人工智能导论——人工智能的主要学派及主张
目前对人工智能研究影响较大的的学派主要有符号主义、联结主义和行为主义这三大学派。
(1)符号主义(symbolicism),又称为逻辑主义(logicism)、心理学派(psychologism)或计算机学派(computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
主张:该学派认为人工智能源于数理逻辑。数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又再计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,证明了38条数学定理,表了可以应用计算机研究人的思维多成,模拟人类智能活动。该学派认为人类认知和思维的基本单元是符号,而认知过程就是在符号表示上的一种运算。符号主义致力于用计算机的符号操作来模拟人的认知过程其,实质就是模拟人的左脑抽象逻辑思维,通过研究人类认知系统的功能机理,用某种符号来描述人类的认知过程,并把这种符号输入到能处理符号的计算机中,从而模拟人类的认知过程,实现人工智能。
(2)联结主义(connectionism),又称为仿生学派(bionicsism)或生理学派(physiologism),其主要原理为神经网络及神经网络间的连接机制与学习算法。
主张:其原理主要为神经网络和神经网络间的连接机制和学习算法。这一学派认为人工智能源于仿生学,特别是人脑模型的研究。联结主义学派从神经生理学和认知科学的研究成果出发,把人的智能归结为人脑的高层活动的结果,强调智能活动是由大量简单的单元通过复杂的相互连接后并行运行的结果。其中人工神经网络就是其典型代表性技术。 它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。
(3)行为主义(actionism),又称为进化主义(evolutionism)或控制论学派(cyberneticsism),其原理为控制论及感知-动作型控制系统。
主张:认为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。
就人工智能三大学派的历史发展来看,符号主义认为认知过程在本体上就是一种符号处理过程,人类思维过程总可以用某种符号来进行描述,其研究是以静态、顺序、串行的数字计算模型来处理智能,寻求知识的符号表征和计算,它的特点是自上而下。而联结主义则是模拟发生在人类神经系统中的认知过程,提供一种完全不同于符号处理模型的认知神经研究范式。主张认知是相互连接的神经元的相互作用。行为主义与前两者均不相同。认为智能是系统与环境的交互行为,是对外界复杂环境的一种适应。
内容主要来自于《人工智能及其应用》
人工智能三大主要学派:符号主义、连接主义、行为主义
人工智能的发展,在不同的时间阶段经历了不同的流派,并且相互之间盛衰有别。目前人工智能的主要学派有下列三家:
符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统,即符号操作系统,假设和有限合理性原理。
连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。
行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
会发现三者的根源依据存在着较大的差异性,也为后世的学派发展产生了较为深远的影响。
符号主义(优秀的老式人工智能)
认为人工智能源于数理逻辑,主张用公理和逻辑体系搭建一套人工智能系统。代表的有支持向量机(SVM),长短期记忆(LSTM)算法。
数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。
正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法>专家系统>知识工程理论与技术,并在20世纪80年代取得很大发展。
符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。
优点:越来越多的人认识到,高风险决策领域对人工智能系统有需求,因此这些系统的行为要有可验证性与可解释性,而这恰恰是符号主义AI的优势,联结主义算法的短板。
不足:虽然符号主义AI技术可以处理部分不可观察概率模型,但这些技术并不适用于有噪输入信号,也不适用于无法精确建模的场合。在那些可以准确判断出特定条件下特定动作利弊与否的场合中,它们会更有效。此外,算法系统还要提供适当的机制来实现清晰的规则编码与规则执行。
符号主义算法会剔除不符合特定模型的备选值,并能对符合所有约束条件的所求值做出验证,以后者而言,符号主义AI远比联结主义AI便捷。因为符号主义AI几乎或根本不包括算法训练,所以这个模型是动态的,能根据需要迅速调整
连接主义(壮年最普遍的人工智能)
认为人工智能源于仿生学,神经网络,特别是对人脑模型的研究,主张模仿人类的神经元,用神经网络的连接机制实现人工智能。
它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。
它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。
直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播(BP)算法。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,伟神经网络计算机走向市场打下基础。
现在,对人工神经网络(ANN)的研究热情仍然较高,但研究成果没有像预想的那样好。
行为主义
行为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论,和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。
控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。
到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。
这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。
总结
三大主义,从不同的侧面研究了人的自然智能,与人脑的思维模型有着对应的关系。粗略地划分,可以认为
符号主义研究抽象思维;
连接主义研究形象思维;
而行为主义研究感知思维。
研究人工智能的三大学派、三条途径发挥到各个领域,又各有所长。
符号主义注重数学可解释性;
连接主义偏向于仿人脑模型,更加感谢;
行为主义偏向于应用和模拟。
关于人工智能,你应该知道的四个关键人物
图灵测试用来区分机器能否在智力行为上表现得和人无法区分。图灵在《计算机与智能》这篇论文的开篇提出一个问题“机器是否能思考?”,为了检测这一问题,图灵提出了模仿游戏:这场测试中有A、B、C三个主体,A是机器,B是拥有正常思维的人,A和B坐在房间里,C是坐在房间外的裁判。裁判C对机器A和正常人B进行询问,如果他没有办法区别机器和人类,那么机器A就通过了图灵测试(参考维基百科)。
图灵测试示例(图片来自网络)
1956年召开的达特茅斯会议被普遍认为是人工智能的起源,这次会议的主要发起人有当时在达特茅斯学院数学系任教的麦卡锡(JohnMcCarthy)及在哈佛大学任教的明斯基(MarvinMinsky)。
达特茅斯学院(DartmouthCollege)
麦卡锡出生在波士顿,他的父亲是一位爱尔兰移民,爱好发明。母亲是热心于女权运动的立陶宛犹太人。1944年,麦卡锡在加州理工大学攻读数学专业,因为初中自学了大学低年级的高等数学,进入加州理工的头两年得以免修数学。1948年麦卡锡在普林斯顿大读研期间,受到冯·诺依曼的影响,开始尝试在计算机上模拟人的智能。
麦卡锡博士毕业后,在普林斯顿大学担任讲师,在那里遇到了志趣相投的友人明斯基。随后,麦卡锡转至斯坦福大学做了2年的助理教授,又受到达特茅斯学院数学系系主任克门尼(JohnKemeny)的邀请,前往达特茅斯学院任教。
1956年,麦卡锡与明斯基、香农共同发起了达特茅斯会议,他为此次会议起名为“SummerResearchProjectonArtificialIntelligence(人工智能夏季研讨会)”。一般认为“ArtificialIntelligence(人工智能)”一词由麦卡锡发明,但也有学者指出麦卡锡在晚年回忆这个词是他从别人那里听来的,随着麦卡锡的离世,这一学术用语的发明人也成了谜。
1959年,麦卡锡开发了著名的LISP语言(ListProcessinglanguage),成为人工智能界第一个最广泛流行的语言,1971年麦卡锡获得图灵奖。
1927年,明斯基出生在纽约的一个犹太家庭,曾在布朗士科学高中(theBronxHighSchoolofScience,纽约最著名的三所老牌高中之一)和菲利普斯学院(thePhillipsAcademy,美国最知名的私立中学)就读。1945年高中毕业后明斯基入伍成为海军,退伍后他在哈佛大学主修数学专业,同时也选修电气工程、遗传学、心理学等多个学科的课程。
1950年他进入普林斯顿大学攻读数学博士,博士论文题为“神经网络和脑模型问题(NeuralNetsandtheBrainModelProblem)”,是对人工神经网络(ANNs)领域的早期贡献,1954年明斯基取得博士学位后留校任教。
1959年,明斯基和麦卡锡分别离开哈佛大学和达特茅斯学院,齐聚在麻省理工,共同创建了世界上第一个人工智能实验室——MITAILab(麻省理工人工智能实验室)。1969年,他被授予图灵奖,也是历史上第一位获此殊荣的人工智能学者。
明斯基作出重要贡献的领域,除了人工智能(机器学习、知识表示、常识推理、计算机视觉、机器人操作),还包括认知心理学、神经网络、自动机理论、符号数学,图形学和显微镜技术,他设计并制造了带有触觉传感器的机械手。
塞缪尔出生在堪萨斯州,1923年本科毕业于恩波利亚学院,1926年在麻省理工学院获得电气工程硕士学位。硕士毕业以后塞缪尔留在麻省理工担任讲师。1946年,塞缪尔在伊利诺伊大学担任电气工程系教授,并积极参与设计首批电子计算机,在那里他逐渐构思出一个跳棋程序。
1949年,塞缪尔加入位于纽约的IBM,参与研发晶体管和IBM的第一台存储程序计算机701。1956年,塞缪尔写出了跳棋程序,他发现与程序对弈的过程中,程序也下的越来越好,这是最早的机器学习程序之一,具备“自学习”的能力。
塞缪尔用IBM701计算机玩跳棋
1959年,塞缪尔创造了“机器学习”这个术语,并将其定义为:thefieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed(翻译仅供参考:此研究领域是计算机在不被明确编程的情况下,赋予它学习能力)。1966年,他从IBM退休,作为讲师和研究助理来到斯坦福大学,开启全新的职业生涯。
正是因为这些勇于探索和打破传统的科技巨人,才有了今天人工智能技术的飞跃。
参考资料:
1.尼克.《人工智能简史》[M].中国工信出版集团&人民邮电出版社,2017
2.SelmaSabanovic,StasaMilojevic,JasleenKaur.JohnMcCarthy[History][J].IEEERobotics&AutomationMagazine,2012
3.GeorgeStrawn,CandaceStrawn.MastermindsofArtificialIntelligence:MarvinMinskyandSeymourPapert[J].ITProfessional,2016
4.GioWiederhold,JohnMcCarthy.ArthurSamuel:PioneerinMachineLearning[J].IBMJournalofResearchandDevelopment,1992
【注:本文由Edubrain编辑整理】返回搜狐,查看更多