慧生物,肯定可以适应新时代的。

总之科技的进步是无人可以阻挡的,为了不被时代的车轮压死就只能推着时代走。

《人工智能》读后感1000字篇2

最近读了李开复、王咏刚两位合著的《人工智能》这本书,写篇读后感。

对于人工智能我是有学习的欲望的,而且是强烈的愿望,因为后续所有的软件技术、产品一定都会和人工智能扯上关系,否则就会被社会淘汰,这是必然趋势,谁也抵挡不了。

先来介绍两位作者吧。

李开复:博士,1988年获卡内基-梅隆大学计算机科学博士学位,他的博士论文主题是关于世界上第一个“非特定人连续语音识别系统”,并于1988年由《商业周刊》杂志授予该系统“科学创新奖”。职业生涯开源于苹果,并官至苹果交互式多媒体部门副总裁。1998年创办微软中国研究院,同年他开发的“奥赛罗”人机对弈系统击败人类世界团体比赛冠军选手。而后,他转任微软全球副总裁、谷歌全球副总裁兼大中华区总裁,2009年创立创新工场。

王咏刚:毕业于北京大学,毕业后长期从事金融行业软件研发,任方正奥德公司技术总监。2006-2016年在谷歌公司任Staff

Engineer、资深技术经理等职,参与或负责研发的项目包括桌面搜索、谷歌拼音输入法、产品搜索、知识图谱、谷歌首页涂鸦(Doodles)等,在输入法、知识图谱、分布式系统、HTML5动画/游戏引擎等技术领域拥有深厚的积累。

这本书分为六个章节:

第一章是“人工智能来了”,这个章节主要介绍的是人工智能目前的应用场景和产品,并简单介绍了什么是人工智能,属于科普形式章节;

第二章是“AI复兴:深度学习+大数据=人工智能”,这个章节详细解释了历史上三次人工智能热潮的过程,李开复博士自己也感叹了一把生不逢时,不然他可能在学术上的成就更大。这一章节应该算是整本书里技术含量最高的一个章节,通俗易懂地解释了深度学习技术,如果你是想了解一些原理性知识,看这一章节就对了;

第三章是“AI真的会挑战人类?”,这章主要介绍了AlphaGo带给我们的启示,以及来自霍金等科学家的警告,并且介绍了人工智能还不能做什么。

第四章是“人类将如何变革?”,这章主要介绍了从工业革命到文艺复兴,也介绍了诸如自动驾驶、金融、生活、医疗、艺术创作等各个产业与人工智能的结合方式,主要还是从产品的角度讨论问题;

第五章是“机遇来临:AI先行的创新与创业”,这章主要介绍了未来10年的中国人工智能领域的布局;

第六章是“迎接未来:AI时代的教育和个人发展”,这个章节主要介绍了应该如何学习、该学什么、教育应该关注什么,以及有了人工智能之后人生还有什么意义等,这些内容。

总的来说这本书属于人工智能科普类书籍,不是针对专业人士的,对于搞软件的人,或是产品经理来说,这倒是一本入门书。

《人工智能》读后感1000字篇3

“不可思议的想象,不同凡响的夸张,不可复制的喜剧。”你知道这是对哪本书的高度评价吗?没错,它就是《装在口袋里的爸爸》系列丛书!我对这套书爱不释手,尤其是《人工智能超人》更是百看不厌。

你一定想象不到,这本书里的角色有多神奇!书中不仅有拇指大小天天待在杨歌口袋里却酷爱搞发明的杨歌爸爸,有来自一百年后的拥有狂人科学家思维的人工智能程序Tiger,还有来自一百年后的人工智能程序安琪……

你一定想象不到,这本书的内容有多么不可思议!这本书主要讲了杨歌意外地遇到了一个叫Tiger的人工智能程序。Tiger无所不能,它可以借助电脑、手机等电子产品教杨歌改造智能头盔,使杨歌成为了一个聪明绝顶的人。杨歌不仅学习成绩突飞猛进,而且还成为了人工智能方面的专家。此外杨歌还变成了“神算子”,帮妈妈算了好多账。Tiger还指导杨歌制造了机械臂、传感手套等可穿戴设备。穿上这些装备后的杨歌,变得力大无穷……Tiger让杨歌的能力得到了巨大提升,生活也变得丰富多彩:拿奖拿到手软,成为了“别人家的孩子”,是全国的焦点。因此,Tiger也深受杨歌的信任。

我好羡慕杨歌呀!如果我也有这样一位人工智能朋友该多好!它可以让我的学习变得轻松,还可以让我上天入地、无所不能!

但后来,事情发生了变化。狡猾的Tiger制造了一个“甲虫智脑”芯片,怂恿杨歌把芯片安装到后脖颈上。Tiger则通过芯片控制了杨歌的大脑,并妄图借助杨歌的身体统治全世界!如果杨歌反抗,Tiger还会通过黑客手段制造意外,企图让杨歌丧命!从此,杨歌变得脾气暴躁、冷酷无情,而且破坏力巨大。

看到这里,我不禁冷汗直冒,暗暗为杨歌着急,更庆幸自己没有这样一位人工智能“朋友”。

还好,这时安琪――一个来自一百年后的正义的人工智能程序出现了!它和杨歌爸爸联手制造出了人工智能战甲。经过激烈的搏斗,他们最终打败了Tiger,拯救了杨歌,也拯救了世界!

读到这儿,我禁不住抹了一把额头上的汗,提到嗓子眼儿的心也终于“咚”地落回到了原处。

但可惜的是,最后安琪牺牲了……

我的眼眶瞬间湿润了……

人工智能,能干好事也能干坏事,科技真的.是一把双刃剑!一面可以造福人类,使人类变得更强大,让我们的生活更加丰富多彩;另一面也可以给我们的生活带来许多坏处,甚至毁灭世界!原子能的发明和应用不正好印证了这一点吗?

读完这本书,我深刻明白了这样一个道理:凡事都有两面性!我们在研究新科技、运用新科技的时候,不能仅仅看到它造福人类的一面,更要对它的破坏性有所估计和严格控制!

我们人类不仅要有“科学脑”,还应该拥有一颗“人文心”!

《人工智能》读后感1000字篇4

AI复兴:深度学习大数据=人工智能

这一次人工智能复兴的最大特点是,AI在语音识别,机器视觉,数据挖掘等多个领域走进了业界真实的应用场景,与商业模式紧密结合,开始在产业界发挥真正的价值。

第三次AI热潮:有何不同?

AlphaGo与李世石的围棋人机大战刚刚尘埃落定,“人类是不是要被机器毁灭”这类的话题在普通人中流传开来。可大家千万不要忘了,这并不是人机对弈第一次激起公众的热情。1997年IBM的深蓝战胜卡斯帕罗夫的那一天,全世界科技爱好者奔走相告的场景丝毫不比今天人们对AlphaGo的追捧逊色多少。

几乎每一项新兴企业成功的技术,在真正成熟之前,都要经历先扬后抑的过程,并在波折起伏中通过积累和迭代,最终走向真正的繁荣,稳定和有序发展。

人工智能之所以有今天的成就,深度学习居功至伟。

图灵测试:假如一台宣称自己会“思考”的计算机,人们如何辨别计算机是否真的会思考呢?一个好方法是让测试者和计算机通过键盘和屏幕进行对话,测试者并不知道与之对话的到底是一台计算机还是一个人,如果测试者分不出与之的对话只是人还是机器,即,如果计算机能在测试中表现出与人等价或至少无法区分的智能,那么我们就说这台计算机通过了测试并具备人工智能。

语音识别的发展告诉我们,老一代研究者如果不能尽快更新知识储备,就只有面临被解雇的命运。

早在20世纪70年代,语音识别就曾经有过一些技术突破,有趣的是,今天异常成功的深度学习技术,当年曾在语音识别领域尝过失败的苦涩。而在近年来的第三次人工智能热潮中,语音识别领域发生了天翻地覆的变化,深度学习就像一个秘密武器,蛰伏多年,重出江湖,首先在计算机视觉领域,帮助计算机认识人脸,认识图片,视频中的物体,然后,拔剑四顾,冲入语音识别,机器翻译,数据挖掘,自动驾驶等几乎所有人工智能技术领域大展伸手。

语音识别系统在近年来突飞猛进,技术上只有一个原因--深度学习!

人工智能领域的研究者,几乎无人不谈深度学习。很多人甚至高喊出了“深度学习==人工智能”的口号。

深度学习能够大的伸手的两个前提条件―强大的计算能力和高质量的大数据,都是在2010年前后逐渐不成熟的。

国内的高科技企业,如百度,阿里,腾讯,华为,小米,搜狗,今日头条,都在近年纷纷建立人工智能研究团队,搭建类似谷歌大脑的大规模深度学习集群,而这些集群已经在诸多产品中发挥着深度学习的神奇效能。

AI的发现并不是被AlphaGo推向了风口,相反AlphaGo是人工智能的一个产物。的确,第三次人工智能正在复兴,这一次的规模会更大,范围会更广,语音识别就是一个活生生的例子,深度学习的加入,让语音识别的准确度,再上一个台阶。

《人工智能》读后感1000字篇5

夕阳是一首悲歌,旋律涌进了黛青色的云际。独倚轩窗,窗外细雨纷纷,我又不禁忆起了那个夜晚,那间屋内……

独自一人坐在窗前,看了看手中的题目,百思不得其解。我捂住脑袋,闭目深思起来。乘三?还是除以三?亦或是乘四?“唉,到底怎么做这道题!。”苦恼起来,便离开座位,在房内徘徊。偶然间,我发现柜子上有一个手机。“不如就用手机查一查吧。”脑中很快萌生出这样的想法。但我转念一想还是作罢。不过看见作业上的题目,我又陷入了困惑。题目做不出来,妈妈回来指不定又该说教我了,与其被动让妈妈来训,还不如自己查一查写上答案呢。查,还是不查呢?查吧,万一妈妈发现了呢?不过也不一定会这么赶巧被她发现吧?抱着侥幸心理,我慢慢走向柜子,掂起脚,左顾右盼,仿佛做贼一般,拿下手机,回到座位。将摄相头对准题目,只一听,“咔嚓”一声,就得出了答案。正当我心中窃喜之余,妈妈却早已来到我身后,一掌狠狠地拍在桌上,瞪着铜铃般眼睛注视着我。我连忙低下了头。空气仿佛都凝固了,只有窗外的风呼呼掠过,嘲笑着我。房间里的寂静没过多久,就被妈妈那河东狮吼给打破了。

一句又一句的话,如刀子般冲破了耳朵的最后一道防线,直入我的内心。一阵怒火也涌上心来,“题目不会,我又能怎么办?不查手机就只能空着啊!”语罢,便怒气冲冲进了卧室,甩上门,跳上床便抽泣起来。

半个小时,一小时……怒火也随之渐渐熄灭。

下了床,望见书架上那本《装在口袋里的爸爸――人工智能超人》,一幕幕情节映入眼帘:主人公杨歌在一次偶然的机会下认识了未来人工智能程序“Tiger”,受到了它的很多很多好处。但由于过度依赖,差点成为了它的傀儡。最终主人公在另一个人工智能程序的帮助下消灭了“Tiger”。转念一想,我不禁忘却了刚才的怒气。现在的科技的确发达,但我们也不能过度依赖于科技,否则福宝也会成为灾星,给我们带来灾难,所以自己的努力才是最重要的啊。

“你还有资格笑我,呵呵,也不想想自己!”脑海中传来的声音牵动了我的思绪。再回想起刚才的事,题目不会做,就该动脑筋,翻翻书上的例题,多方面思考,才能把这个题目真正弄懂,过度依赖于手机做题只会让我们的头脑越来越偷懒,越来越笨拙。

想到这,我的两腮渐红,鼻头一酸,冲出房门,站在妈妈面前,说道:“对不起,妈妈,我不应该向你发火,依赖手机做题是我的不对。”妈妈缓缓起身,嘴角微微上扬,露出了欣慰的笑容:“不要紧,明白了就好。”温暖的大手轻抚着我的脸庞,一股暖流涌上心头……

不知不觉间,皎洁的月光洒满大地,照亮了潺潺流水的小溪,照亮了远处群山,更照亮了我童年成长的路。

邀一轮明月,携一缕清风,带来万千思绪。是啊,祸福本相倚,只待细心辨。

《人工智能》读后感1000字篇6

时光易逝,白云苍狗,我们的世界无时无刻不在变化之中。科技是第一生产力,从第一次科技革命到第二次科技革命,再到现在的信息革命,科学技术曾给人类带来的无穷的变化。当谷歌人工智能“阿尔法围棋”人机围棋大战”中以4:1击败韩国著名棋手李世石九段后,人类不仅在感叹机器智能领域取得又一个里程碑式的胜利,也感叹一个新的时代―智能时代的到来。机器依靠大数据和智能算法“赢了”人类的大脑。"我认为任何一种对人类心灵的冲击都比不过一个发明家亲眼见证人造大脑变为现实。"-尼古拉特斯拉曾这么说。每一次科技革命,都会带来翻天覆地的变化,人工智能作为21世纪科技发展的最新成就和智能革命,深刻揭示了科技发展为人类社会带来的巨大影响,大数据与智能时代已经到来。

人工智能即AI,是计算机科学的一个分支,可以对人的意识、思维的信息过程进行模拟,与人类智能相似,人工智能的产品上到宇航太空,下到深海潜艇,大若巨人,小若米粒,已经在不断延伸到各行各业中,有些早已深入日常家庭生活中。本书是著名媒体人杨澜的第一部跨界作品,杨澜以媒体人的身份,深入人工智能的科技领域,带领团队走访美国、英国、日本、中国等国家和城市,用媒体人的人文视角记录了那些改变世界的人和事,探寻人工智能的发展历史和未来道路。

英国狄更斯曾说过“这是最好的时代,也是最坏的时代”。在全球智能时代下,AI改变着社会和经济,一方面改善人类生活,带来各行各业的便利,极大地提高社会资源的利用率,是社会精细化发展;另一方面机器抢到了人的饭碗,失业随之而来,创造了无隐私的社会,也带来伦理上的冲突等负面作用。杨澜在书中记录了走访著名学府和国际性知名大企业,领略人工智能在视觉识别、语音识别、机器人制造、自动驾驶等领域的最新科研成果,也理性地指出人工智能在社会、经济、伦理等方面的观察与思考。

本书由腾讯一流团队与工信部高端智库倾力创作。内容全面,条分缕析,循序渐进的将人工智能前世今生,以及未来的发展预测呈现给读者。不仅展现了当下人工智能产业全貌和最新进展,也对人工智能给个人、企业、社会带来的机遇与挑战进行了深入分析。在阅读时候,一边感叹科技和智能革命带来的翻天地覆,也在思考智能革命的何去何从。

任何事物都有两面性,科技也不例外。科技技术是一把双刃剑,我们是人类,我们希冀于自己的人脑创造更强大更智慧的机器来帮助我们解决难题,而不是用机器来固化我们的大脑。如今的人工智能应用广泛,机器翻译、图像识别、辅助诊断等等,方便快捷了我们的生活,也应该警惕技术带来的挑战,人工智能就像一面镜子,照见人类智能的神奇与伟大。我们提出,拓展发展新空间,实施网络强国战略,实施“互联网+”行动计划,发展分享经济,实施国家大数据战略,提升制造业数字化、网络化、智能化水平,培育一批网络化、智能化、精细化的现代产业新模式。大到国家上层建筑,小到企业和我们个人,希望在人工智能革命的时代下能够大有作为。

【《人工智能》读后感1000字】相关文章:

《人工智能》读后感

06-17

人工智能读后感

11-27

《人工智能》精选读后感

11-05

《人工智能》读后感范文

01-13

人工智能的未来读后感

11-04

《人工智能》读后感(精选20篇)

08-19

《人工智能》读后感(通用17篇)

08-19

人工智能读后感3篇

09-13

人工智能读后感(3篇)

09-13

人工智能导论学习心得合集-百度文库

人工智能学习心得

对人工智能的理解

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智

能是一门极富挑战性的科学,

从事这项工作的人必须懂得计算机知识,

心理学和

哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计

算机视觉等等,

总的说来,

人工智能研究的一个主要目标是使机器能够胜任一些

通常需要人类智能才能完成的复杂工作。

人工智能的定义可以分为两部分,

“人工”和“智能”

“人工”比较好理解,争议性也不大。有时我们会要考虑什

么是人力所能及制造的,

或者人自身的智能程度有没有高到可以创造人工智能的

地步,等等。但总的来说,

“人工系统”就是通常意义下的人工系统。关于什么

是“智能”

,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人

唯一了解的智能是人本身的智能,

这是普遍认同的观点。

但是我们对我们自身智

能的理解都非常有限,

对构成人的智能的必要元素也了解有限,

所以就很难定义

什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义

是这样的:

人工智能是人造的智能

,

是计算机科学、逻辑学、认知科学交叉形

成的一门科学,简称

AI

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:

50

年代人工智能的兴起和冷落

人工智能概念首次提出后,

相继出现了一批显著的成果,

如机器定理证明、

跳棋程序、通用问题

s

求解程序、

LISP

表处理语言等。但由于消解法推理能力

的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:

60

年代末到

70

年代,专家系统出现,使人工智能研究出现新高潮。

DENDRAL

化学质谱分析系统、

MYCIN

疾病诊断和治疗系统、

PROSPECTIOR

矿系统、

Hearsay-II

语音理解系统等专家系统的研究和开发,将人工智能引向

了实用化。并且,

1969

年成立了国际人工智能联合会议

第三阶段:

80

年代,随着第五代计算机的研制,人工智能得到了很大发展。

日本

1982

年开始了”第五代计算机研制计划”,

即”知识信息处理计算机

系统

KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,

但它的开展形成了一股研究人工智能的热潮。

第四阶段:

80

年代末,神经网络飞速发展。

1987

年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。

此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:

90

年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主

体研究转向基于网络环境下的分布式人工智能研究。

不仅研究基于同一目标的分

布式问题求解,

而且研究多个智能主体的多目标问题求解,

将人工智能更面向实

用。另外,由于

Hopfield

多层神经网络模型的提出,使人工神经网络研究与应

用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

对人工智能对世界的影响的感受及未来畅想

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,

不觉有了疑问:

现在的世界是否会如电影中一样呢?人工智能的神话是否会发生

人工智能心得体会(精选14篇)

人工智能心得体会(精选14篇)

从某件事情上得到收获以后,应该马上记录下来,写一篇心得体会,这样我们就可以提高对思维的训练。一起来学习心得体会是如何写的吧,下面是小编帮大家整理的人工智能心得体会,欢迎大家借鉴与参考,希望对大家有所帮助。

人工智能心得体会篇1

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自己成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇2

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自己、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay―ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

对人工智能对世界的影响的感受及未来畅想

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生

在当前社会中的呢?

在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

人工智能心得体会篇3

20xx年11月17日

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会篇4

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1、人工智能学科的诞生

12世纪末13世纪初,西班牙罗门・卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯・诺依曼提出存储程序的思想和建立通用电子数字计算机的冯・诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2、逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(niz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3、逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4、人工智能――当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5、结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会篇5

一、研究领域

在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

二、各领域国内外研究现状

近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。

1、分布式人工智能与艾真体

分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。

分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。

mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。

2、计算智能与进化计算

计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。

进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的`研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。

达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。

直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。

3、数据挖掘与知识发现

知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。

从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。

机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。

比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。

4、人工生命

人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。

人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。

人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。

人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。

三、学了人工智能课程的收获

(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。

(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。

(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。

(6)基本了解人工智能程序设计的语言和工具。

四、对人工智能研究的展望

对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。

人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。

当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。

五、对课程的建议

(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。

(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。

(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。

(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。

人工智能心得体会篇6

一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:

1、促进教育方式的变革,培养学生的综合能力

在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

3、培养学生的团队协作能力

机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。

4、扩大知识面,转换思维方式

在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识

二、中小学机器人教学活动的几点做法:

考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

人工智能心得体会篇7

人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会篇8

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。

人工智能心得体会篇9

未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

人工智能心得体会篇10

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

人工智能心得体会篇11

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。

在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自己成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇12

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会篇13

今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。

人工智能心得体会篇14

在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

【人工智能心得体会】相关文章:

人工智能心得体会

06-10

人工智能心得体会

11-03

《人工智能》心得体会

08-19

【热门】人工智能心得体会

11-26

【荐】人工智能心得体会

11-24

人工智能心得体会【热】

11-25

人工智能心得体会【热门】

11-25

【精】人工智能心得体会

11-25

人工智能心得体会【精】

11-26

【推荐】人工智能心得体会

11-21

【人工智能心得体会】人工智能心得体会精选八篇_范文118

人工智能视频公开课建设的体会

摘要:本文介绍我校入选教育部精品视频公开课“人工智能pk

人类智能”课程的建设情况,涉及本视频课程已具备的基�A条件、

课程讲授内容的选定、课程特色、课程建设体会与存在问题等,可

供借鉴。

关键词:精品课程;视频公开课;课程建设;人工智能

一、引言

中南大学的人工智能课程是国内高校最早开设的该课程之一。

19xx年清华大学出版社出版了我校蔡自兴和清华大学�v编著

的《人工智能及其应用》,成为国内率先出版的具有自主知识产权

的人工智能教材,为人工智能课程提供了一部好教材,对人工智能

在中国的传播和发展起到重大推动作用。

我校人工智能课程自开设以来已培养约30届学生,培养人数超过

3000人。授课对象包括计算机、自动化专业的本科生和电子信息类

等专业的研究生。20xx年,我们研发的“人工智能网络课程”被评

为优秀网络课程。20xx年和20xx年“人工智能”分别被评为首批

国家精品课程和全国双语教学示范课程。同时,课程的相关网络资

源和知识表示方法的课堂录像陆续上网,向全社会开放,成为学生

复习和自学的有力手段和特色环境。

近年来随着国外名校的视频公开课风靡网络,建设我国自己的视

频公开课已势在必行。在这种背景下,人工智能课程的等一批国家

精品视频公开课应运而生。我们的“人工智能pk人类智能”的视

频公开课入选国家精品视频公开课建设计划,已成为首批播出的课

程之一,受到公众欢迎与好评。

二、讲授内容选定

人工智能是一门前沿交叉学科,也是一门与人类生活息息相关和

公众颇感兴趣的科学。网络视频公开课是以大学生为服务主体,同

时面向社会大众,是免费开放的科学与文化素质教育的网络视频课

程与学术讲座。由于人工智能属于专业基�A课程,如何在有限的时

间内讲述一个完整的专题,避免艰深的专业知识,让大多数人都能

…………

余下全文

人工智能心得体会(精选多篇)-人人范文网

人工智能学习心得

今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。

我眼中的人工智能

人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能技术应用(智能终端应用方向)

培养目标:面向人工智能终端应用方向的企业,培养具备基于电子信息技术,通信技术,计算机技术、自动控制技术、智能系统方法、传感信息处理等技术,进行人工智能终端应用的高级技工人才,具有相应工程实施能力,具备在相应领域从事人工智能终端的安装、调试、维修、保养、维修、培训,以及人工智能系统的推广销售及系统运行管理工作,有一定的自我学习、自我发展能力、创新能力和良好的职业素养的高技能应用型人才。

主要课程:微机原理与接口技术、计算机网络技术、电工电子技术、传感器技术、C语言程序设计、Linux操作系统、单片机技术、嵌入式技术、通信原理、人工智能、云计算、人工智能技术应用、智能终端设备应用与维修、智能产品企业经营管理、综合项目设计等。

就业岗位:人工智能终端应用工程师、人工智能推广营销员、人工智能系统管理。未来已来,只是很多人不知道而已!

随着互联网、物联网、大数据的飞速发展,人工智能已不再是科幻电影中的情节,它已经来到我们真实

世界中!

从1950年现代计算之父阿兰·图灵首次提出一个问题“机器能否思考么?”到2016年谷歌人工智能阿尔法狗战胜人类围棋冠军,短短的六十多年人类信息技术经历了难以想象的发展速度!彻底颠覆了我们普通人的认知!当前,更多的人工智能与智能系统研究获得各种基金计划支持。同时,越来越多的企业纷纷响应国家政策号召,加入到人工智能发展的行列,无论是市场还是技术,中国已是当今世界人工智能研发领域的领头羊之一。人工智能作为万物互联时代最前沿的基础技术,将能够渗透至各行各业,并助力传统行业实现跨越式升级,实现全行业的重塑,成为掀起互联网颠覆性浪潮的新引擎。

白云信息工程系历经2年的市场及企业调研,率先开设人工智能技术应用专业!跳过那些不适合技校学生冗繁的基础理论,我们所有的专业课程直接学习人工智能产品设备的设计安装调试管理技术,专为技校学生量身定制,全程理实一体教学模式,达到进度与实用都兼顾的教学效果,做到零基础都能学得会。

白云信息工程系既有大规模的软件机房,还有多间训练动手能力及设计制作智能产品的硬件实训室,软硬件技术与管理课程都包括,专业课程与岗位需求相符务实,做到毕业即就业,与企业岗位需求无缝对接。

没有人能随随便便成功,白云信息工程系有第二课堂、课业训练项目;有各类专业协会、研发工作室、学生公司等组织,充分发挥同学们的各种能力与天赋,即充实了你的业余生活,也提高了个人能力素质,在校经过这样丰富多彩的为学习生活经历,毕业后才能凭专业背景做管理或创业。

汇聚有志者的地方!

人工智能专业是你的荣耀,毕业后事业有成,我们为你骄傲!

人工智能专业课程已备好!

电影《我,机器人》里面描述的那种正常的机器人,这种机器人没有自我意识,但有足够的智能和行动力可以完成所有所有人类需要完成的工作,甚至可以包括战争。同样,电影《终结者》也清楚的展示了机器人的魅力。2015年底的《超能陆战队》。“大白”属于医疗机器人。它可以通过扫描人体,就能迅速发现哪些地方需要治疗,并且立即就能给出治疗方案。“大白”和一般机器人不同的地方还在于它具备“共情”能力,可以感知并分析出主人的情绪起伏,除了身体上的疗愈,它与人类之间个性化的互动也是心灵治愈的灵药。“人人都想和大白来一次治愈的拥抱”,可以说,“大白”满足了人类对医疗人工智能的终极幻想——可靠、全能、快速、精准,甚至还有点幽默的私人医生。那我们今天就来谈谈在不久的将来与我们会有密切联系的——人工智能。

2016年3月9日中午12时,韩国九段棋手李世石与谷歌公司开发的软件“阿尔法围棋”在首尔四季酒店举行人机大战。双方一共进行5盘比赛。在记者会上李世石表示,他认为到目前为止还是人类比人工智能强。不过,在围棋人机大战首场比赛中,经过4个半小时的对弈,人工智能“阿尔法围棋”战胜了李世石。当韩国棋王李世石投子认输的那一刻,人类开始以另一种眼光看待这个人工智能程序,从不被看好到连胜两局,人们在惊愕之余不得不承认,人工智能已经发展到可以轻易超越人类的水平了。对于这场大赛,人们已经失去了最初的期待,反而是人工智能这个新“物种”吸引了大家的注意,这个看不见摸不着的电脑程序,就这样将人类最后的骄傲摧毁,这场人机大战让人工智能再次成为关注焦点。我们不得不可能会问,除了下棋之外,人工智能还会做些什么?

4月25日下午,李克强总理在成都菁蓉创客小镇,应邀与创业团队设计的羽毛球机器人“切磋”球技。这台机器人出自成都电科创品机器人科技有限公司,该公司创始人之一骆德渊接受本报记者采访时表示,这台机器人目前已经进入市场,骆德渊把这款机器人定义为休闲健身机器人,他透露,这台羽毛球机器人于2014年9月投入研发,它还曾获2015年亚太大学生机器人大赛冠军,打羽毛球的实力不输一般业余选手。

人工智能的本质(每一条的解释)

1相对于人的智能而言,正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化。

2人工智能本身并没有生命活性的成分,只能算是人工仿真的部分生命活动程序。所以人工智能并没有自我意识的成分。

3这是计算机和人脑两者都可以做到的。计算机的记忆过程是被动的执行指令,所能记住的东西仅仅是工作所需的程序和要处理的数据。所以计算机的记忆内容和记忆过程是可以被控制。

人工智能对经济的影响:

1专家系统效应

2推动计算机技术的发展

1.专家系统的效益

人工智能可以用比较经济的方法执行任务而不需要有经验的专家,可以极大地减少劳务开支和培养费用。由于软件易于复制,所以专家系统能够广泛传播专家知识和经验,推广应用数量有限的和昂贵的专业人员及其知识。(举例:股票图片自己理解阐述)(人工智能拥有强大的计算能力,将人工智能引入股市银行等代替人类做交易员。)

2.人工智能推动计算机技术发展

人工智能研究已经对计算机技术的各个方面产生并将继续产生较大影响。人工智能应用要求繁重的计算,促进了并行处理和专用集成片的开发。算法发生器和灵巧的数据结构获得应用,自动程序设计技术将开始对软件开发产生积极影响。所有这些在研究人工智能时开发出来的新技术,推动了计算机技术的发展,进而使计算机为人类创造更大的经济实惠。

人工智能对文化的影响:

改善人类知识,改善人类语言,改善文化生活

1.改善人类知识

在重新阐述我们的历史知识的过程中,哲学家、科学家和人工智能学家有机会努力解决知识的模糊性以及消除知识的不一致性。这种努力的结果,可能导致知识的某些改善,以便能够比较容易地推断出令人感兴趣的新的真理。(举例:谷歌的人工智能画展,自己组织语言)(不久前,谷歌在旧金山举行一场画展和拍卖会,展示电脑在人类的指导下创作的画作。此次展示的画作包括迷幻的海景、梵高风格的森林和以及城堡和狗组成的奇异景观。

谷歌最初开发这项技术是为了识别照片中的物体。)

2.改善人类语言

根据语言学的观点,语言是思维的表现和工具,思维规律可用语言学方法加以研究,但人的下意识和潜意识往往"只能意会,不可言传"。由于采用人工智能技术,综合应用语法、语义和形式知识表示方法,我们有可能在改善知识的自然语言表示的同时,把知识阐述为适用的人工智能形式。随着人工智能原理日益广泛传播,人们可能应用人工智能概念来描述他们生活中的日常状态和求解各种问题的过程。人工智能能够扩大人们交流知识的概念集合,为我们提供一定状况下可供选择的概念,描述我们所见所闻的方法以及描述我们的信念的新方法。

3.改善文化生活

人工智能技术为人类文化生活打开了许多新的窗口。比如图像处理技术必将对图形艺术、广告和社会教育部门产生深远的影响。比如现有的智力游戏机将发展为具有更高智能的文化娱乐手段。(举例:机器人陪人类休闲,自己组织语言。个人助手

人工智能个人助手,如果要诠释这个,看一遍电影《Her》就可以了,其中的人工智能操作系统萨曼莎不仅可以帮助主人公快速处理各种邮件、文件等工作,还能像朋友一样理解并与之交互。现实生活中,这样的个人助手也正在成为现实,如苹果的Siri、以及谷歌的GoogleNow,国内也有科大讯飞的灵犀、图灵的虫洞语音助手等,这些语音助手现在一般是存在于PC或手机之中,近年随着服务机器人的发展,它们开始有了新的载体。而机器人除了有语音功能外,还具备自主行动地能力。)

人工智能对社会的影响(主要是不好的影响)

1.思维方式与观念的变化

人工智能的发展会为人类带来很多便利,比如我们可以运用它做一些事。(事情举例)但是,人类会由于人工智能系统的不断完善而变得懒惰,失去对许多问题的思考与敏感度,变得过分的依赖智能机器,主动思维能力和计算能力也会明显下降。如,(举例1)一旦专家系统的用户开始相信系统(智能机器)的判断和决定,那么他们就可能不愿多动脑筋,变得懒惰,并失去对许多问题及其求解任务的责任感和敏感性。(举例2)那些过分依赖计算器的学生,他们的主动思维能力和计算能力也会明显下降。过分地依赖计算机的建议而不加分析地接受,将会使智能机器用户的认知能力下降,并增加误解。

2.社会结构变化

人工智能和智能机器能够代替人类从事各种劳动,但是另一方面发展又会引起新的社会问题。比如社会结构的变化。"人-机器"的社会结构,终将为"人-智能机器-机器"的社会结构所取代。智能机器人就是智能机器之一。现在和将来的很多本来是由人承担的工作将由机器人来担任,因此,人们将不得不学会与有智能的机器相处,并适应这种变化了的社会结构。

3.心理上的威胁

随着人工智能的继续发展,像大白这样的高科技机器人,它和一般机器人不同的地方还在于它具备“共情”能力,可以感知并分析出主人的情绪起伏,除了身体上的疗愈,它与人类之间个性化的互动也是心灵治愈的灵药。但是它也使社会成员感到心理上的威胁,或叫做精神威胁。人们一般认为,只有人类才具有感知精神,而且以此与机器相别。当机器人具备了学习、认知能力甚至产生情感后,人类还能否对其进行控制,是大家较为关心的问题,当人工智能超过人的自然智能,有可能会使得人类变成智能系统的奴隶。

4.技术失控的危险

迅速发展的人工智能如果用于应用于普通生活中,它可以大大方便人们的生活,但是如果应用于战场,使用人工智能控制的致命性武器,其后果将十分严重,它可以提高杀人机器的效率,同时承担的责任更少,还可能还会出现其它的一些困扰。

5.引起的法律问题

人工智能的应用技术可以代替了人的一些体力劳动,也代替了人的某些脑力劳动,有时甚至行使着本应由人担任的职能(比如IBM沃森人工智能系统。像医生一样思考和交流给出治疗方案

。它可以存储海量的信息,既有医学文献,也有不同患者的临床资料和病患医疗记录,并且具备认知、理解、推理和学习的能力,可以将这些信息全部“消化”、“吸收”,并且随着信息的更新实时升级,像一个真正的医生那样“思考”,对单个患者提出适合的治疗方案,也可以为临床医生的提问提供基于大量证据的答案,快速帮助医生做出最正确的决策,医生更多时间花在聆听患者意见和与患者进行互动上。“沃森”目前还没有进行真正意义上的商业化应用,但是已经在美国、加拿大的十几家医院落地进行内部测试。一些医疗应用也搭载了这一智能平台,面向恶性肿瘤、心理创伤等疾病领域的医患提供服务。)但是有些方面却容易引起法律问题。比如医疗诊断专家系统万一出现失误,导致医疗事故,怎么样来处理,开发专家系统者是否要负责任,使用专家系统者应负什么责任,等等。

明天可能实现的(可讲可不讲):中国研究人员在致力做出更复杂的人工智能,检验方式颇具中国特色——高考。科大讯飞公司董事长刘庆峰透露,他们正在研发“类人答题机器人”,目标是在3到5年之内让机器参加高考能考上“一本”。高考涉及学科多,除了客观题外还有大量的主观题,如果真能达成这个目标,又是人工智能一个里程碑。去年年底在北京举行的世界机器人大会上,有机器人分别展示了踢足球、打乒乓等方面的运动能力。但是很明显,它们还无法与人类选手相提并论,很大程度上因为判断对手或队友的比赛意图是一大瓶颈。不过,在RoboCup等机器人足球赛中,机器人的水平也在不断提高,该赛事的目标是,让机器人足球队在2050年能击败人类世界冠军球队。人工智能的马原思想

1.从意识的本质上看:

意识是物质世界长期发展的产物,是人脑的机能

意识活动作为人脑的特有机能,而人脑又是高度组织起来的中枢神经系统,其上千亿个神经元之间存在着网络化、层次化的相互连接,是目前已知的宇宙中最复杂、最协调自组织系统。而人工智能则是依靠机械、电子元件和线路组成的机械物理装臵,用软件等方法模拟人的思维活动,是一个无意识的、机械的、物理的运动过程。

2.从意识作用看:

意识活动具有目的性和计划性

人的意识具有自我选择的自由意志,行动目的明确,理解任务的意义、性质和后果。人的思维包括形象思维、直觉或灵感思维、逻辑思维等基本形式,具有目的性、容错性、并行性、连续性、模糊性、辩证性和自觉性等特征。而人工智能的机器思维方式却是离散的、精确的、机械的和不自觉的。人工智能的机械性表现在实际问题描述符号化、求解问题方式程序化、解决问题过程自动化,因而不可能有人类那样的能动创造力、丰富想象力;最后,在认识与实践中的地位不同。从整体上和全过程看,人脑和电脑的关系永远是主体和客体、主动者和被动者的关系,电脑必须接受人的指令才能工作,否则它只是一堆死物。是人首先把智慧赋予电脑,电脑又使人更富有智慧。

3.从人的社会性看:

人的本质属性在于它的社会性

人的意识蕴含着全部思想发展的历史一逻辑的结果。人脑不仅经历了漫长的物理化学进化,还经历了几百万年的社会进化,因而它同时受制于自然规律和社会规律。而人工智能是技术进化和机器进化的结果,其本质属性是自然性,机器在执行指令时并不探求任务本身的社会意义,也不会考虑社会责任和社会后果。智能机器的运行只遵守自然界的规律。(结束语)

所以,由此我们可以的出以下结论,人工智能诞生的初衷是作为人类工具的延长,其作用和发展从其诞生的那一天就已经确定,人工智能只能作为人类智能的附庸和补充,而不可能对人类智能构成挑战,更不可能取代人类智能。当然随着人类对人脑的功能会不断地进一步认识,人工智能也会不断的近似于人类智能。但即使人工智能再不断的进化和发展,计算机与社会性的人的大脑仍是无法比拟的,计算机仅是人脑的延伸而已,高度智能化的计算机再怎么发展也只是人类的工具,人工智能作为人类智能主体客体化的产物,其作用和功能仍将受到人类智能的制约与支配。这是我们组得出来的结论,并不代表所有人的观点。谢谢

第一章绪论

1、智能是由知识与智力组成。

知识是一切智能行为的基础,智力是获取知识并运用知识求解问题的能力。

Q;

2、把非Q并入到公式集F中,得到{F,非Q};

3、把{F,非Q}化为子句集S;

4、应用归结原理对S中的子句进行归结,并把每次归结得到的归结式都并入S中。

如此反复进行,若出现空子句,则终止归结,此时就证明了Q为真。

为推理机提供求解问题所需的知识。知识库管理系统负责对知识库中的知识进行组织、检索、维护等。推理机是专家系统的“思维”机构,是构成专家系统的核心部分。任务是模拟领域专家的思维过程,并执行对问题的求解。

2、智能的特征:具有感知能力;记忆与思维能力;具有学

习能力与自适应能力;具有行为能力。

3、人工智能:用人工的方法在智能计算机上实现的智能,

它是人类智能在计算机上实现的模拟。第五章不确定与非单调推理

1、不确定推理:就是从不确定性的初始证据出发,通过

运用不确定的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。

数据库用于存放用户提供的初始事实、问题描述以及系统运行过程中得到的工作存储器。数据库管理系统是用来对数据库进行管理。解释机构能够对自己的行为作出解

释,能跟踪并记录推理过程。

4、人工智能的三个阶段:孕育、形成、发展。

5、人工智能的最终目标是构建智能计算机。

近期目标

是在现有的电子数字计算机上实现人类智能的部分模拟,构造分别用于不同目的的智能系统。

2、不确定推理除了必须解决推力方向、推理方法、控制策略等基本问题外,一般还需要解决不确定性的表示与

量度、不确定性匹配算法及阈值的选择、组合证据不确定的算法、不确定性的传递算法、结论不确定性的合成等重

5、知识获取需要做的工作:抽取知识、知识的转换、知识的输入、知识的检测。

为何是“瓶颈”问题:由于

目前获取知识的手段还没有完全实现自动化,许多工作还要用手工方法完成。

6、人工智能的基本内容:机器感知、机器思维、机器

学习、机器行为、智能系统及智能计算机的构造技术。

6、知识的组织:当把获取的知识送入数据库时,立即面

临的问题就行如何物理的安排这些知识,并建立起逻辑上的联系,称这一工作为知识的组织。遵守的原则:选用的组织方式应使知识具有相对独立性、便于对知识的搜索、便于对知识进行维护及管理、便于内存与外存的交换、便于在知识库中同时存储有多种模式表示的知识、尽量节省存储空间。

7、人工智能的研究途径:以符号处理为核心的方法、

以网络连接为主的连接机制方法、系统集成。要问题。

3、不确定处理方法主要是沿着两条路线发展的:一条

是在推理一级扩展确定性推理,成为模型算法;另一条是在控制策略一级处理不确定性,成为控制方法。模型方法

8、人工智能的研究领域:专家系统、机器学习、模式

识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络等。

分为数值方法和非数值方法。数值方法包括概率方法、

主观Bayes方法、可信度方法、证据理论、模糊推理等;

9、人工智能的三个学派:符号、连接、行为主义。

非数值方法有发生率计算等。

7、知识的管理内容:知识库的重组、记录系统的运行

实例、记录系统的运行史、记录知识库的发展史、知识库的安全保护与保密。

第三章知识与知识表示

1、知识:把有关的信息关联在一起的所形成的信息结构。

第六章搜索策略

2、知识的特性:相对正确性、不确定性、可表示性与可

利用性。

3、知识表示方法有符号表示法和连接机制表示法。

主要有:一阶谓词逻辑、产生式、框架、语义网络、脚本、

过程、Petri网、面向对象表示法。

4、知识表示就是知识的符号化过程,把知识用计算机可

接受的符号并以某种结构形式表示出来。

5、选择知识表示方法时应考虑的问题:充分表示领域

知识,有利于对知识的利用,便于对知识的组织、维护与管理,便于理解和实现。

6、一阶谓词逻辑表示法适合于表示事物的状态、属性、

概念等事实性的知识,也可以用来表示事物间确定的因果关系。优点:自燃性、精确性、严密性、容易实现。局限:不能表示不确定的知识、组合爆炸、效率低。

7、产生式系统:把一组产生式放在一起,让他们互相配

合,协同作用,一个产生式生成的结论可以供另一个产生式作为已知事实使用,以求得问题的解决,这样的系统即是产生式系统。有规则库、综合数据库、控制系统组成。求解问题的一般步骤:

1、初始化综合数据库,把问题

的初始已知事实送入综合数据库。

2、若规则库中存在尚未使用过的规则,而且它的前提可与综合数据库中的已知事实匹配。

则转第3步;若不存在这样的事实转第5步。

3、执行当前选中的规则,并对该规则做上标记,把该规则执行后得到的结论送入综合数据库中。

如果该规则的结论部分指出的是某些操作,则执行这些操作。

4、检查综合数据库中是否已包含问题的解,若已包含,则终止问题的求解过程;

否则转第2步。

5、要求用户提这一步的关于问题的已知事实;

若能提供,则转第2步;否则终止问题的求解过程。

6、若规则库中不再有未使用过的规则,则终止问题的求解过程。

特点:自然性、模块性、有效性、清晰性。缺点:效率不高、不能表达具有结构性的知识。

8、框架表示法:框架系统中问题的求解主要是通过匹

配与填槽实现的。当要求解某个问题时,首先把这个问题用一个框架表示出来,然后通过与知识库中的已有的框架进行匹配,找出一个或几个可匹配的预选框架作为初步假设,并在此初步假设的引导下收集进一步的信息,最后用某种评价方法对预选框架进行评价,以便决定是否接受它。特点:结构性、继承性、自然性。不足:不善于表达过程性的知识。

9、语义网络系统问题的求解一般是通过匹配实现的,

主要过程:

1、根据待求解问题的要求构造一个网络片段,其中有些节电或弧的标识是空的,反应待求解的问题。

2、依次网络片段到知识库中去寻找可匹配的网络,以找出所需要的信息。

当然,这种匹配一般不是完全的,具有不确定性,因此需要解决不确定性匹配的问题。

3、当问题的语义网络片段与知识库中的某语义网络片段匹配时,则与询问处匹配的事实就是问题的解。

优点:结构性、联想性、自然性。缺点:非严格性、处理上的复杂性。

第四章经典逻辑推理

1、推理就是按照某种策略由已知判断推出另一种判断的思维过程。

包括两种判断:已知的判断和由已知判断推

出的新判断。

2、推理的控制策略:推力方向、搜索策略、冲突消解

策略、求解策略、限制策略。

3、正向推理描述算法:

1、将用户提供给的已知事实送

入数据库DB。

2、检查数据库中是否已经包含问题的解,若有,则求解结束,并成功推出;

否则执行下一步。

3、根据数据库中的已知事实,扫描知识库KB,检查KB中是否有可适用的知识,若有转4,否则转6。

4、把KB中的所有可适用的知识集KS。

5、若KS不空,则按某种冲突消解策略从中选出一条知识进行推理并将推出的新事实加入DB,然后转2;

若KS为空转6。

6、询问用户是否可进一步补充新的事实,若可补充,则将补充的新事实加入DB中,然后转3,否则表示求不出解,失败推出。

4、逆向推理描述算法:

1、提出要求证的目标(假设);

2、检查该目标是否已在数据库中,若在,则该目标成立,成功的推出推理或者对下一个假设目标进行论证;否则,转下一步;

3、判断该目标是否是证据,即它是否为应由用户证实的原始事实,若是,则询问用户;否则转下一步;

4、在知识库中找出所有能导出该目标的知识,形成适用知识集KS,然后转下一步;

5、从KS中选出一条知识,并将该知识的运用条件作为新的假设目标,然后转2。

5、用归结反演证明Q为真步骤:

1、否定Q,得到非

1、搜索分为盲目搜索和启发式搜索。

盲目搜索是按预定

的控制策略进行搜索,在搜索过程中获得的中间信息不用来改进控制策略。启发式搜索是在搜索中加入了与问题有关的启发性信息,用以指导搜索朝着最有希望的方向前进,加速问题的求解过程并找到最优解。

2、状态空间表示法使用“状态”和“算符”来表示问

题的一种方法。状态描述问题求解过程中不同时刻的状况。算符表示对状态的操作。

3、OPEN表用于存放刚生成的节点;CLOSED表用于存放

将要扩展或者已经扩展的节点。

4、广度优先搜索过程:

1、把初始节点S0放入OPEN

表。

2、如果OPEN表为空,则问题无解,退出。

3、把OPEN表的第一个节点(记为节点n)取出放入CLOSED表。

4、考察节点n是否为目标节点。

若是,则求得了问题的解,退出。

5、若节点n不可扩展,则转第2步。

6、扩展节点n,将其子节点放入OPEN表的尾部,并为每一个子节点都配置指向父节点的指针,然后转第2步。

5、深度优先搜索过程:与上一搜索的不同点就是要把

节点n的子节点放入到OPEN表的首部。

6、有界深度优先搜索过程:

1、把初始节点S0放入OPEN

表,置So的深度d(S0)=0。

2、如果OPEN表为空,则问题无解,退出。

3、把OPEN表的第一个节点(记为节点n)取出放入CLOSED表。

4、考察节点n是否为目标节点。

若是,则求得了问题的解,退出。

5、如果节点n的深度d(节点n)=dm,则转第2步。

6、若节点n不可扩展,则转第2步。

7、扩展节点n,将其子节点放入OPEN表的首部,并为其配置指向父节点的指针,然后转第2步。

7、与或树的广度优先搜索:

1、把初始节点S0放入OPEN

表。

2、把OPEN表的第一个节点(记为节点n)取出放入CLOSED表。

3、如果节点n可扩展,则做下列工作。

①扩展节点n,将其子节点放入OPEN表的尾部,并为每个子节点配置指向父节点的指针,以备标示过程使用。②考察这些子节点中有否终止节点。若有,则标示这些终止节点为可解节点,并应用可解标示过程对其父节点、祖父节点等先辈节点中的可解节点进行标示。如果初始节点S0也被标示为可解节点,就得到了解树,搜索成功,推出搜索过程;如果不能确定S0为可解节点,则从OPEN表中删去具有可解先辈的节点。③转第2步。

4、如果节点n不可扩展,则做下列工作:①标示节点n为不可解节点。

②应用不可解标示过程对节点n的先辈节点中不可解的节点进行标示。如果初始节点S0也被标示为不可解节点,则搜索失败,表明原始问题无解,推出搜索过程;如果不能确定S0为不可解节点,则从OPEN表中删去具有不可解先辈的节点。③转第2步。

8、α-β剪枝技术:是博弈树搜索中一种提高搜索效率

的方法。通过边生成边计算,从而剪去某些分枝的技术成为α-β剪枝技术。一般规律:

1、任何或节点x的α值如果不能降低其父节点的β值,则对节点x以下的分枝可停止搜索,并使x的倒推值为α

。这种剪枝技术成为β剪枝。

2、任何与节点x的β值如果不能升高其父节点的α值,则对节点x以下的分枝可停止搜索,并使x的倒推值为β。

这种剪枝技术成为α剪枝。

第七章专家系统

1、专家系统:就是一种在相关领域中具有专家水平解题

能力的智能程序系统,它能运用领域专家多年积累的经验与专门的知识,模拟人类专家的思维过程,求解需要专家才能解决的困难问题。

2、专家系统的特征:

1、具有专家水平的专门知识,

2、

能进行有效的推理,

3、具有获取知识的能力。

4、具有灵活性。

5、具有透明性。

6、具有交互性。

7、具有实用性。

8、具有一定的复杂性及难度。

3、专家系统的分类:按特性和处理问题分有解释型、

诊断型、预测型、设计型、规划型、控制型、监测型维修型、教育型、调试型。按体系结构分类分为集中式专家系统、分布式专家系统、神经网络专家系统、符号系统与神经网络结合的专家系统。

4、专家系统的一般结构:人机接口、知识获取机构、

知识库及其管理系统、数据库及其管理系统、推理机、解释机构。人机接口是专家系统与领域专家或知识工程师及一般用户间的界面,用于完成输入输出工作。知识获取

机构是把知识输入到知识库中,并负责维持知识的一致性

及完整性,建立起性能良好的知识库。知识库用于存储领

域内的原理性知识、专家的经验性知识以及有关的事实。

8、专家系统的建造原则:恰当地划定求解问题的领域、

获取完备的知识、知识库与推理机分离、选择设计合适的知识表示模式、推理应能模拟领域专家求解问题的思维过程、建立友好的交互环境、渐增式的开发策略。

第八章机器学习

1、机器学习:就是计算机能模拟人的学习行为,自动地

通过学习获取知识和技能,不断改善性能、实现自我完善。

2、学习系统:能够在一定程度上实现机器学习的系统。

应具有的条件和能力:具有适当的学习环境、具有一定

的学习能力、能应用学到的知识求解问题、能提高系统的性能。结构:环境、学习、知识库、执行与评价。

第九章模式识别

1、模式:对某些事物定量或结构的描述。

2、模式识别:研究一种自动技术,计算机通过运用这种

技术就可以自动地或者人尽可能少干预地把待识别模式归入到相应的模式类中去。一般过程:模式信息采集、预处理、特征或基元抽取、模式分类。分类:统计模式识别、结构模式识别、仿生模式识别。

人工智能

课程设计中期报告

题目:一字棋游戏班级:计算机技术2014级成员:樊祥锰(2014704101)

段绍鹏(2014704100)范程斌(2014704102)

指导老师:张云

目录

第一章项目建议书

1.1

立项目的1.2立项动机1.3项目实现方案1.4项目测试及验证方案1.5项目安排1.6参考文献

第二章前期工作总结

第一章项目建议书

1.1立项目的

学习和了解人工智能知识,并对极大极小搜索与α-β剪枝算法的学习和分析。把所学算法应用于一字棋游戏的设计中,让机器附有人的思路,实现人与机器的对决。

1.2立项动机

1.学习和了解人工智能。

2.学习极大极小搜索分析法。

3.学习α-β剪枝算法并在项目中对它进行实现。

4.用人工智能算法解决现实问题。

1.3项目实现方案

一字棋项目实现完全按照软件开发的一般步骤,并对它现实的需求分析进行了客观的设计,对一字棋游戏规则进行具体的描述。在代码设计阶段,又对输赢判断算法进行了设计与分析,本项目是基于windows平台,开发软件采用VC++6.0,采用MFC可视化界面,运用α-β剪枝算法实现机器的智能化对决。

1.4项目测试及验证方案

采用软件工程测试方法,对关键函数代码的测试与调试,对测试用例进行极端设置,观察估值函数是否符合自己设计的要求。运行项目并截图观察结果。

1.5项目安排

(1)时间进度:

第一周:小组成员收集资料,对人工智能知识的学习。

第二周:对极大极小搜索分析法、α-β剪枝算法的学习与研究。第三周:学习C++编程知识、软件工程知识。

第四周:学习软件开发过程,并对一字棋项目进行需求分析与设计,画出流程图。

第五周:对一字棋界面的设计,并编写代码。第六周:对人工智能算法的设计并编写代码。第七周:对算法的设计并进行项目的测试。第八周:写设计报告。(2)分工安排

1.由段绍鹏、樊祥锰进行需求分析。

2.大家合作对一字棋AI问题进行分析。3.由段绍鹏、范程斌进行代码编写。

4.由樊祥锰、范程斌进行软件测试及问题修改。

5.由范程斌进行撰写报告。

1.6参考文献

1、蔡自兴、徐光佑。

人工智能及其应用。清华大学出版社,1997

2、蔡瑞英、李长河。

人工智能。武汉理工大学出版社,2003

第二章前期工作总结

在任务的初期,我们选定好人工智能的一种可行算法,然后确定好小组分工,每个人负责各自的任务,负责收集和学习人工智能相关的书籍和C++编程方面的知识。对于传统的一字棋游戏,主要采用的算法有:估值函数、搜索算法和胜负判断等。由于极大极小分析算法,每走一步棋都要调用估值函数,要遍历整个棋盘。所以自身有它的不足,这样会增加系统开销和时间开销,所以本项目在极大极小算法的基础上与α-β剪枝算法相结合,减少了博弈树结点的搜索范围。在前期工作中,主要学习了极大极小分析算法和α-β剪枝算法,了解算法的思想和设计思路,并学习了可视化的MFC编程知识,对按钮、编辑框等控件进行了学习。在第四周,主要对一字棋游戏进行了需求分析与设计,在需求分析阶段,主要是根据传统一字棋游戏的不足,提出α-β剪枝搜索算法,并介绍我们的基本思路和对算法技术原理的分析,画出算法的流程图和整个系统的实现功能图。在主界面设计阶段,当时考虑的不是很全面,只是简单的添加了基本的功能,先实现整个框架结构的生成,但是在棋盘设计阶段遇到了很多问题,一是控件响应问题,鼠标可响应的界面范围。二是环境设备的编程问题,后来经过MFC书籍的学习,解决了问题。三是棋盘大小问题,考虑到博弈树的异常庞大,选择设计3*3的棋盘,并分析设计了数组存放8种胜算的布局。在算法代码的编辑阶段,也出现过编译不通过的问题,主要是指针的使用问题,少写头文件问题,控制结构问题等,但是通过大家的努力和收集资料,最终还是调试好了。

淮阴工学院

公选课论文

者:李燕学号:1091604210学

院:生命科学与化学工程学院

业:制药工程1092题

目:

浅淡现代仿真技术及应用

人工智能及其发展应用

摘要:人工智能是人类进入信息产业革命时代,达到认识和改造客观世界能力的高峰。文章从理论的角度介绍了人工智能的概念和发展沿革,并对现阶段人工智能研究领域的主要研究方向进行了介绍,最后分析了研究所取得的主要成果。

关键词:人工智能;专家系统;神经网络;模式识别

ApplicationandDevelopmentoftheArtificialIntelligenceAbstract:Afterthehuman'sentertheeraofInformationIndustryrevolution,theartificialintelligencereachesthepeakofhumansunderstandingandtransformingtheobjectiveworld.Thispaperintroducestheconceptanddevelopmentoftheartificialintelligencebasedonthetheory,andintroducesthemajorresearchdirectionsoftheartificialintelligenceatthepresentstage,andanalysesthemainresearchfindingsattheend.Keywords:artificialintelligence;expertsystem;neuralnetworks;patternrecognition人工智能作为研究机器智能和智能机器的一门综合性高技术学科,产生于20世纪50年代,它是一门涉及心理学、认知科学、思维科学、信息科学、系统科学和生物科学等多学科的综合型技术学科,目前已在知识处理、模式识别、自然语言处理、博弈、自动定理证明、自动程序设计、专家系统、知识库、智能机器人等多个领域取得举世瞩目的成果,并形成了多元化的发展方向。1人工智能概述

人工智能(ArtificialIntelligence,简称AI),作为计算机学科的一个重要分支,是由McCarthy于1956年在Dartmouth学会上

正式提出,在当前被人们称为世界三大尖端技术之一。美国斯坦福大学著名的人工智能研究中心尼尔逊(Nilson)教授这样定义人工智能:“人工智能是关于知识的学科——怎样表示知识以及怎样获得知识并使用知识的学科”,另一名著名的美国大学MIT的Winston教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能的工作”。除此之外,还有很多关于人工智能的定义,至今尚未统一,但这些说法均反映了人工智能学科的基本思想和基本内容,由此可以将人工智能概括为研究人类智能活动的规律,构造具有一定智能行为的人工系统。

2人工智能的发展

20世纪50年代到60年代初是人工智能发展的初级阶段。这一时期的研究主要集中在采用启发式思维和运用领域知识,编写了包括能够和证明平面几何定理和与国际象棋大师下棋的计算机程序。开创了具有真正意义的人工智能研究是1956年McCarthy决定把Dartmouth会议用人工智能来命名。在图灵(AlanTuring)所著的《计算机器与智能》中,讨论了人类智能机械化的可能性并提出了图灵机的理论模型,为现代计算机的出现奠定了理论基础;与此同时,该文中还提出了著名的图灵准则,现已成为人工智能研究领域中最重要的智能机标准。同一时期,WarrenMeCulloeli和WalterPitts发表了《神经活动内在概念的逻辑演算》,该文证明了一定类型的、可严格定义的神经网络,原则上是能够计算一定类型的逻辑函数的,开创了当前人工智能研究的两大类别:符号论和联结论。自1963年后,人们开始尝试使用自然语言通讯,这标志着人工智能的又一次飞跃,如何让计算机理解自然语言、自动回答问题、分析图像或图形等便成为AI研究所追求的重要目标,由此AI的研究进入了第二阶段。70年代,在对人类专家的科学推理进行了大量探索后,一批具有专家水平的程序系统相继问世。知识专家系统在全世界得到了迅速发展,它的应用范围延伸到了人类各个领域,并产生了巨大的经济效益。80年代,AI进入以知识为中心的发展的阶段,越来越多的人认识到知识在模拟智能中的重要性,围绕知识表示、推理、机器学习,以及结合问题领域知识的新认知模拟进行了更加深入的探索。

目前,人工智能技术正在向大型分布式人工智能及多专家协同系统、并行推理、多种专家系统开发工具,以及大型分布式人工智能开发环境和分布式环境下的多智能体协同系统等方向发展。

3.人工智能的实际应用

3.1

机器人在教育界的应用3.1.1模拟教学

根据教材的安排,对某些需要解释的现象进行机器人模拟演示,让学生认真观察,从中发现一定的规律,使学生加深对规律性的认识和理解。如数学教学中的抛物线轨迹演示,物理教学中的阿基米德定理演示等,都能够利用直观的演示,揭示其中的规律,使学生加深对相关知识的理解。3.1.2人机交互的辅导方式

利用机器人辅导学生学习,可以通过人机交互,为学生提供量身定制的辅导模式,使学生的个性得到充分发展。采用微型机器人与学生的交互辅导,可利用微型机器人其体积小、重量轻,便于携带等优点,随时随地进行学习,随时为学生解决问题,提供学习指导。利用家庭机器人与学生的交互辅导,承担家庭教师的职责,有利于学生问题的适时解决,也有利于学生的学习得到及时的巩固。通过软件机器人与学生的交互辅导,可以对学生的学习情况进行分析,为学生制定专门的指导计划,提高学生的学习质量。3.1.3仿真训练

在教学中,教师可以利用机器人,将相关内容通过机器人的演示展现给学生,减轻教师的负担,并能够通过规则的动作,使教学更为规范。例如,用机器人示范体育高难动作,可以将动作分解、定格、重复播放等,从多方位展示动作,使学生能够充分掌握动作的规范,比教师的示范更为科学,也更为有效。3.1.4机器人远程教育

通过机器人,可以通过对学生的特征数据分析,建立学生模型库,根据学生的个性,同时对多名远程教育的学生实施个性化教学和辅导,提高远程教育的效率,实现远程教育的智能化。3.1.5激发学生的学习兴趣

机器人为学生创设富有情趣的教学环境,根据教学任务,采用与学习相关的游戏,调动学生的学习积极性,使学生在尽可能短时间内,掌握需要了解的知识点,提高学习效率。3.2数据挖掘技术的实际应用

数据挖掘技术的应用领域较为广泛,在商业领域、金融业、工业生产、网络应用等其它方面都被很好的使用,使人工智能得到逐步的发展壮大。

3.3

人工智能在检测系统的应用

人工智能在检测领域的应用非常广泛,如流水线的监控、智能故障诊断、专家技术系统等,现对网络入侵的智能检测系统加以简要说明。

3.3.1

网络入侵专家检测系统

该系统的智能化程度高,用户不用干预专家系统的推理。然而,其系统信息是建立在专家知识的基础上,必然受专家认知网络攻击模式的限制。该系统的构建基于以下几点:首先,采用安全入侵规则的描述方式,如判断树描述、图形描述等。其次,通过合理推理,参照专家库的规则,判断网络安全状况,检测是否有入侵行为发生。最后,更新专家库,调整专家规则,结合神经网络技术,利用神经网络技术的敏感性与快速反应能力,不断增强系统的自适应功能,提高系统检测能力。

3.3.2

入侵统计智能检测系统

该系统主要对异常的安全问题进行检测。它通过建立正常行为模型,对照进行网络入侵检测,检测出正常行为有较大偏离,则视为异常。首先,确立门限值,统计某一事件在特定时间出现的频率,检测是否超出门限值,判断系统是否异常。其次,设定事件度量均值、度量标准偏差的置信区间,统计系统的两个参数值,判断系统是否偏离区间,检测系统异常与否。最后,根据事件的矩阵数据,对事件转移的概率进行统计分析,结果小则预示存在异常。

4结束语

人工智能的诞生与发展是20世纪最伟大的科学成就之一,也是新世纪引领未来发展的主导学科之一。人工智能相关领域的研究成果已被广泛地应用于国民生活、工业生产、国防建设等各个领域。在信息网络和知识经济时代,人工智能技术正受到越来越广泛的重视,必将为推动科技进步和产业的发展发挥更大的作用。

参考文献:

[1]贾同兴.人工智能与情报检索[M].北京:北京图书馆出版社,1997.15-103.[2]胡勤.人工智能概述[J].电脑知识与技术,2010,(13):3507-3509.[3]许万增,王行刚等.人工智能对人类社会的影响[M].北京:科学出版社,1996:21-73.[4]朱福喜,汤怡群等.人工智能原理[M].武昌:武汉大学出版社,2002.87-91.[5]邢传鼎,杨家明等.人工智能原理及应用[M].上海:东华大学出版社,2005.65-72.[6]张妮等.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.[7]亓慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008,(05):33.[8]蔡自兴,徐光.人工智能及其应用[M].北京:清华大学出版社,2003.51-93.[9]王鸿斌,张立毅等.人工神经网络理论及其应用[J].山西电子技术,

1、智能是什么?

形成和掌握含义的能力;全面考虑问题的能力和思维的效率;先天的、综合的和认识的能力;善于判断、理解和推理,运用知识解决问题;适当地行动、理智地思考、有效地适应环境的总体能力;人工智能的本质:试图使计算机具有人类在处理问题时需要的智能。

2、人工智能定义

定义1人工智能(智能机器):能够在各类环境中自主地或交互地执行各种拟人任务的机器。

定义2人工智能(学科):人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。

定义3人工智能(能力):人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为。

定义4人工智能是一种使计算机能够思维,使机器具有智力的激动人心的新尝试。定义5人工智能是那些与人的思维、决策、问题求解和学习等有关活动的自动化。人工智能定义(理性思维)

定义6人工智能是用计算模型研究智力行为。

定义7人工智能是研究那些使理解、推理和行为成为可能的计算。

定义8人工智能是一种能够执行需要人的智能的创造性机器的技术。

定义9人工智能研究如何使计算机做事让人过得更好。

人工智能定义(理性行为)

定义10人工智能是一门通过计算过程力图理解和模仿智能行为的学科。

定义11人工智能是计算机科学中与智能行为的自动化有关的一个分支。

3、人工智能的三大学派及其认知观:

(1)符号主义:又称为逻辑主义或计算机学派,其原理主要为物理符号系统假设和有限合理性原理。(2)连接主义:又称为仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作型控制系统。认为人工智能起源于控制论。控制论研究动物和机器内部的控制与通信的一般规律,着重于研究过程中的数学关系。

4、人工智能的研究目标

近期目标:制造智能计算机代替人类的部分智力劳动

远期目标:揭示人类智能的根本机理,用智能机器仿真和拓展人类智能

5、人类智能与人工智能的关系:人类智能主要表现在人类认知活动中,认知活动可分为三个层次

最高层思维策略;中间层初级信息处理;最低层生理过程

6、人类的认知行为具有不同的层次

认知生理学:研究认知行为的生理过程,主要研究人的神经系统的活动,是认知科学研究的底层。

认知心理学:研究认知行为的心理活动,主要研究人的思维策略,是认知科学研究的顶层。

认知信息学:研究人的认知行为在人体内的初级信息处理,主要研究人的认知行为如何通过初级信息自然处理,由生理活动变为心理活动及其逆过程,即由心理活动变为生理行为。这是认知活动的中间层,承上启下。

7、符号处理系统的六种基本功能

信息处理系统又叫符号操作系统或物理符号系统。所谓符号就是模式。

一个完善的符号系统应具有下列6种基本功能:

(1)输入符号;(2)输出符号;(3)存储符号;(4)复制符号;(5)建立符号结构:通过找出各符号间的关系,在符号系统中形成符号结构;(6)条件性迁移:根据已有符号,继续完成活动过程。

8、图灵测试:机器具有智能的实验

实验有测试者A,被测试人B,被测试机器C组成;测试者A与被测试人B和被测试机器C不可见,测试者A与B或C使用计算机相连;测试者A向被测试B和被测试C提出相同的智能性问题,但不能询问物理特征,B和C在回答问题时,应尽量让A相信自己是人,A区分机器和人。

实验结果表明,通过变换A和B,A区分出人和机器的概率小于50%,认为该机器具有了智能

9、模式识别:人工智能所研究的模式识别是指用计算机代替人类或帮助人类感知模式,是对人类感知外界功能的模拟,研究的是计算机模式识别系统,也就是使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。

模式识别采用方法:统计模式;句法模式;神经网络;模板匹配

10、人工智能的主要研究范围和应用领域:

(1)专家系统(2)计算智能(3)机器学习(4)自然语言处理(5)模式识别(6)分布式人工智能(7)数据挖掘(8)机器视觉(9)机器人学(10)智能检索(11)智能控制(12)智能调度与指挥(13)

人工生命(14)人工神经网络(15)问题解决(16)机器证明

11、请把“房间”用框架表示出来

例4.5下面是关于房间的框架:框架名:墙数x1:缺省:x1=4条件:x1>0窗数x2:缺省:x2=2条件:x2≥0门数x3:缺省:x3=1条件:x3>0

前墙:后墙:左墙:右墙:天花板:地板:门:窗:

条件:w1+w2+w3+w4=x2d1+d2+d3+d4=x3

类型:(,,,,,,…)

12、语义网络的概念:语义网络是由节点和边组成的一种有向图。

其中节点表示事物、对象、概念、行为、性质、状态等;有向边表示节点之间的某种联系或关系。

13、语义网络分为七种类型:

(1)命题语义网(包括分块联想网络);(2)数据语义网:以数据为中心的语义网络;(3)语言语义网:用于自然语言的分析和理解;(4)结构语义网:描述客观事物的结构,常见于模式识别和机器学习等领域;(5)分类语义网:描述抽象概念及其层次;(6)推理语义网:是一种命题网,但它已在某种程度上规范化,更适于推理;(7)框架语义网:与框架相结合的语义网。

14、语义网的表达能力

(1)实例关系:实例关系表示类与其实例(个体)之间的关系。这是最常见的一种语义关系。例如,“小华是一个大学生”。其中,关系“是一个”一般标识为“is-a”,或ISA。(2)分类关系:分类关系是指事物间的类属关系。鸟是鸵鸟的上层概念节点,其属性是“有羽毛”、“会飞”,但鸵鸟的属性只是继承了“有羽毛”这一属性,而把鸟的“会飞”变异为“不会飞”。其中,关系“是一种”一般标识为“akindof”或AKO。

(3)组装关系:如果下层概念是上层概念的一个方面或者一部分,则称它们的关系是组装关系。其中,关系“一部分”一般标识为“apartof”。

(4)属性关系:属性关系表示对象的属性及其属性值。

(5)集合与成员关系:意思是“是……的成员”,它表示成员(或元素)与集合之间的关系。例如,“张三是计算机学会会员”。其中,关系“是成员”一般标识为“a-member-of”。(6)逻辑关系:

(7)方位关系:在描述一个事物时,经常需要指出它发生的时间、位置,或者指出它的组成、形状等等,此时可用相应的方位关系语义网络表示。(8)所属关系:所属关系表示“具有”的意思。例如“狗有尾巴”可表示为图5―10。

15、语义网络也能表示用谓词公式表示的形式语言语句。

例如:

(1)x((student(x)∧read(x,三国演义))即“某个学生读过《三国演义》”,其语义网络表示为图5―12。

16、语义网络的推断主要包括网络匹配、继承推理和网络演绎三个方面的问题

17、语义网络表示法的特点

结构性:语义网络表示法是一种结构化的知识表示方法,它将事物的属性及事物之间的各种语义关系表达出来。

自然性:语义网络实际上是一种带有标示的有向图,符合人们的思维习惯。

自索引性:语义网络表示方式明确,通过与某一节点连接的弧可以很容易地找出该节点有关的信息,不必查找整个知识库。

联想性:语义网络作为人类联想记忆模型提出来,着重强调事物之间的语义关系。缺点

非严格性:以一个给定的语义网络的含义来于处理程序对其所进行的解释,通过语义网络所实现的推理不能确保其正确。复杂性:语义网络表示知识的手段是可选的,这给知识表示带来了灵活性;但也带来了表示形式的不统一,增加了处理的复杂性。

18、面向对象技术中的核心概念:

对象和类。

19、基于知识的智能体的核心部件是知识库,当这些知识以逻辑形式表示并进行相应的推理时,就是逻辑智能体

采用命题和谓词演算进行推理的系统是一种典型的逻辑智能体

20、逻辑的分类

a:按照推理的逻辑基础

演绎推理:演绎推理是从全称判断推出特称判断或单称判断的过程,即从一般到个别的推理。演绎推理最常见的形式是三段论法。三段论由三个判断组成,其中两个判断是前提,分别称为大前提和小前提,另一个判断为结论。例如:(1)大学生都要学习计算机。(2)小明是大学生。(3)小明要学习计算机。b:按照推理的逻辑基础

归纳推理:归纳推理是从足够多的实例中归纳出一般性结论的推理过程,是一种从个别到一般的推理过程。常用的方法有枚举法和类比法。枚举法

A1具有f;A2具有f;A3具有f;……;An具有f

A1,A2,A3…,An都是A类中的事物,且都具有f特征

结论:A具有f特征类比法

A具有特征a,b,c,d,e;B具有特征a,b,c,d,结论:B具有特征e

在两个或两类事物的许多属性都相同的基础上,推出它们在其它属性也相同c:按照推理的逻辑基础

默认推理:默认推理是在知识不完全的情况下假设某些条件已经具备所进行的推理。由于这类推理允许默认某些条件是成立的,这就避免了需要知道全部事实才能进行推理的要求,使得在知识不完全的情况下也能进行推理。在默认推理过程中,如果某一时刻发现原先的默认不正确,则要撤销所做的默认以及由此默认推出的所有结论。d:按照所用知识的确定性:

确定性推理:如果在推理过程中所用的知识都是精确的,推理的结论或者为真,或者为假,就称为确定性推理。

不确定推理:在人类知识中,有相当一部分属于人的主观判断,是不精确的。由这些知识归纳出来的推理规则是不确定的。基于这种不确定性的推理规则进行推理,形成的结论也是不确定的,这种推理称为不确定推理。e:按照推理过程的单调性

单调推理:在推理过程中随着推理的向前推进及新知识的加入,推出的结论呈单调增加的趋势,并且越来越接近最终目标。一个演绎推理的逻辑系统有一个无矛盾的公理系统,新加入的结论必须与公理系统兼容,因此新的结论与已有的知识不发生矛盾,结论是越来越多,所以演绎推理是单调推理。

非单调推理:在推理过程中随着推理的向前推进及新知识的加入,不仅没有加强已推理出的结论,反而要否定它,使得推理退回前面的某一步,重新开始。一般非单调推理是在知识不完全的情况下进行的,由于知识不完全,为使推理进行下去,就要先做某些假设,并在此假设下进行推理。当新知识的加入发现原先的假设不正确时,就要推翻该假设及其一切结论,应用新知识进行推理。由于情况不断变化,所以推理过程往往是非单调的。

f:按照推理中是否用到启发性知识

启发式推理:在推理过程中,运用与问题有关的启发性知识,即解决问题的策略、技巧和经验,以加快推理过程,提高搜索效率。非启发性推理:在推理过程中,不运用启发性知识,按照一般的控制逻辑进行推理。这种推理缺乏对求解问题的针对性,所以推理效率低,容易出现“组合爆炸”问题。

21、命题—能够判断真假的陈述句

判断陈述句的标准:(1)真值唯一;(2)TorF;(3)可用二进制表示

22、合式公式:

单个常量或者变量的命题构成合式公式;联结词联结的合式公式的组合也是合式公式合式公式的有限次组合称为命题公式

命题公式:有限次合式公式组合的形式化描述,以大写字母标识。

23、基本联结(连接)符号

~非,否定,﹁;∧与,合取,AND的首字;∨或,析取,or;蕴含,式A:ab表示,如果a为真,则b为真;↔等价

24、联结符号的优先级

~;∧;∨;→;↔

25、将命题从语言表述转换为命题公式

1、3不是偶数

令:p表示“3是偶数”,~p

2、教室里有30名男生和10名女生

令:p表示“教室里有30名男生”,q表示“教室里有10名女生”,则p∧q

3、如果天下雨,出门带伞

令p表示“天下雨”,q表示“出门带伞”,则p→q

4、只要不下雨,我就骑自行车上班

令p表示“天下雨”,q表示“骑自行车上班”,则~p→q

5、只有不下雨,我才骑自行车上班

令p表示“天下雨”,q表示“骑自行车上班”,则q→~p

26、练习:扫雷游戏

设Xi,j表示方格[i,j]中有一个地雷。

写出方格[1,1]周围恰好有2颗地雷的命题公

28、等值逻辑运算

逻辑等值,等号连接的命题公式等价交换率:A∧BB∧A;A∨BB∨A;结合率:(A∧B)∧CA∧(B∧C);(A∨B)∨CA∨(B∨C);

*分配率:A∨(B∧C)(A∨B)∧(A∨C);A∧(B∨C)(A∧B)∨(A∧C);双重否定律:~~AA;等幂率:AA∧A;AA∨A;*摩根律:~(A∨B)~A∧~B;~(A∧B)~A∨~B;

吸收率:A∨(A∧B)A;A∧(A∨B)A;同一率:A∨0A;A∧1A;零率:A∨11;A∧00;排中律:A∨~A1;矛盾律:A∧~A0*蕴含等值式:A→B~A∨B;*等价等值式:A↔B(A→B)∧(B→A);假言易位式:A→B~B→~A;等价否定等值式:A↔B~A↔~B;

归谬论:(A→B)∧(A→~B)~A;

29、任意命题公式都存在等值的析取范式和合取范式

30、合取范式与析取范式

简单析取式:有限个命题变元或其否定,析取联结符:p∨q;~p∨q;p;q

析取范式:有限个简单合取式,析取:p∨(p∧q)∨(~p∧q)

简单合取式:有限个命题变元或其否定,合取:p∧q;~p∧q;p;q合取范式:有限个简单析取式,合取:p∧(p∨q)∧(~p∨q)

31、例计算(p

∧(q→r))→s的合取范式

(p∧(~q∨r))→s;蕴含等值式~(p∧(~q∨r))∨s;蕴含等值式~p∨~(~q∨r)∨s;摩根律~p∨(~~q∧~r)∨s;摩根律~p∨(q∧~r)∨s;双重否定律(~p∨s)∨(q∧~r);交换律

(~p∨s∨q)∧(~p∨s∨~r);分配律

32、计算

((p∨q)→r)→p的合取范式(~(p∨q)∨r)→p;蕴含等值式~(~(p∨q)∨r)∨p;蕴含等值式(~~(p∨q)∧~r)∨p;摩根律((p∨q)∧~r)∨p;双重否定律(p∨q∨p)∧(~r∨p);分配律(p∨q)∧(~r∨p);等幂律

33、常用推理定律:

附加:A=>(A∨B)简化:(A∧B)=>A

假言推理:((A→B)∧A)=>B拒取式:((A→B)∧~B)=>~A析取三段论:((A∨B)∧~A)=>B

假言三段论:((A→B)∧(B→C))=>(A→C)

等价三段论:((AB)∧(BC))=>(AC)

构造型二难:(A→B)∧(C→D)∧(A∨C)=>(B∨D)

34、如果今天下雨,则要带雨伞或雨衣。

如果走路上班;则不带雨衣。今天下雨,走路上班,证明要带伞。

解:p:今天下雨;q:带雨伞;r:带雨衣;s:走路上班

前提:p→(q∨r);s→~r;p;s求证:q

证明:

1、p→(q∨

r),p前提引入:

2、((p→(q∨

r))∧p)=>q∨r假言推理:

3、s

→~r,s前提引入:

4、((s

→~r)∧s)=>~r假言推理:

5、((q∨

r)∧~r)=>q析取三段论:

35、例:证明

G是F的逻辑结论F1:P→WF2:~WG:~P

分析:已知条件为:(P→W)(~W)结论为:~P;则,逆否命题为:(P→W)∧(~W)

36、例:

p∧(p∨q)∧(~p∨q)子句集为{p,p∨q,~p∨q}

38、例2:用命题逻辑归结原理证明:“人都是妈生的,张飞是人,所以张飞是妈生的”

p:人都是妈生的q:张飞是人r:张飞是妈生的

(p∧q)→r;p∧q∧~r

39、例:现在课堂上的所有学生都在上人工智能课

命题逻辑

s1:张三在上人工智能课s2:李四在上人工智能课s3:王五在上人工智能课………

40、命题是一个陈述句,它一般可分成主语和谓语两部分。

有时还需要用到量词。主语:指独立存在的客体,可以是具体事物或抽象概念,也称为个体

谓词:描述个体词性质或个体之间关系的词个体域:表示个体变量的取值范围,常用D表示

常量:表示具体性质或关系的个体或者谓词变量:表示抽象或泛指的个体或者谓词。量词:表示数量的词。

任意量词∀:表示“任意”,“所有”,也称为全称量词

存在量词∃:表示“存在”

41、例:“关羽是人”,“张飞是人”

这是两个不同的命题,其主语(个体)不同但是谓词是相同的,“是人”

把谓语部分抽出来,假设Human(x)表示x是人

这两个命题都可以用这个谓词来描述Human(guanyu);Human(zhangfei)其中x属于个体变量,guanyu和zhangfei属于个体常量

42、例:

1、所有的人都是要死的

2、有的人能够活到100岁

P(x)表示x是要死的,Q(x)表示x活到100岁

个体域D为人类集合

个体域D为总个体域集合引入特殊谓词R(x)表示x是人

43、例:我是计算机系的学生

1、确定并说明谓词:

方法一:Student(x,y)表示X是Y系的学生

2、个体域:X:学生的集合,y:系的集合

Student(I,computer)

方法二:Computer(x)表示X是计算机系的学生

Computer(I)

注意:必须对谓词进行说明P(I,computer)

48、对于

,x称为指导变量

A称为相应量词的辖域∃x(A(x))x在辖域A中的出现称为约束出现

x以外的变量在辖域A中的出现称为自由出现∃x(A(x,y))

49、例:人都是妈生的,张飞是人,张飞是妈生的

定义谓词:

Mum(x)表示x是妈生的Human(x)表示x是人

前提:x(Human(x)→Mum(x)),Human(ZF)

结论:Mum(ZF)写出否命题:

50、人工智能本质:试图使计算机具有人类在处理问题时需要的智能。

51、人工智能的发展简史:

第一阶段:1921通用计算机系统组成输入设备,存储器,运算器,控制器和输出设备;1937图灵计算机模型;1946研制出第一台计算机ENIAC;1956提出人工智能术语人类历史上第一次人工智能研讨会在美国的达特茅斯大学举行,标志着人工智能学科的诞生。第二阶段:1956逻辑理论机该系统是第一个处理符号的计算机程序,是机器证明数学定理的最早尝试,该系统是第一个实用的人工智能程序,象征着人工智能研究的真正开端;1960通用问题求解程序系统解决不定积分,三角函数等不同问题。从此,自动定理证明成为人工智能研究的基本课题之一。第三阶段:1965第一个专家系统DENRAL该系统有非常丰富的高质量化学知识,它解决问题的能力达到同专业化学家水平,该系统的问世,标志着人工智能开始向实用化阶段迈进,同时也标志着专家系统的正式诞生;1972开始研制医疗MYCIN系统;20世纪60年代自动定理证明王浩,鲁滨逊,吴文俊,曾宪昌等人第四阶段:20世纪80年代研制5代计算机,即知识信息处理计算机系统;1987神经网络国际会议,神经网络学科诞生,随后迅速发展起来。第五阶段:单个智能主体à分布式人工智能多Agent系统,人工思维模型,知识系统,遗传与进化计算,人工智能应用近十多年来,机器学习、计算智能、人工神经网络等和行为主义的研究深入开展,形成高潮。同时,不同人工智能学派间的争论也非常热烈。这些都推动人工智能研究的进一步发展。

52、人工智能的理论基础:知识表示、知识的内涵、谓词表示、产生式、语义网络、框架等表示法;逻辑推理方法、命题逻辑、谓词逻辑、置换与合

一、机器证明方法;

搜索技术、状态空间法、盲目搜索与启发式搜索。

人工智能

在影片的描述中,未来世界由于环境问题导致人类大量使用机器人,从而避免粮食和资源的消耗。人们制造了各式各样的机器人来满足人类的各种需求,甚至机器人情人也应运而生。新泽西的拟真电子公司并不满足于已经研发出的拟真机器人,研发出了会爱的机器人——机器人小孩戴维。影片围绕戴维和他的家庭由此产生了一系列情感、道德和伦理思考。亨利的孩子马丁患病成了植物人。亨利将机器人小孩戴维送给妻子梦妮卡,希望妻子能够走出伤痛。梦妮卡开始时无法接受戴维,在发觉戴维其实和人类小孩几乎没有什么区别以及戴维对她的依赖后,也渐渐地释放出自己的母爱。好景不长,梦妮卡的孩子马丁竟然奇迹般的战胜了病魔,最终康复了。苏醒后的马丁发现自己不再是母亲梦妮卡对马丁的母爱后,开始对戴维使用了一些小孩子的伎俩,希望使得梦妮卡不再爱马丁。毕竟戴维在生理结构上并不是人类的血肉之躯,人们始终是无法接受他的。在一些巧合的作用下,戴维和马丁掉入了泳池中,使得马丁差点溺死。梦妮卡决定不要戴维,但又不忍戴维就此销毁,于是将戴维抛弃。

戴维被抛弃之后经历了种种危险,机器人屠宰场的追捕、和机器人情人乔一起翻越山海、、、最终到达了自己的出生地。他的研发者告诉他自己不过是最新的一代机器人之后,戴维自沉在已经成为失落之城——曼哈顿的海底。

影片并未就此结束。在两千年后,人类已经灭绝,当外星人发现戴维时,戴维已经成为他们眼中的人类智慧结晶。外星人答应戴维利用梦妮卡的头发来复活她,但梦妮卡只能复活一天。戴维和梦妮卡度过了美丽的一天,特别是当戴维和梦妮卡双双入睡时,我想真人和机器人已经不分彼此、、、

人工智能观后感

天的电影艺术赏析,老师放了一部科幻影片《人工智能》。起初,以为这只是斯氏影片《E.T.外星人》的姊妹篇,事实上,《人工智能》超越了好莱坞电影的教条与俗套,设置巧妙,情节丰满,用现实的笔触为我们制造出一面魔镜,照射出每个人内心的骚动、恐惧、渴求和憧憬。

为了更深入的了解这部影片,我特意到网上查询了相关资料,也正因如此,我看到了那张让我久久不能忘却的海报,特别是上面的那句宣传语:Davidis11yearsold.Heweighs60pounds.Heis4feet,6inchestall.Hehasbrownhair.Hisloveisreal.Butheisnot.正是这句话,使我脑海中再次溢满那一幕幕让我泪流满面的画面。在《人工智能》中,主人公是个名叫大卫的机器小孩,目光纯净、淡定。他的出生本身就带着巨大的争议。他的到来,被设定是爱,爱的程序启动的一刹那,关于影片主题的争议也像潘多拉的盒子被打开,再也无法收缩成一个贺卡词那么精致的答案。

大卫,一个被爱填充的机器小孩,无时无刻不在渴望得到妈妈的爱,然而现实中,妈妈却离他而去,他和泰迪熊终于被抛弃在森林深处,他哭泣哀求,像一个真正的男孩令人动容。但他信念不灭,他想:“等我变成了真正的小男孩,妈妈就会带我回家了”,好在有梦。看到这个情节时,我突然无法抑制地流泪,仿佛小男孩此刻内心的痛苦已全套的转移到了我的心中,我甚至笃定的猜想,妈妈会回头,带他回家,一定会的。然而现实中,什么都没有发生。他,依然是那个会做梦的机器小孩,我,也就是一个频频被泪水冲刷的平凡看客。“你能记得的第一件事是什么?”“一只鸟,他有一双翅膀,还有羽毛。”

这个情节,第一次看并没有多加注意,但看了几次后才发现,可悲的是,机器小孩如此深刻的记忆,却也是他最深刻的悲哀。被定义了的事实,无人能摆脱。这是否在告诉我们,生命的开始本身就是个可笑的错误。

“Iam,Iwas.”

乔被抓走前说的最后一句话。它是想告诉我们:每一种物质,无论是否是生命,都可以在空间和时间的隧道中找到自己的过去吗?在我的小时候,无忧无虑的小时候,也曾看过童话:匹诺曹的故事,小小木偶希冀着得到人类有温度的身体。世界尽头,住着蓝仙女。《人工智能》。海底。孩子注视着蓝仙女,祈祷,长达两千年的祈祷。我也在悄悄祈祷,生怕,电影告诉我:你已经长大,没有童话。当大卫拥抱海底的蓝仙女。苦苦寻了两千年的希望在顷刻间碎裂,童话碎了,梦碎了。大卫。起伏的浪涛,配合着他的故事。一点点铺陈,一段段展开,一层层推进,一寸寸深入人心。他的程序是爱,爱是他存在的唯一理由,但是他不会想到,对亲子已经付出了全部感情的Monica,从来没有把他当作真人看待。“让妈妈爱我”,成了他穷尽一生的时间,不惜等待两千年的一个达不到的愿望。斯皮尔伯格的镜头如同喃喃低语,屏心静息地讲述着。音乐仿佛辽阔背景下瞬息。最后,随着男孩的"复制品妈妈"沉入永恒的睡眠,这个小小的机器也第一次静静睡去。心中,只留一个字——爱。

后记:结束的灯光打亮的那一刻,试图掩饰已经哭红的双眼,想要赶快奔离这个过于开放的空间,蜷缩自己的悲伤。然而,我还是习惯的留了下来,坚持。

姓名:杜汉东班级:计算机一班学号:0967111120

读《人工智能》心得体会

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

长江紫都幼儿园丁露

2018年2月22日

读《人工智能》心得体会

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

长江紫都幼儿园丁露

2018年2月22日

《人工智能》观后感

看过《人工智能》这部电影后,心里感到空空的。我认为这其实是一部残酷的电影,尽管导演斯皮尔伯格给了片子脉脉温情,但还是压不住它带给我的沉重感,让人看后心理不是滋味,却又不知该说些什么。

影片中的小男孩David是第一批被研发出来的能够感受感情的机器人之一,并且这样的感情永远保存在他的记忆芯片中。他被一对夫妇收养用来替代因病而成为植物人的儿子,他把自己全部的爱都倾注到了收养自己的妈妈身上。但当植物人儿子再次醒来时,妈妈对David的爱减弱了,并最终在百般无奈之下选择了抛弃David。万念俱灰的David却单纯的以为只要自己变成真的小孩,妈妈就会爱他了。于是他坚信着妈妈给他讲过的一个童话故事,以为找到了蓝仙女,自己便可以成为真人得到妈妈的爱。为此,他踏上了漫长的追寻旅程。他到过了恐怖的机器人屠宰场,在那里目睹了机器人的悲惨结局。幸好他遇到了一个机器舞男,最终帮助他来到了传说中蓝仙女所在的地方——已经被两极融化的雪水所淹没的曼哈顿。David来到曼哈顿后找到了制作自己的博士,然后他发现了令他感到恐惧的事实——他并不是独一无二的,他只是个机器人。于是他绝望了,跃入了水中,没想到在水下他看到了蓝仙女的雕像。在幽深的海底,他用纯真而坚定的眼睛凝视着蓝仙女,祈祷“请把我变成真人吧,请把我变成一个真正的男孩吧!”。看到这里,我想善良的人早就已经没把David看作一个机器人了,而只是当做一个需要妈妈疼爱的可怜的孩子。

两千年后当地球上的水都变成了厚厚的冰川,在地球上的外星生物终于找到了埋在冰川下的David,他们让David恢复了知觉,从他脑子里感知了关于早已灭绝的人类的信息和他一直在祈祷的那个愿望。他还是没有办法变成真正的小孩,但他却可以得到妈妈的爱,外星人还原基因把早已死亡的妈妈带回到了世上,虽然只能有短短的一天。镜头又回到了最初,柔和的光线印着母子俩暖意的笑容,一切都是那么平和,没有争吵没有猜忌,David找到了被制造以来从未有过的“快乐”。那天夜里,睡在妈妈的身边,他一生中第一次,到了美梦诞生的地方。

这部电影着实让我感触良多,在影片中导演将丰富的科幻、深刻的思考和人文的精神做了完美结合,让人可以从多个角度看这部电影。小主人公在片中的出色表演更是使观众感受到那个小机器人的心理变化,他那带着忧郁的眼神,显得那么柔弱需要保护,尤其是在面对蓝仙女雕像时期待的眼神是那么的让人为之动容。他用他的坚贞如一深深地打动了我们每一个人。

影片尾声,用了两千年的等待,却只换来了一天的快乐,或许有人会觉得这并不值得,但是David为人类呈现出的永恒的爱却是不可磨灭的。“让妈妈爱我”,这样一个简单到极点的愿望,在孩子蔚蓝的眼睛里闪烁,感染着每一个观众。就像付出的,总会得到回报;就像默默的不计较得失的爱情,总会得到回应;就像机器小孩David,虽然蓝仙女只是个童话,他却在漫长的等待后得到了一天的快乐。他笑了,笑的很甜蜜,很幸福,那是他用了他的一生去换的,是他生命中最幸福的一天。最后和妈妈依偎在一起的那一刻,我想他已经变成了一个真正的男孩了。

大卫是谁创造了他?

作为机器人,他能做的很少,祈求的很少,希望也很少。

他唯一希望的就是能够有人关心他,有人爱他,而他自己也能够去爱别人,这样就够了。

妈妈,我只想得到你更多的爱

“当一个机器人全心全意地去爱一个人时,那么这个人又有什么样的责任去回报这份爱呢?”

大卫没有忘记他妈妈给他讲过的《木偶奇遇记》。

“蓝仙女把皮诺曹变成了真人,也一定能把我变成真人,变成真人后,妈妈就会爱我,我就能回家了。”

为了这个愿望,他经历了很多很多

他哭过,笑过,伤心过,悲哀过,

但是他始终没有放弃。

他的脸上充满着虔诚,充满着希望,充满着梦想成真前的欢欣,充满着对梦想的渴求他一遍又一遍真挚的祈祷

直到他闭上眼睛,永远睡去那一刻。

尽管,那时侯David在海底,

但我确信我看到了阳光

那束阳光叫做爱„„

带着阳光和爱,两千年过去了。

就因为是她,才会去爱,也正因为是她,才会爱他。

David选择了爱,那我们呢?

什么是真实的,什么是永恒的?

是爱.人类把自身看作是造物主的杰作,把自己的意志凌驾于万物之上,运用智慧制订了以自我为中心的行为准则。万物不能言,只有听凭人类的安排。但是,智慧又是什么?智慧能否被创造?当人类终有一天能够创造出智能生命,然后再用冷酷和无情把他们推向毁灭的时候,人类唯我独尊的自私也得到淋漓尽致的表现。

在这个科技高度发达的时代,人类压倒一切,在地球上无处不显着强势。

当这些人过着由机器人创造的全方位舒适生活时,他们是不是有权利把另一些人放在饥寒交迫之中,

我想这部电影正是想通过这样的场景来表达他对生命价值的理解,对科学与文明发展失衡的担忧,对人类社会伦理道德现状的无奈。

难道说人类社会的进步,只是科学技术的进步?而人类在自身道德领域,在对待其他生命形式的态度上,怎么会沉沦到这样令人不寒而粟的地步呢!

当机器人由于某些原因失去了为人类服务的价值时,他们在人类主导的社会上便失去了存在的意义,他们就必须被清理和消灭掉。无论这些非法的机器人是否有着活生生的生命表象,他们的机器身份已经注定了他们必须被毁灭的命运。

难道说人类社会的进步,只是科学技术的进步?而人类在自身道德领域,在对待其他生命形式的态度上,怎么会沉沦到这样令人不寒而粟的地步呢!

无论那时候的机器人被制作的如何逼真,人类都无法将他们当作整个社会的一分子。当人们需要他们的时候他们就是我们的朋友,不需要他们的时候便可以被遗弃被破坏。

这使我联想到了如今的克隆技术——如果人类将克隆人当成一种工具,那将是多么可怕的一件事情!

文明是反映人类社会发展程度的概念,它表征着一个国家或民族的经济、社会和文化的发展水平与整体面貌。

生命与爱,才是人类永恒的主题

马克思曾说过:“社会是人同自然界完成了本质的统一,才是自然界的真正复活”。不断追求人与自然的和谐,是人类共同的价值取向和最终归宿。

人类从洪荒时代走到了文明的世纪,人类的智慧创造了经济的奇迹,但无知与贪婪却留下了可怕的后果。

世界上的任何事物都是矛盾的统一体。我们面对的现实世界,就是由人类社会和自然界双方组成的矛盾统一体,两者之间是辩证统一的关系。

人类社会通过人类不断的对世界的认知向前发展,而这种发展的驱动力则是人类对知识的渴望,和追求对自身所处的环境的改善。

当人类不断的提高了自己的物质生活水平,利用不断发展的科技来满足自己,可是人类越来越认不清楚自己,天空变得越来越浑浊,绿地变得越来越少,人与人越来越冷漠,我们逐渐忘记了人类的感情,忘记了生命的本质,忘记了爱。

然而当人类已完全灭绝,当文明已成往事。只有一个小小的机器孩子,传承着爱的使命,延续着人类真正的灵魂。这不灭的人性精灵,深深烙印在数码密布的电路板上,凝聚在那双蔚蓝色的眼睛里,像天空一样寂寥,像海洋一般深邃。

这是一个讲爱的故事,真挚又残酷、纯粹而温暖、发人深醒。身处如今的时代,太多人只关心那些表面上的技术、理论、政治、利益、欲望,认为强权才是真理,欲望才是根本。却失去了本心,不屑甚至耻笑人类存在所最根本的——爱。

实验一:知识表示方法

一、实验目的

状态空间表示法是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验通过牧师与野人渡河的问题,强化学生对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。

二、问题描述

有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定野人与牧师都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出小船来回次数最少的最佳方案。

三、基本要求

输入:牧师人数(即野人人数):n;小船一次最多载人量:c。

输出:若问题无解,则显示Failed,否则,显示Succeed输出一组最佳方案。用三元组(X1,X2,X3)表示渡河过程中的状态。并用箭头连接相邻状态以表示迁移过程:初始状态->中间状态->目标状态。

例:当输入n=2,c=2时,输出:221->110->211->010->021->000其中:X1表示起始岸上的牧师人数;X2表示起始岸上的野人人数;X3表示小船现在位置(1表示起始岸,0表示目的岸)。

要求:写出算法的设计思想和源程序,并以图形用户界面实现人机交互,进行输入和输出结果,如:

Pleaseinputn:2

Pleaseinputc:2SucceedorFailed?:SucceedOptimalProcedure:221->110->211->010->021->000

四、实验组织运行要求

本实验采用集中授课形式,每个同学独立完成上述实验要求。

五、实验条件

每人一台计算机独立完成实验。

六、实验代码

Main.cpp#include#include"RiverCroing.h"usingnamespacestd;

//主函数voidmain(){

}system("pause");RiverCroingriverCroing(n,c);riverCroing.solve();intn,c;cout>n;cout>c;RiverCroing::ShowInfo();

RiverCroing.h#pragmaonce#include

//船claBoat{public:

};

//河岸状态claStateBoat(intpastor,intsavage);staticintc;intpastor;//牧师intsavage;//野人

{public:

};

//过河问题

claRiverCroing{private:

};boolmove(State*nowState,Boat*boat);//进行一次决策

State*findInList(std::list&listToCheck,State&state);//检查某状态节voidprint(State*endState);//打印结果staticvoidShowInfo();RiverCroing(intn,intc);boolsolve();//求解问题std::listopenList,closeList;StateendState;State(intpastor,intsavage,intboatAtSide);intgetTotalCount();//获得此岸总人数boolcheck();//检查人数是否符合实际boolisSafe();//检查是否安全

Stateoperator+(Boat&boat);Stateoperatorboat.pastor,iSavage1);ret.pPrevious=this;returnret;Stateret(iPastor+boat.pastor,iSavage+boat.savage,iBoatAtSide+1);ret.pPrevious=this;returnret;

}openList.push_back(newState(State::n,State::n,1));while(!openList.empty()){

}print(NULL);returnfalse;//获取一个状态为当前状态

State*nowState=openList.front();openList.pop_front();closeList.push_back(nowState);//从当前状态开始决策

if(nowState->iBoatAtSide==1){//船在此岸

}//过河的人越多越好,且野人优先

intcount=nowState->getTotalCount();count=(Boat::c>=count?count:Boat::c);for(intcapticy=count;capticy>=1;--capticy){

}//把船开回来的人要最少,且牧师优先

for(intcapticy=1;capticy

}for(inti=0;i

}Boatboat(capticyi);if(move(nowState,&boat))

returntrue;}elseif(nowState->iBoatAtSide==0){//船在彼岸

//实施一步决策,将得到的新状态添加到列表,返回是否达到目标状态boolRiverCroing::move(State*nowState,Boat*boat){

//获得下一个状态State*destState;if(nowState->iBoatAtSide==1){

}destState=newState(*nowState1iPastoriSavageiBoatAtSide;if(st.size()>0)cout";cout

cout

七、实验结果

实验二:九宫重排

一、实验目的

A*算法是人工智能领域最重要的启发式搜索算法之一,本实验通过九宫重排问题,强化学生对A*算法的理解与应用,为人工智能后续环节的课程奠定基础。

二、问题描述

给定九宫格的初始状态,要求在有限步的操作内,使其转化为目标状态,且所得到的解是代价最小解(即移动的步数最少)。如:

三、基本要求

输入:九宫格的初始状态和目标状态输出:重排的过程,即途径的状态

四、实验组织运行要求

本实验采用集中授课形式,每个同学独立完成上述实验要求。

五、实验条件

每人一台计算机独立完成实验。

六、实验代码

Main.cpp#include#include"NineGrid.h"usingnamespacestd;

//主函数voidmain(){NineGrid::ShowInfo();

}stringstart,end;cout>start;cout>end;NineGridnineGrid(start,end);nineGrid.solve();system("pause");

NineGrid.h#pragmaonce#include#include#includeusingnamespacestd;

#defineSPACE'0'

#defineAT(s,x,y)(s)[(x)*3+(y)]

enumMove{};

//九宫格状态claState{public:

intmoves;//到此状态的移动次数intvalue;//价值

State*pPrevious;//前一个状态

State(string&grid,State*pPrevious=NULL);intgetReversedCount();//获取逆序数voidevaluate();//评价函数

boolcheck(Movemove);//检查是否可以移动stringgrid;//用字符串保存当前棋盘状态intx,y;//空格所在位置staticState*pEndState;//指向目标状态,用于评价h的值UP=0,DOWN=1,LEFT=2,RIGHT=3

};StatetakeMove(Movemove);//实施移动,生成子状态//重载==运算符,判断两个状态是否相等

inlinebooloperator==(State&state){returngrid==state.grid;}//九宫重排问题claNineGrid{private:

};

NineGrid.cpp#include"NineGrid.h"#include#include#includeusingnamespacestd;

State*State::pEndState=NULL;

/*=======================Methodsforcla"State"=======================*///构造函数

State::State(string&grid,State*pPrevious){this->grid=grid;NineGrid(string&start,string&dest);boolsolve();//求解问题//用于排序

staticboolgreater_than(constState*state1,constState*state2);staticvoidShowInfo();//显示信息boolcompareReversed();//比较逆序数奇偶性是否相同

booltakeMove(State*nowState,Movemove);//进行一次决策

State*findInList(vector&listToCheck,State&State);//检查某状态voidprint(State*endState);//打印结果vectoropenList,closeList;StatestartState,endState;clock_tstartTime;节点是否在列表中

public:

}this->pPrevious=pPrevious;if(this->pPrevious)this->moves=pPrevious->moves+1;this->moves=0;else

this->value=0;evaluate();for(inti=0;i

}for(intj=0;j

}if(AT(grid,i,j)==SPACE){

}x=i;y=j;return;boolState::check(Movemove){

}

StateState::takeMove(Movemove){switch(move){caseUP:

}returntrue;if(x1=3)returnfalse;break;caseDOWN:caseLEFT:caseRIGHT:

}intdestX,destY;switch(move){caseUP:

}stringtGrid=grid;chart=AT(tGrid,destX,destY);AT(tGrid,destX,destY)=AT(tGrid,x,y);AT(tGrid,x,y)=t;returnState(tGrid,this);destX=x1;break;destX=x;destY=y+1;break;caseDOWN:caseLEFT:caseRIGHT:voidState::evaluate(){

for(intii=0;ii

for(intjj=0;jjgrid,ii,jj)){

h+=abs(ijj);intg=moves,h=0;for(inti=0;i

for(intj=0;j

//if(AT(grid,i,j)!=AT(pEndState->grid,i,j))//++h;

if(AT(grid,i,j)==SPACE)continue;if(!pEndState)return;

}

}

}

}}}this->value=g+h;//求该状态的逆序数//逆序数定义为:

//

不计空格,将棋盘按顺序排列,

//

对于grid[i],存在jgrid[i],即为逆序。//

所有棋子的逆序总数为逆序数。intState::getReversedCount(){

}

/*=====================Methodsforcla"NineGrid"=====================*///显示信息

voidNineGrid::ShowInfo(){

}

//构造函数

NineGrid::NineGrid(string&start,string&dest):startState(start),endState(dest)cout

}returncount;

}if(grid[i]>grid[j])++count;intcount=0;for(inti=0;i

if(grid[i]==SPACE)

continue;if(grid[j]==SPACE)continue;for(intj=0;j

{

}

//当初始状态和目标状态的逆序数的奇偶性相同时,问题才有解boolNineGrid::compareReversed(){2;}

//解决问题

boolNineGrid::solve(){

}

//实施一步决策,将得到的新状态添加到列表,返回是否达到目标状态

}print(NULL);returnfalse;

}//从当前状态开始决策

for(inti=0;i

}Movemove=(Move)i;if(nowState->check(move)){

}if(takeMove(nowState,move))

returntrue;

openList.push_back(newState(startState));while(!openList.empty()){

//获取一个状态为当前状态

State*nowState=openList.back();openList.pop_back();closeList.push_back(nowState);cout

cout

boolNineGrid::takeMove(State*nowState,Movemove){

}

//检查给定状态是否存在于列表中

State*NineGrid::findInList(vector&listToCheck,State&state){

}

//根据达到的目标状态,回溯打印出求解过程voidNineGrid::print(State*endState){

cout

addSymptom(pDisease,strInput);}else{ioFile.close();returntrue;//添加一个疾病,返回此疾病信息的指针

Disease*Expert::addDisease(conststring&name){

}

//添加疾病的症状

voidExpert::addSymptom(Disease*disease,conststring&symptom){}

//诊断函数

voidExpert::diagnosis(){

cout请输入症状:(或"不确定"以开始模糊搜索)">symptomInput;//用户输入的第一个症状stringsymptomInput;//用户有的症状和没有的症状

vectorsymptomHave,symptomNotHave;//搜索的结果列表

vectorfindList;disease->symptomList.push_back(symptom);Diseasedisease;disease.name=name;m_DiseaseList.push_back(disease);return&m_DiseaseList.back();

for(vector::iteratorite=findList.begin();ite!=

boolremove=false;//是否从findList列表中排除本疾病

for(unsignedintj=0;jsymptomList.size();++j){

Disease*pDisease=*ite;if(find(symptomNotHave.begin(),symptomNotHave.end(),

//在symptomNotHave列表中找到此症状,直接排除remove=true;break;findList.end();){if(symptomInput=="不确定"){

}//添加所有疾病到findList列表中

for(unsignedinti=0;i

for(unsignedinti=0;i

}//添加输入的症状到symptomHave列表中symptomHave.push_back(symptomInput);Disease*pDisease=&m_DiseaseList[i];for(unsignedintj=0;jsymptomList.size();++j){

}if(symptomInput==pDisease->symptomList[j]){}findList.push_back(pDisease);findList.push_back(&m_DiseaseList[i]);}else{pDisease->symptomList[j])!=symptomNotHave.end()){}elseif(find(symptomHave.begin(),symptomHave.end(),

//在symptomHave,symptomNotHave列表中不存在这个症状,则询问if(optionSelect("->是否有症状""+pDisease->symptomList[j]+

}//询问得知有此症状,添加症状到symptomHave列表中symptomHave.push_back(pDisease->symptomList[j]);//询问得知没有此症状,添加症状到symptomNotHave列表中,并排除symptomNotHave.push_back(pDisease->symptomList[j]);remove=true;break;pDisease->symptomList[j])==symptomHave.end()){""?\n(y/n):")){}else{此疾病

}

}}}if(remove){

}//需要排除此疾病

ite=findList.erase(ite);//迭代器后移++ite;}else{cout

}cout知识库中未找到匹配的记录!"根据已有的知识库,可能的疾病为:"

for(unsignedinti=0;i

}coutname;if(i!=findList.size()-1)cout

boolExpert::optionSelect(conststring&question){

cout>option;

switch(option){case'Y':case'y':returntrue;case'N':case'n':}returnfalse;

}returnfalse;

Disease.txt[疾病1]症状A症状B症状C症状D

[疾病2]症状A症状B症状C

[疾病3]症状A症状B症状D症状E

[疾病4]症状A症状C症状D

[疾病5]症状B症状C症状D症状E

[疾病6]症状A症状B

[疾病7]症状A症状C症状E

[疾病8]症状A症状D

[疾病9]症状B症状C症状E

[疾病10]症状B症状D

[疾病11]症状C症状D症状E

六、实验结果

人工智能

正方一辩:人工智能是基于数学、逻辑学、统计学之上,通过经验积累得到学习能力,从而协助人们进行某项工作的操作系统。人工智能与人类智能有着本质区别和根本界限。人工智能是物理过程,而非生物过程;它是模拟人的某种行为,而不是人的行为本身,它不具备人类的自我意识,无法形成一个主观事件。人工智能的优势只不过在某些领域比人类更精确,更稳定,拥有更强烈的计算能力而已。接下来我方将从以下三点论证我方观点。

人类智能是人类科学技术发展的结果。从古至今,人类都在不停地发展。人类的发展伴随着人工智能的出现及其发展。阿特拉斯,最强人形机器人,NAO机器人,全球应用最广泛的机器人,Pepper,最接地气的机器人等等。还有前段时间的人机对战,阿尔法狗大胜韩国李世石。这无疑是人工智能发展的一个里程碑,同样也是人类发展的里程碑。所以说人工智能的发展就是人类的发展。

第一,人工智能让人类生活更美好。例如,人工智能的医疗应用惠及大众。我们医生或许难以保持最新治疗方案和方法,也无法了解所有医学例案。人工智能可以在短时间内分析大量数据,精确判断病症,并找到最佳的治疗方案,为人们提供最好的治疗。再说,先如今已经被广泛运用的无人驾驶不仅减轻了人们的负担,更是大大降低了事故率。再比如说,如今苹果系统的SIR手写版系统、生物识别系统都是人工智能的应用,都让人类的生活质量得到显著提高。第二,人工智能推动社会进步,实现人类进一步解放。人工智能应用后,各行业的生产效率大幅提高,人类财富以几何形式快速增长,为人类的美好生活提供了坚实的物质基础。人工智能将人类从重复的、无意义的工作中解放出来,从高危险的工作中解放出来,让人有了更多选择的自由,从而把更多精力投入到更有意义的领域中去。人工智能也让人类突破得以发展的瓶颈。例如,人工智能可以探索外太空、山海冰河这些人类无法企及的地方,可以让复杂的大数据得到高效的分析与合理的运用,让人们探索到更深层次的知识。所以人工智能使人类超越了自己本身的局限,实现了人类的进一步解放。第三,人工智能推动了人类的理性进步,可以反过来促进人类的发展。人工智能研发过程的本身就具有研究人脑认知与功能的需求和特性,而使人类在这个过程中就学习了学习的方法,从而增强人类的逻辑思维能力。人工智能更新了人类应对问题的方法,比如依靠大数据的分析,沃森医生可以提供对病人伤害最小的、全新的治疗手段和技能范围。比如,从而丰富人类应对各种问题的方法。人工智能也拓宽了人类知识技能范围,比如,人工智能根据对大数据分析得到各种新知识、新信息,使人们难以预测的洪水、地震等灾害的预报的精确程度大大提高,使人类在自然面前的约束变得更强大。

当然,与此同时有人担心工作会被人工智能替代而造成失业,其实正如工业革命之前,我们无法想象会产生火车司机、计算机工程这样的职业。人工智能的变革将带走一些岗位的同时,也带来了更多更新的岗位,把技术给人类带来的弊端降到了最低。人工智能给人类带来的发展是颠覆性的,它给人类带来的好处甚至超越了我们的想象。我们不应该对强加的对未知的恐惧而阻碍这一技术的发展。综上所述,我方认为,人工智能对人类发展利多于弊。

反方一辩:在场各位,大家好。对方辩友说辞着实漂亮,但漂亮说辞背后却隐藏着大大小小漏洞。首先我们先来明晰几点:

第一,我们今天题目是比较性命题,但是对方辩友从头到尾只提利不提弊,甚至连大小关系也没听清楚。而我方要论证的正是人工智能对人类发展带来的利端是可以取代,并且不必要的;而它给人类带来的弊端却是毁灭性,并且不可挽回的。

其次,人工智能分为强弱人工智能,最早是由赛尔提出的。弱人工智能是一种科技手段,是把计算机作为……(差二字)的有力工具。强人工智能则主张人工智能最终必能完全模拟人类心理与智能活动。而人工智能与其它人造工具最大区别在于,其具有自我反应外界环境的潜在能力,这种原本是只有人类具有的能力再次……人类发展,因为这是人类这个族群存在的内在意义。人类的发展具有必然性。最后提出一个问题,人类存在的价值是什么?人的价值在于满足自身需求,对社会做出贡献,根据马斯洛的需要层次理论,人的最高需求是自我实现。自我实现是指实现个人理想、抱负,发挥个人能力到最大程度,而追求这一需求的实现,这是人类存在的意义。好,基于以上几点,人工智能发展的最终结果与人类存在意义相违背,所以我方坚持观点:人工智能对人类发展弊多于利。从以下几方面论述我方观点。

首先,当前高度发展的是弱人工智能。而高度发展弱人工智能全方位对人类发生异化作用。异化作用最早源于马克思,是这样的,人的创造物同人这个主体相脱离,不仅摆脱了人的控制,而且反过来对人类进行反控制,违背人的意愿,从而成为奴役人、支配人的与人相对立的异己力量。难道这样的发展是人类所想要看到的吗?

其次,对方讲到失业潮,很好,我要告诉你,人工智能带来的失业潮比任何一次工业革命带来的失业潮完全不一样。它带来了失业潮,但是最可怕的是人工智能它自身产生足够巨大的商业利益,而人类不被人工智能供养着。人工智能供养着人类,人类达到马斯洛理论当中的基本需求,人类真的还有动力去追求更宏伟的目标吗?他们还有动力去追求自我实现吗?还是只是纯粹整天无所事事,而醉生梦死。

最后,根据人类发展的必然性,以及强人工智能的特性,即使人工智能毫无毁灭人类之心,它们也会由于人类的……(差二字)而逐渐发展,这种温水煮青蛙的发展到时候使它们逐渐、渐渐取代它们在社会中的主体地位。

我们今天题目是人类发展,那首先是什么是人类,人类的主体地位都被动摇了,我们还谈人工智能的利多于弊,对方辩友的想法不是很奇怪吗?更何况不能保证人工智能完全受人类控制。

综上,我方认为,人工智能对人类发展弊多于利。

正方2辩:首先看一下对方辩友非常精彩的言论究竟给我们提到了哪些论点。

首先对方辩友说人工智能是可以取代人类的东西,可是我们想一想,对方辩友全场是否论证的主体是人类智能呢?您方是否创造了一个神一样的物种呢?但是现实并不是这样的。我们说人工智能与人类智能最根本的区别就是它不具有自我意识,它的所有东西,它所执行的目的,它所要干什么都是人类这个创造者赋予它的,所以并不存在它不可控这一点,对方辩友可以完全不用担心。

第二点,对方辩友告诉我们说一个强人工智能的概念,那强人工智能这个概念是否已经,它不管有多强,就像今天我方三辩把头发披下来,我也把头发披下来,那是我模仿她,但是我永远不可能成为她。这就是人工智能的最终本质,它可以无限靠近人类,却无法真正成为人类。

第三点,对方辩友有一句话我非常认同,她说我们人类活着的最终、最根本意义是不断满足自身需求、实现自身的价值。可是我们来看一看现实生活中,人工智能在逐渐发展的过程中是不是已经在满足我们的需求了呢?是不是作为工具在不断帮助我们实现自身价值呢?举个例子,我们平时大家开车上班、上学,我开车需要

15、20分钟。

但是这个时候如果有人工智能出现了,它代替了我们开车,第一点,它的安全性能更高了,有可能你困浑出现交通事故,但它不会,它是机器。第二,在它代替我们开车的过程中,我们是不是可以节省你出时间来阅读、听音乐、休息,这对于我们人类发展是不是更好呢?曾经我们“不知天上宫阙,今夕是何年”,但是有了人工智能之后,我们“可上九天揽月,可下五洋捉鳖”,这难道这种变化对方辩友依然认为不是人类发展吗?即使我们这一代人还无法深切体会到“锄禾日当午,汗滴禾下土”,可是我们有“千江有水千江月,万里无云万里天”的洒脱心境,这样子难道还不足以成为人类发展的动力吗?我们的动力是什么?我们在现有的生活中享受到了快乐,得到了满足,我们看到了有可以发展的空间,于是我们有了动力,开始发展了,所以说人工智能的出现不仅给了我们动力,满足了我们需求,还有可能让我们更好地完成一项工作,实现自我价值,所以说。

综上所述,人工智能工具而已,不用害怕。

反方2辩:刚才对方的主辩只说到了利多,举了大量的有利的例子,却丝毫不提弊的例子,这难道不是盲人摸象,有一叶障目的嫌疑吗?接着,对方的一副说强人工智能在未来不会出现,你们又是如何绝对认为强人工智能在未来不会出现,请对方辩友给我方有力证据。再者,自始至终,对方并没有证明这是比较命题,有证明利多于我方的弊吗?我想对方辩友忽略了以下问题:

第一.人工智能会反过来控制人类,人类也会被异化,真正可怕的不止是这些。人工智能分为强人工智能跟弱人工智能,当强人工智能发生到一定程度的时候,它会产生一种自我意识,促使自身不断发展,而谷歌研究总监说:人工智能的学习不是代码,更像是一个推动,而人类能稍微看到里面的一些东西,对里面的事情有一些些的了解,但是我们却看不到全面。那么我想请问对方辩友,你们无法全面地了解人工智能,如何发展?若有一天它发展到比你高级了,并且它要消灭比自己低级的人类的时候,当人类都不复存在的时候,对方辩友又凭什么说人工智能对人类发展利大于弊呢?

第二,马克思在《资本主义的六种技术悖论》中提到机器具有减少人类劳动,和使劳动更有成效的神奇力量,但也因此引起了过多的饥饿和过多的疲劳。在过去的工业革命中,劳动岗位的替代是在人与人之间进行的,但现在,现在的人类的岗位是由人工智能替代了人的岗位,那我想问问对方辩友,那些饱受困苦的人类,被人工智能所替代的人类,他们该何去何从,在有限的岗位内人类被人工智能替代了,这难道能说人工智能的发展对人类的发展是有利的吗?不过,下岗还不是最可怕的。因为人工智能会产生巨大的商业价值,它能养活那些下岗者,那些人类,那么我想再问问对方辩友,一旦到人工智能来养活人类,人类达到了马斯洛需求的最基本需求,那么人类还会有动力去追求更高的目标吗?还是会产生一种惰性醉生梦死,日渐颓废呢?作为人类,你们不觉得这样活着很可悲吗?第三,我们应该赋予人工智能人权吗?这是一个很值得深思的问题。当人工智能在岗位上工作的时候,或许它犯了一些小的错误,被无情地拔掉电源,剥夺了它的自由平等,这难道对它来说是公平的吗?其实在我们思考这个问题的时候,我们就已经赋予它一种人权,这难道是我们该思考的问题吗?最后,我想请对方辩友一一回答我方提出的问题。谢谢。

正方三辩:感谢主席,问候在场各位。首先呢对方辩友精彩的答辩中我发现了一个问题,就是对方辩友根本没有搞清楚人工智能的定义是什么。我方一辩一再解释它是人工智能,不是人类智能。刚才对方辩友说了那么多,给我感觉他们仅仅是科幻小说的爱好者。他们提到人工智能有一天可能会毁灭人类。但你们有没有想过人工智能它没有自主意识,没有主观世界,没有情感来源,也就是说什么人工智能相比于以前我们使用过的工具,只是它能模拟人类的思维罢了,这是不是代表它可以控制人类,不是的,对方辩友。

人工智能作为工具,是为人所用的,为人所谋福利的。我们都知道人有一个趋利避害的特性,它怎么会创造出一些威胁人类存在的东西出来呢?对方辩友过度夸大人工智能的定义范围。而且对方辩友一再说我方辩友没有强调利弊问题,我怎么清清楚楚听到我方辩友说到了他们说的失业问题呢?他们刚才还义正言辞地说这是个比较性命题,可是你们说了这么多,我们也没有听到利在哪里啊。而且对方辩友还说了工作问题,人工智能可能会取代人的工作,造成人的惰性,致使人只贪图享乐,请问对方辩友,你又在主观夸大人这一方面的惰性了。作为人类,我们是不是一定要“面朝黄土背朝天”地生活,还是我们应该追求一种“万里无云万里天”的自由。有了人工智能,我们可以从繁琐,甚至是一些复杂的工作中解脱出来,然后去追求人类所想有的自由,去追求人文价值,而且对方辩友说的期待性工作问题。我想说,他期待的只是一些理性的东西,人文的东西他是没有办法期待的。就像在座的评委老师,人工智能有可能评判一场辩论赛谁胜谁负吗?不会的。再者,对方辩友还说了就是人工智能是一个工具,那这个工具有没有可能统治世界?对方辩友,我方一再强调人工智能没有主观意识,也是就说,人工智能只是人类的一个工具而已。从1959年第一台下棋人机到埃尔法狗,再到最强大脑的小杜,我们都知道人工智能跟人类的关系是相学渐进的关系,我们在共同进步当中,我们打埃尔法狗打败……后,我们想要的是如何从埃尔法狗思维领域中寻求到一种新的方法去战胜埃尔法狗,再去突破人的理性思维。也就是说对方辩友提到的人类思维弱化这一点其实是不成立的,人通过人工智能,它可以作为一个工具促使自己的理性进步。综上,我方认为人工智能对人类发展利大于弊。

反方3辩:对方辩友一直都挑不出来弱人工智能的圈子,你们知道什么是强人工智能吗?你们知道什么是深度学习吗?科学的基本经验是什么?没有什么是不可以的,人类一切都是可以认知的,而对方明显把我们划入了不可知论,或者不可全部未知论,认为人工智能无稽之谈,那么绝无可能,请说明你们的依据。如果对方连未来的设想都没有,请问谈什么发展,我们说的无异于弱人工智能在我们现代的益处。如果一切的目光短浅的话,如果一切都只着眼于眼前的“一亩三分地”的话,不去考虑后代和未来人类的发展,我们要展望未来啊。而且刚才对方一直在讲经济发展,可是我们辩题是什么,是人类发展。联合国历年人类发展报告述评更加关注的是人的发展与人权的关系。所以我们下面讲的是,人不可忽视的是人权与伦理的关系,人是有道德、有思想、有原则的,我们不能在没有原则的基础下愚昧地追求财富和经济。在伦理人权的基础上的人类发展才能称之为人类发展,而不是动物的发展。那么我想问有一定程度支配的机器人能否给予人权呢?人工智能可以帮助人们解决难题,这是利处之一,可是你们有没有考虑过,它给人类制造了更多问题。人工智能机器人是人造出来的,那我们假设如果它出现了问题,我们的责任应该归给谁?是机器人,还是机器人的制造者,还是机器人的设计者,这些对方辩友没有明确的标准。

而且人工智能与过去的工具有本质的差异。以前的工具不过是工具,人类以最引以为傲的智能去操控它们,可是现在智能出现了强人工智能,刚才对方一直忽视的就是强人工智能,而一直在讲弱人工智能的利处。可是我们看问题要看全面啊,你怎么确定未来不会有强人工智能出现呢?你的依据在哪儿?对方怎么可以这么有把握地告诉我,人工智能的技术能够被我们一直牢牢地控制呢?对于异域可控性你有把握吗?

人工智能分为弱人工智能和强人工智能,而目前普及的都是弱人工智能,而对方刚才说的也都是弱人工智能。他们很厉害,直接否认了强人工智能的发展。所以我方坚决认为是弊大于利的。请对方回应我方问题。正方4辩:谢谢主席,问候在座各位。首先对方辩友不用担心,我们也很认真,但对方辩友是不是不够认真。为什么?因为探索深海,探索地核,探索外太空等就是强人工智能,甚至更进一步,它有可能是超人工智能。看你说人类可以“上五天揽月,下九洋捉鳖”吗?当然不行,我方一直在谈强人工智能,为什么您方听不懂,我想您方对人工智能的定义都搞不清。您方说人工智能可能会有思想和情感。我告诉你为什么这是不可能。这是因为人工智能是建立在数学、统计学与逻辑学基础上,它是用神经元网络进行分析、学习、预测的一项本质的人工开发的程序与软件。人的自我意识并不是生来就有,更何况一个工具呢?

今天对方辩友说人工智能让我们丧失也很多选择的权利。对方结辩同学你也不用担心,你要是想扫大街人工智能也不会拦着你,你要是想种地人工智能也不会拦着你,可是我想探索这个星系呢,想知道这个世界更多的奥秘呢?我只有和人工智能在一起我才能做到这一些。所以人选择权利在这个过程中其实是被扩大了的,而不是被缩小了的。今天对方辩友说马斯洛需求被满足后人就无法实现自我价值,可是对方辩友您如今这么健康地坐着我面前,您的马斯洛需求的基本需求没有被满足吗?那么今天您在这里同我辩论,难道您的自我价值没有得到实现吗?基本需求的实现与人的自我价值的不可实现根本不具有对等性。这点在座所有人都应该有共同认知。正是因为我们不想做温水煮青蛙,不想被外星人占领,不想被黑暗森林占领,我们不想守着我们眼前的一亩三分地,所以人类才要谈发展。而且对方辩友整场辩论中似乎都很担心人类会被替代这个问题,可你们忽视了人本身。人类的角色不仅来自于方法论,更来自于世界观,所以人类是建立在一定的伦理道德、社会秩序的基础上去运转的,而人工智能只是机器,它根本不存在伦理道德的问题。

今天我们讨论这种利弊比较,其实就是人在思考价值的多少,这是人才独有的价值判断。就人工智能单纯追求效率这一个属性而言,它永远不可能替代人类。大千世界不止有逻辑和规律,更有情感和关怀。这个世界关于爱,关于人与人之间的温度,逻辑永远不能解决,而人工智能也永远不能替代。

人类与动物的本质区别是什么?历史知识考点都告诉我们在于人类对于工具的创造和使用。从刀耕火种到信息时代,从导弹核能到人工智能,我们每一个个体都在工具的使用中实现着对自我的突破和发展,我们创造了更多的价值才推动人类的发展。曾经“路漫漫其修远兮”,我们知道的事情很少,能做的事情很小,人类必须上下而求索。但人工智能的出现给我们提供了一种潜在的可能,接下我们现有的生存重任,去带领我们去探索未知世界。所以人类其实有了更多选择的权利和更大的自由,纵使任何新事物的产生都不可能完美,我方一直也在强调这点,人工智能也一定会有诸多弊端,但这些都是暂时的、可解决的,人工智能只是工具,我们一再强调是在人类道德基准范围内与人工智能一道实现对于工作种类上限的突破,从最大程度去解放人,从而推动人类的理性发展。“沉舟侧畔千帆过,病树前头万木春”,对方辩友,不要害怕,在技术的更新与进步中,人工智能对人类发展定是利多于弊。

反方四辩:我们为什么要辩这个辩题,不是为了争输赢,而是为了跳出来,跳出来审视一下这个时代正在发展的人工智能对我们的利、对我们的弊。难道说对方辩友举四个、举九个、举十一个利的例子,然后举一个弊的例子,就可以证明人工智能对人类发展是利大于弊的吗?可以吗?不可以。

我们先来审视一下这个东西。人工智能不仅仅是弱人工智能,它不是单纯的机器人,它未来可以有思想,可以有情感,如果你觉得它没有,你证明,如果你它不能证明,你连未来的事情都不知道,或者说你不知道它未来会发展到什么样子,你连一个工具它未来会发展成什么样子,或者说什么方向都不知道,太可悲了,我是很认真的。

为什么我们要辩人工智能,它现在是一个什么东西,它确确实实可以替代一些多重复、高劳力的一些简单的工作。那对方一辩说会促进社会发展,那人呢?你的父亲、你的母亲,我们大家,在座各位都不是被替代的人,所以我们可以很开心说出来他们代替那些多重复、低劳动力工作的岗位,但是那些被替代的人呢?而且这不是人与人之间的被替代,我有工业革命,你说没有关系,你有了新的司机,你可以开车,但是人工智能不一样,它代替了人之后,这个岗位对于人就彻底没有了,它拒绝了他,否定了人,人的价值在哪里?那些被代替的人,他们的价值在哪里?那我们呢?随着他们的发展,他们可以进一步代替越来越多的工作。而且确实现在的人工智能没有情感,但是人工智能越来越可以做很多很多跟人一样的事情,你可以把它当行为人,你会有情感的,你还会舍得让这些人去排爆吗?去下五洋捉鳖吗?去太空揽月吗?你舍得吗?

我们换一个点,我们讲它弊大于利,是因为我们承认它确实能促进经济发展,但这并不是对人。第一个点,它对隐私的破坏权,你有没有注意到,你的社会发展,你的生活中充斥着各种各样的人工智能,但你没有注意到,举个很简单的例子,网络浏览助手,它可以在线记录你的各种各样的喜欢的常去的网站,然后在下一秒你要输的时候跳出来,排个序,很开心,很人性化,你的技术也很智能化,很人性化,但是它会把这些数据传到远方的数据库里面去。但人工智能并不能智能地分别谁在使用这些数据,它仅仅是一个操控者。

我们可以再继续,它会动摇人的主体性地位,就是我们作为人的价值被它所替代。我们会失去我们的价值,是真真正正地失去。你譬如说它解放了人,把人从繁琐的劳动中解放了出来,你为什么不想一下,这个解放是我们愿意的解放吗?我们人之所以为人的根本是我们能够选择,选择我们不愿意或者愿意做的事情。但是人工智能它不一样,它代替了这个事情之后,这个选项就没有了,你不可主动选,以前我们可以主动选择,我可以不去扫大街,我可以不去看书,但是我可以去思考,我可以去做个选择。但人工智能普及以后呢?你只能选择去做一些文艺的工作,因为这些工作是人工智能所不能做的,也就是说你的价值、你的意义变成了我们只能做一些人工智能不能做的,我们人,人之所以为人不是这样的。很可怜。所以说人工智能对于世人,对我们主体性人,一定要动摇他的主体性地位,这才是它的弊端,这才是我们说它弊大于利的地方。

AI是一个技术,不是万金油,去思考如何打造好的产品,比思考如何AI更为重要。

换句话说,不应该只想着“我能做出来什么?”,而要去思索“这东西做出来有什么用?”,能不能解决真实的需求,而不是去强调产品的AI属性。

总之,AI技术在酝酿着一次变革,它或许是超级人工智能的觉醒,是大规模失业和产业升级,或是资本的吹捧下,另一个泡沫的膨胀。

AI仍处在阶段性的探索,有种种不完美,但这不能否定它未来的价值,它将带领我们,去探索技术的边界,临近人类智慧的终点。

与其担忧AI灭顶人类,更应该恐慌人性本身的阴暗面

人工智能发展的弊

科技的发展是一把双刃剑,汽车分发明颠覆了传统的马车行业,人工智能的发展同样也将颠覆许多行业。机器人代替了许多人类的工作将导致大量的人口失业,机器新的学习速度远远快于人类,阿尔法狗战胜李世石引起人们的恐慌,有人说不怕阿尔法狗战胜李世石,怕的是阿尔法够故意输掉一局,如果未来的某一天,机器人变成像电影《机械姬》中有意识的机器人,那么人类随时会变成机器人的奴隶,同时,人工智能面临着技术失控的危险,霍金曾发出警告,人类面临一个不确定的未来,先进的人工智能设备能够独立思考,并适应环境变化,它们未来或将成为导致人类灭亡的终结者!如果真的有一天,人工智能机器人变成了能独立思考,独立的做出准确的判断,一旦有一天人工智能反客为主,到时人工智能对于人类将会是毁灭性的灾难。甚至被人工智能消灭。地球将被人工智能统治。

任何的科学技术的发展最大的威胁就是失去人类的控制,人工智能亦是如此,无论人工智能如何发展,都必须保证始终受人类控制,在不伤害人类的情况下服务于人类。这样人类才会更加容易的接受人工智能。

人工智能改变了人们的生活,我们对人工智能应加以好的利用,同时要避免带来的弊端,人工智能与人类、与社会、与自然和谐相处,这样才能长远的发展。人工智能可以做什么?

以人为本,人工智能让生活更美好。不久前,央视播出的科技挑战节目《机智过人》第二季里,观众们看到了人工智能战胜各种“不可能”,看到了“以人为本,惠及民生”的大国智慧。无论是外骨骼机器人帮助高位截瘫女警站起来,还是脑控智能义肢助力断臂乡村教师圆“握手梦”,抑或是唇语识别等技术帮助聋哑儿童表达心愿,都让人感到人工智能解决痛点、提升生活品质的力量。

曾经,很多人认为人工智能是高精尖科技,与自己的生活关系不大。还有一些人对人工智能不屑一顾,认为人工智能技术尚在初级阶段,与人类的灵巧、智慧没法比,还需要很长时间才能达到媲美人类智慧的水平。

但是,随着“人机大战”轰动世界,阿尔法围棋(AlphaGo)战胜人类棋手,人们意识到,人工智能时代已经到来。《机智过人》第二季展示的项目,正是对人工智能广泛应用的浓缩。在教育、医疗、养老等领域,人工智能正在有效解决生活中的痛点,让生活更舒适、让人类更自由。

以人为本,也是国务院《新一代人工智能发展规划》(以下简称《规划》)的主题词之一:通过壮大智能产业、培育智能经济,落实以人民为中心的发展思想。

从农业时代到工业时代、信息时代,人类社会不断发展,持续用各种工具提高生产力、解放人力,人工智能时代亦是如此。可以预见,随着人工智能服务更精准化、更丰富多样,人们能够更便捷地享受到高质量的智能服务和个性化生活。一方面,当简单性、重复性、危险性任务越来越多地由人工智能完成,既能大幅提高生产效率、节省经营成本,助力产业转型升级,又能把人们从繁重的劳动中解放出来,去从事质量更高、创造性更强的工作,使个体创造力得到更大发挥。另一方面,人工智能的创新应用,将为公众提供更多个性化、多元化、高品质的服务。人们看到的、感触到的不再是冷冰冰的高科技物件,而是充满人性化的设计、极致安全的产品。比如,在医疗领域,人机协同的手术机器人、智能诊疗助手,人机协同临床智能诊疗方案,将使医疗更智慧、更惠民。再如养老领域,视听辅助、物理辅助等智能家居设备,将大大拓展老年人的活动空间;移动社交和服务平台、情感陪护助手等,将有效满足老年人的社交需求。

人工智能让“以人为本”有了更多实现方式,“以人为本”则是人工智能良性发展的基础所在。人工智能可能带来安全风险挑战,因此,人工智能法律法规、伦理规范和政策体系仍待完善。只有坚持以人为本,调动全社会参与支持人工智能发展的积极性,我们才能最大限度降低风险,确保人工智能安全、可靠、可控发展。特别是对人工智能产品研发设计人员而言,需要明晰道德规范和行为守则,设置好防火墙,应对人工智能的潜在危害。

既促进人工智能研发应用、最大限度发挥人工智能潜力,又聚合全社会之力,使人工智能健康发展——以《机智过人》为代表的科技类节目,大有可为,也责任在肩。

微软小冰”

是微软(亚洲)互联网工程院

基于2014年提出建立的情感计算框架,通过算法、云计算和大数据的综合运用,采用代际升级的方式,逐步形成向EQ方向发展的完整人工智能体系。

人工智能理论

模块化开发,划分层次模块,提出理论,论证理论是否可行,编码实现。电影《异次元骇客》对计算机从业者的启发:

1、建造以三维数据(x,y,z)为基础的虚拟世界,并为每个点定义各种属性(x,y,z)(重量,连接性,等等)。

。。。。单台电脑主机作为单个人工智能灵魂的运行载体,定义登录协议,在虚拟世界中穿行,磨练智慧。

2、建造人工智能硬件躯体,制定灵魂和躯体的对接协议,使单台主机中的灵魂很容易入住到硬件躯体中,这样就能实现灵魂和躯体两条线发展,灵魂工程师不需要懂太多动力学知识,硬件躯体工程师懂动力学的基础上,会嵌入式编程即可。

3、用sensor模拟出和虚拟世界相同的环境,例如视觉:用双目读取现实世界空间,构造三维空间供给运行在上面的智能,怕是灵魂都不知道运行在虚拟世界还是现实世界了。

建造虚拟世界需要实现的几大模块:

1、三维数据到二维数据的投影(就像在现实世界中的一个立方体,我们从任意角度去看它,也只能看到部分表面,总有部分被遮住),目的是便于显示到我们现在所用的平面屏幕,可以很好的监督虚拟世界的状况,只要输入(x,y,z)边能以此点为视角点观看虚拟世界的状况。

2、码一个可以画三维数据云的软件,比如我们需要一个立方体,通过这个软件可以简易的画出三维数据云,描述了这个立方体的表面及其它数据,这样就能把这个立方体放到虚拟世界中去了。

3、规则解释器,在虚拟世界内部,这个立方体怎么被移动,能否被切割,等等。

建造虚拟世界的意义:

1、可以debug人工智能,给人工智能一个超仿真的运动世界,已经发布的机器人想学习某种新的技能,可以登录到虚拟世界进行学习。

2、可用于其他商业目的,比如在里面开商店买衣服,三维的衣服要比图片更能反映现实中衣服的特性。

此文章主要讲述了,人工智能开发的大致框架,后续会发布,如何让人工智能理解自然语言,人工智能视觉的开发,感觉、嗅觉、以及如何用逻辑构造拥有思考力的机器。(如果你也是人工智能爱好者,欢迎加入我们,QQ群:345018918)

《人工智能导论》课程教学大纲

课程标号:学时:32学分:2

先修课程:《计算机原理及应用》、《数据结构》、《计算机控制技术》、

一.课程性质与目的

本课程是自动化专业的选修课。本门课程的任务是使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,领悟到智能理论发展历程中所包含的深刻的科学逻辑和方法论。启发学生对人工智能的兴趣。通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。

二.教学内容和要求

1.人工智能概述,包括人工智能的定义,人工智能的起源与发展,人工智能的研究和应用领域。

2.概括地论述知识表示的各种主要方法,包括状态空间法、问题归约法、谓词逻辑法、结构化表示法(语义网络法、框架)、剧本和过程等。

3.讨论常用搜索原理,如盲目搜索、启发式搜索和消解原理等。

4.讨论一些比较高级的推理求解技术,有规则演绎系统、系统组织技术、不确定性推理和非单调推理等。

5.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经网络、模糊逻辑、遗传算法等。

6.比较详细地讨论人工智能的主要应用,包括专家系统、机器学习、Agent、自然语言理解和智能控制等。

对于应用内容,根据学时,有选择地进行讲授。

7.简要讲述人工智能语言,有Lisp语言和Prolog语言。

(根据学时需要决定是否讲授。)

三.教材和参考资料

教材:1.蔡自兴,徐光祐。人工智能及其应用,第三版,本科生用书。清华大学出版社,2003。

参考资料:廉师友.人工智能技术导论,第二版.西安电子科技大学出版社,2002;

沟口理一郎、石田亨,人工智能,科学出版社,2003

《人工智能》观后感

看完这部电影后,我的感触颇深。不仅是为人类在人工智能方面的伟大的研究所折服,更是因为那让我眼睛湿湿的机器人与人类之间的爱,不禁让我产生过“它们还是机器人吗?”这样的想法。

人工智能一直处于计算机技术的最前沿,它是研究、开发用于模拟、延伸人工智能的理论、方法、技术及应用系统的一门新的技术科学。就像在影片中David的出现主要是为了填补将要崩溃的母亲Monica心中对身患绝症的儿子的空白一样,人工智能不仅仅能满足人类物质生活上的需求,在未来的发展过程中,更有可能像影片中一样,帮助人们填补情感上的空缺。

但是我认为未来智能信息处理对人类生活的影响必然是有利有弊的。

有利的一方面是很明显的,正如现在我们现在运用在空间站及军事领域的一些成果,它可以帮助我们去勘探未知星球,把精准的数据传递回来,供人类研究,避免人类探测所造成的不必要的损失。在军事上,人工智能能大大增强一个国家的军事战斗力量,减少不必要的人员伤亡,同时,高科技以及人工智能的应用能够最大程度地缩短战斗时间。在人类的生活方面,以人工智能为代表的机器人能代替人做日常生活的琐事,使人的生活更舒适,安逸。就像是电影里的David,他甚至可以代替真正的孩子安抚人们受伤的心,给人一个新的开始。弊的方面也很突出,正如我们所看到的电影中的情节一样,人们会担心我们自己生产出来的机器人会不会随着智能水平的提高而反过来统治我们。好像机器人的出现就是为了最终的消失,我会想机器人会活多少年,人又会活多少年,机器人会越来越多,而人却会生老病死,就像电影中一样,大批量的机器人被生产,然后被送到屠宰场,如果智能的机器人不满足自己的命运,我们又该怎么办?人性本来就有弱点,或者说人类是懒惰的,我们会不会懒到不去清理自己的“杰作”。一切又将是灾难。

另外,难道人类不会害怕,智能机的智能逐步提高,会不会有那么一天,智能机会像拍死一只蚊子一样拍死一个人。雨果在一个访谈上说,不会,因为人类会有公约,我也想问,法律对于任何人来说都不陌生,但是犯罪不一样存在吗?公约可以管得住人类那贪图利益的心吗?智能机器人所带来的道德问题也不容忽视,当我看到成批量的David挂在架子上的时候,禁不住毛骨悚然,怪不得David会动手宰了那个一摸一样的自己。还有,人类竟然会腐败到制造机器人情人,来满足自身的肉欲,试问有几人能接受这般道德的沦丧?我在上面提到,他会增强军事力量,但是这种力量一旦被拉登一样的恐怖分子利用,又会有怎样的后果?这都值得我们思考„

《人工智能》带给我们的不仅仅是视觉的冲击,更是心灵的震撼。人工智能,就想条变色龙,他的利与弊取决于我们给他的环境。科技本身并没有对与错,关键在于人类给他一个什么样的地位。让我们慎重行事,别让自己创造出的“孩子”最后伤了自己。是该怪“孩子”不孝,还是怪我们自己无能?

人工智能论文

摘要:本文主要讲述了《人工智能及其应用》的主要知识内容!总结与本书知识单元相关的主要内容、理论基础、代表性成果及方法。并以书中知识为基础,查阅资料,浅谈人工智能在自动化技术中的应用!

关键字:人工智能;自动化

《人工智能及其应用》主要内容

人工智能(ArtificialIntelligence,AI)是当前科学技术发展的一门前沿学科,同时也是一门新思想,新观念,新理论,新技术不断出现的新兴学科以及正在发展的学科。

它是在计算机科学,控制论,信息论,神经心理学等多种学科研究的基础发展起来的,因此又可把它看作是一门综合性的边缘学科。

它的出现及所取得的成就引起了人们的高度重视,并取得了很高的评价。有的人把它与空间技术,原子能技术一起并誉为20世纪的三大科学技术成就。《人工智能及其应用》一书主要介绍人工智能问题求解的一般性原理和基本思想,为学生提供最基本的人工智能技术和有关问题的入门性知识。

人工智能研究的基本内容有:知识表示机器感知、机器思维、机器学习、机器行为。其研究途径存有:以符号处理为核心的方法,其主张通过运用计算机科学的方法进行研究,实现人工智能在计算机的模拟。目前人工智能的大部分研究成果都是基于前者方法实现的。还有一种是以网络连接为主的连接机制方法。主张用生物学的方法进行研究,搞清楚人类智能的本质.该方法在模式识别、图像信息压缩等方面取得了一些研究成果。

人工智能的主要研究领域有:自动定理证明和博弈、模式识别、专家系统、机器人、机器视觉、自然语言理解、自动程序设计、智能信息检索、数据挖掘与知识发现、组合优化问题、人工神经网络、分布式人工智能、智能管理与智能决策、智能控制、智能仿真、智能CAD、智能CAI、智能操作系统、智能多媒体系统智能计算机系统、智能通信、智能网络系统。人工智能研究搏奕的目的并不是为了让计算基于人进行下棋、打牌之类的游戏,而是通过对搏奕研究来检验某些人工智能技术是否达到对人类智能的模拟,因为搏奕是一种智能性很强的竞争活动。

知识表示

知识是智能的基础。为了使计算机具有智能,使它能模拟人类的智能行为,就必须使它具有知识。但知识是需要用适当的模式表示出来才能存储到计算机中去的,故许多人研究知识的表示方法!

知识的表示方法有:一阶谓词逻辑表示法、产生式表示法、框架表示法、语义网络表示法。一阶谓词逻辑表示法多应用于自动问答系统(例如Green等人研制的QA3系统)、机器人行动规划系统(Fikes等人研制的STRIPS系统)、机器博弈系统(Filman等人研制的FOL系统)、问题求解系统(Kowalski等设计的PS系统)。语义网络表示法的应用也很广泛,例如Walker研制的自然语言理解系统,Garbonell研制的回答地理问题的教学系统,Mytopoulous研制的自然语言理解系统,Simmon研制的自然语言理解系统,Hays研制的描写概念的系统。一般把把一组产生式放在一起,让它们相互配合、协同作用,一个产生式生成的结论可以供另一个产生式作为已知事实使用,以求得问题的解,形成一个产生式

系统。动物识别系统就是利用产生式系统做成!

推理

推理是人脑的基本功能,推理也是人工智能的重要内容!

在人工智能中,认为推理是从已知事实(证据)出发,通过运用相关知识逐步推出结论或者证明某个假设成立或不成立的一个思维过程。其推理方法有确定性推理和不确定推理等。确定性推理方式分为演绎推理、归纳推理、默认推理。分为自然演绎推理和归结演绎推理!且归结演绎推理一般应用谓词公式化为子句集的方法,应用海伯伦定理和鲁宾逊归结原理,以及应用归结反演求解问题。其推理的方向分为正向推理、反向推理、正反向混合推理、双向推理。其冲突消解策略有按针对性排序、按已知事实的新鲜性排序、按匹配度排序、按条件个数排序、按上下文限制排序、按冗余限制排序、根据领域问题的特点排序。AI的研究对象,大多具有不确定性。大多用不确定性推理法。

人工智能定义不确定性推理为从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的一种思维过程。不确定性推理方法有概率方法、经典概率方法、逆概率方法主观Bayes方法、可信度方法、证据理论、模糊推理方法。

搜索求解策略

搜索是问题求解的核心技术!

搜索求解策略分为盲目的图搜索和启发式图搜索策略,以及与/或图搜索策略。盲目的图搜索策略有分为回溯策略、宽度优先搜索策略、深度优先搜索策略。搜索方向分为双向搜索、盲目搜索与启发式搜索。

自动化

自动化是研究与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是自动化和人工智能研究的交汇点。积极运用人工智能的知识。

自动化设备和机器的关键就在于反馈的存在,正是有了他的存在,才使自动化成为可能。反馈就是自动化的奥妙所在。

如今自动化的前沿技术有:模糊控制、最优控制、自适应控制、鲁棒控制、线性控制理论纵横、PID控制、预测控制、故障诊断、专家系统、推理控制、集散控制系统(DCS)、人工智能。

人工智能在故障诊断中的应用

人工智能在故障诊断中的应用。随着现代科学技术的发展,故障诊断技术和方法也不断推陈出新,正走向智能化阶段。人工智能的发展为故障诊断提供了智能化的诊断方法.故障诊断专家系统不仅在理论上得到了相当大的发展.人工神经网络的研究也进入到了故障诊断领域,并大力发展,并已在许多实际系统中得到了很好的应用。此外.模糊理论、模糊逻辑系统也已经应用到故障诊断领域,并且与人工神经网络和专家系统互相结合,突显出其独特的优势,成为一种很有价值的故障诊断方法。

人工智能在电力系统运行控制中的应用

因为人工智能技术(AI)广泛应用于求解非线性问题中,在电力系统的控制、管理、运行等领域发挥着重要的作用。专家系统、人工神经网络、模糊集理论和启发式搜索等人工智能技术在电力系统中被广泛应用!

人工智能在智能传感器领域的应用

人工智能也广泛应用于智能传感器领域。大家都知道传感器在自动化信息系统中的重要性不言而喻,它的特性的好坏、输出信息的可靠性对整个系统的质量至关重要。结合人工智能的四个分支:模糊逻辑、人工神经网络、专家系统、遗传算法而广泛应用传感器领域。并而人类在人工智能方面取得的进展为人工智能与传感器技术的结合。造就了许多新型智能传感器的出现!

人工智能在电气传动中的运用

人工智能在电气传动中也被广泛运用。智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中得到广泛应用。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。

自动化技术在各行各业中被广泛应用!例如自动化技术在工业中的应用:自动化的制造业、电力系统自动化、建筑自动化、交通运输自动化、信息自动化、自动无极限。自动化技术在军事中的应用:新型自动化武器,军事指挥自动化。自动化在生活中的应用更是比比皆是!总而言之,自动化技术结合人工智能让我们的生活越来越美好!

参考文献

[1]:王万良《人工智能及其应用》(第2版)高等教育出版社,2008.6

《人工智能心得体会.doc》

将本文的Word文档下载到电脑,方便编辑。

相关专题

【人工智能学习心得_人工智能学习心得怎么写】范文118

2023-03-12

人工智能总结(精华版)4500字

1PROLOG程序一般由一组事实规则和问题组成事实一般表示对象的性质或关系规则一般表示对象间的因果关系蕴含关系或对应关系问题表示用户的询问是程序运行的目标问题是程序执行的起点称为程序的目标PROLOG就是一种基...

2023-03-12

人工智能期末总结4300字

1人工智能是何时何地怎样诞生的19xx年夏季美国的一些从事数学心理学计算机科学信息论和神经学研究的年轻学者汇聚在Dartmouth大学举办了一次长达两个月的学术讨论会认真而热烈的讨论了用机器模拟人类智能的问题在...

2023-03-12

人工智能知识点总结12700字

仅供内部人士专用CHW一概论1人工智能是由计算机科学控制论信息论神经生理学心理学语言学等构成2智能科学研究智能的基本理论和实现技术是由脑科学认知科学人工智能等学科构成的交叉学科3认知cognition是和情感动...

2023-03-12

人工智能总结4700字

形象思维抽象思维灵感思维人工智能的核心内容搜索技术推理技术知识表示人工智能语言应用领域专家系统知识库系统决策支持系统自然语言理解智能机器人模式识别知识表示方法谓词逻辑表示法语义网络表示法结构性好明确简洁直观推理...

2023-03-17

智能机器人心得体会800字

很庆幸能够选修《智能机器人》这门课,通过了这门课使我对智能机器人有了一个更加清晰的认识,同时也激起了我对此方面的研究的兴趣。之前就对机器视觉,认知心理学,机器学习和人工智能颇感兴趣,并对此进行了深入的了解,通过…

2023-03-12

人工智能及其应用课程总结2000字

人工智能及其应用课程总结20世纪40年代计算机的发明揭开了人类发展的新篇章使得人类追寻已久的脑力劳动机械化问题获得了解决的方法和途径计算机能够代替人类大脑进行复杂的计算并且能够根据计算对某些问题做出判断从某种程...

2023-03-12

人工智能期末总结8200字

1谈谈你对于人工智能的认识人工智能就是人造智能目前指用计算机模拟或实现的智能因此人工智能又称机器智能人工智能在我看来应该是像人一样思考的系统像人一样行动的系统理性地思考的系统理性地行动的系统是像人一样具有感知的...

2023-03-11

人工智能十大算法总结2600字

51简述机器学习十大算法的每个算法的核心思想工作原理适用情况及优缺点等1C45算法ID3算法是以信息论为基础以信息熵和信息增益度为衡量标准从而实现对数据的归纳分类ID3算法计算每个属性的信息增益并选取具有最高增...

2023-03-06

人工智能与专家系统感想4300字

姓名万伟学号1120xx0924人工智能与专家系统感想人工智能ArtificialIntelligence英文缩写为AI它是研究开发用于模拟延伸和扩展人的智能的理论方法技术及应用系统的一门新的技术科学人工智能是...

2023-03-12

智能控制技术的发展现状及心得体会5000字

智能控制技术的发展现状及心得体会摘要在此综述了智能控制技术的现状及发展首先简述智能控制的性能特点及主要方法然后介绍智能控制在各行各业中的应用现状接着论述智能控制的国内外发展和现状随着信息技术的发展许多新方法和技...

人工智能导论心得1000字合集-百度文库

考研心得

1000

一位凡者问哲人:

"

为什么我活得这么累?

",

哲人对其说

:"

背上

这个小背篓,沿着这条沙砾路走下去,每走一步捡一块石头放进你

的背篓。

"

在路的尽头,凡人背着沉重的背篓,十分痛苦,当他再次

见到了哲人时

,

哲人说:

"

当我们来到这个世界上,我们也背着一个

小背篓,然而我们每走一步都想要从这个世界上捡一样东西放进

去,比方金钱比方名利,在生命的旅程中,我们就感觉自己活得越

来越累!

" 

我想看到这个故事,都会知道我要说的意思了。从准备考研那

天起,我们就把所有的焦虑和向往,放弃与希望一个一个捡起来,

放到心里这个篓子。到了现在,在考研这场战役临近的时候,它们

越来越不安分了。总是想要放弃,因为篓子里装了太多的恐惧和不

自信。

冲刺的这个时候,所以的担忧都会在瞬间一拥而上:我复习的

一点都不充分,现在如何是好?就剩下这么一点时间了,我无论多

努力又有什么用?万一我考不上、又没有工作,这可怎么办?诸如

此类的不良情绪,很容易在最后阶段不断干扰复习。所以,我想和

大家分享一点心态上的经历,就是:在考研这场角斗中,是

"

"

为王。

顾名思义,也就是说,谁能坚持到最后,谁就能胜利。研究生

入学考试的内容很繁杂,没有人能在短时间内尽善尽美,只有能坚

持不断去完善,才能到达自己最完美的状态,在和其他人的比赛中

多争取一点优势。在几个月漫长的备战中,不少人中途就放弃了,

有的是找到了别的归宿,比方一份不错的工作,有的是由于自身的

惰性没有坚持下来,还有人虽然会去参加考试,但其实早就放弃复

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇