人工智能导论——人工智能的发展历史、现状及发展趋势
初学者学习人工智能有时候需要了解一些背景知识,我从网上简单搜集总结了下分享给大家。
一、人工智能的发展历史
人工智能的发展并非一帆风顺,总体呈“三起两落”趋势,如今算是迈进人工智能发展的新时代。
(1)梦的开始(1900--1956)。1900年,希尔伯特在数学家大会上庄严的向全世界数学家宣布了23个未解的难题。这23道难题中的第二个问题和第十个问题则和人工智能密切相关,并最终促进了计算机的发明。图灵根据第十个问题构想出了图灵机,它是计算机的理论模型,圆满的刻画了机械化运算过程的含义,并最终为计算机的发明铺平了道路。1954年,冯诺依曼完成了早期的计算机EDVAC的设计,并提出了“冯诺依曼体系结构”。总的来说,图灵、哥德尔、冯诺依曼、维纳、克劳德香农等伟大的先驱者奠定了人工智能和计算机技术的基础。
(2)黄金时代(1956--1974)。1965年,麦卡锡、明斯基等科学家举办的“达茅斯会议”,首次提出了“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。其后,人工智能研究进入了20年的黄金时代,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。在这个黄金时代里,约翰麦卡锡开发了LISP语音,成为以后几十年来人工智能领域最主要的编程语言;马文闵斯基对神经网络有了更深入的研究,也发现了简单神经网络的不足;多层神经网络、反向传播算法开始出现;专家系统也开始起步。
(3)第一次AI寒冬——反思发展(1974--1980)。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,过度高估了科学技术的发展速度。然而,接二连三的失败和预期目标的落空,使人工智能的发展走入低谷。1973年,莱特希尔关于人工智能的报告,拉开了人工智能寒冬序幕。此后,科学界对人工智能进行了一轮深入的拷问,使AI的遭受到严厉的批评和对其实际价值的质疑。随后,各国政府和机构也停止或减少了资金投入,人工智能在70年代陷入了第一次寒冬。计算能力有限、缺乏大量常识数据使发展陷入瓶颈,特别是过分依赖于计算力和经验数据量神经网络技术,长时期没有取得实质性的进展,特别是《感知器》一书发表过后,对神经网络技术产生了毁灭性的打击,后续十年内几乎没人投入更进一步的研究。专家系统在这个时代的末尾出现,并开启了下一个时代。
(4)应用发展(1980--1987)。专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。1980年卡耐基梅隆大学(CMU)研发的XCON正式投入使用,这成为一个新时期的里程碑,专家系统开始在特定领域发挥威力,也带动整个人工智能技术进入了一个繁荣阶段。沉寂10年之后,神经网络又有了新的研究进展,具有学习能力的神经网络算法的发现,这使得神经网络一路发展,在后面的90年代开始商业化,被用于文字图像识别和语音识别。
(5)第二次AI寒冬——低迷发展(1987--1993)。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。人工智能领域当时主要使用约翰麦卡锡的LISP编程语言,逐步发展的LISP机器被蓬勃发展的个人电脑击败,专用LISP机器硬件销售市场严重崩溃,人工智能领域再一次进入寒冬。硬件市场的溃败和理论研究的迷茫,加上各国政府和机构纷纷停止向人工智能研究领域投入资金,导致了数年的低谷,但另一方面也取得了一些重要成就。1988年,美国科学家朱迪亚·皮尔将概率统计方法引入人工智能的推理过程中这对后来人工智能的发展起到了重大影响。IBM的沃森研究中心把概率统计方法引入到人工智能的语言处理中;1992年,李开复使用统计学的方法,设计开发了世界上第一个扬声无关的连续语音识别程序;1989年,AT&T贝尔实验室的雅恩·乐昆和团队使用卷积神经网络技术,实现了人工智能识别手写的邮政编码数字图像。
(6)稳健发展(1993--2011)。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1995年,理查德华莱士开发了新的聊天机器人程序Alice,它能够利用互联网不断增加自身的数据集,优化内容。1997年,IMB的计算机深蓝Deepblue战胜了人类世界象棋冠军卡斯帕罗夫。1997年,德国科学霍克赖特和施米德赫伯提出了长期短期记忆(LSTM)这是一种今天仍用于手写识别和语音识别的递归神经网络,对后来人工智能的研究有着深远影响。2004年,美国神经科学家杰夫·霍金斯出版的《人工智能的未来》一书中提出了全新的大脑记忆预测理论,指出了依照此理论如何去建造真正的智能机器,这本书对后来神经科学的深入研究产生了深刻的影响。2006年,杰弗里辛顿出版了《LearningMultipleLayersofRepresentation》奠定了后来神经网络的全新的架构,至今仍然是人工智能深度学习的核心技术。
(7)新时代(2012--至今)。随着移动互联网技术、云计算技术的爆发,积累了历史上超乎想象的数据量,这为人工智能的后续发展提供了足够的素材和动力,以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。。人工智能,大数据,云计算,物联网技术,共同构成了21世纪第二个十年的技术主旋律。2012年,由多伦多大学在ImageNet举办的视觉识别挑战赛上设计的深度卷积神经网络算法,被业内认为是深度学习革命的开始。2014年,伊恩·古德费罗提出GANs生成对抗网络算法,这是一种用于无监督学习的人工智能算法,这种算法由生成网络和评估网络构成,这种方法很快被人工智能很多技术领域采用。2016年和2017年,谷歌发起了两场轰动世界的围棋人机之战,其人工智能程序AlphaGo连续战胜曾经的围棋世界冠军韩国李世石,以及现任的围棋世界冠军中国的柯洁,引起巨大轰动。语音识别、图像识别、无人驾驶等技术不断深入。
二、人工智能的发展现状 主要表现在以下几个方面:(1)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平等。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,在局部智能水平的单项测试中可以超越人类智能,形成了人工智能领域的单点突破。(2)通用人工智能尚处于起步阶段。目前,虽然专用人工智能领域已取得突破性进展,人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,与人类智慧还相差甚远。(3)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。各国及大型互联网公司在人工智能领域的投资日益攀升,全球和中国人工智能行业投融资规模都呈上涨趋势。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。2018年,中国人工智能领域融资额高达1311亿元。人工智能领域处于创新创业的前沿。(4)创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。(5)人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。三、人工智能的发展趋势:(1)从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。(2)从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。(3)从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。(4)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。(5)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。(6)人工智能产业将蓬勃发展,人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。美国、中国、印度以及西欧等国纷纷布局人工智能产业。中国在论文总量和高被引论文数量上都排在世界第一,中科院系统AI论文产出全球第一,中国在人才拥有量全球第二,但杰出人才占比偏低。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。(7)人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。 以上内容主要来自《人工智能的历史、现状和未来》 谭铁牛《求是》2019/04
人工智能(AI)革命性提升了人类的生活质量和工作效率
作为引领第四次科技革命的颠覆性技术,人工智能(AI)当前正广泛应用于工业制造、医疗、教育、农业、科学研究和公共事业等多个领域,革命性提升了人类的生活质量和工作效率,成为驱动数字经济增长和产业升级的关键要素之一。当前的AI以物联网、大数据、智能算法等先进技术为支撑,赋“物”以智,辅助和代替人类执行多种复杂任务,不仅大幅提高了生产力水平,也对经济和社会总体发展影响深远。与此同时,AI强大的赋能作用和可观的应用前景也引得全球资本趋之若鹜。实力强大的谷歌、微软、脸书、亚马逊、苹果等科技巨头公司近年来积极布局AI基础算力、数据,算法、框架、硬件,以及应用平台和场景解决方案等全产业链,积聚了大量开发人员和用户。不仅如此,巨头们还频频出手收购领先的AI初创公司,以确保自身对突破性技术和应用的强势掌控,进而塑造了AI行业的垄断格局。以谷歌公司为例,自2007年以来,谷歌至少收购了30家AI初创公司,涵盖当前大部分主流AI应用。尽管谷歌目前还不是AI发展的绝对掌控者,但已经在很大程度上拥有了左右产业和技术总体演进方向的影响力。人们不禁要问,AI作为一项对人类发展全局举足轻重的技术,若长期仅由几家科技巨头公司主导掌控,是否符合科技向善、普惠大众的基本价值取向?AI技术垄断有可能造成哪些潜在风险?基于AI治理的维度,各国政府可以采取哪些行动?今年8月,美国塔夫茨大学弗莱彻法律与外交学院全球商业研究所主任巴斯卡·查克拉维蒂(BhaskarChakravorti)在美国《外交政策》(ForeignPolicy)杂志官网发表评论文章《科技巨头公司对AI的掌控必须受到监管》(BigTech’sStrangleholdonArtificialIntelligenceMustBeRegulated),对上述现象和问题予以解析,并提出了政策建议。巴斯卡·查克拉维蒂(BhaskarChakravorti)首先回顾了2016年全球AI产业初步兴起时的数据。当时全球关于人工智能研究、开发和收购的总金额约在260亿至390亿美元之间,其中200亿至300亿美元均来自于谷歌、微软等科技巨头公司。它们不仅在搜索、社交媒体、在线零售和应用商城中占据主导地位,还掌握着海量用户数据。近年来,美国的人工智能人才也逐渐呈现高度集中态势,亚马逊、谷歌、微软、脸书和苹果这五家公司的人工智能人才数量的中位值约为18000人,而紧随其后第六至二十四名的公司拥有人才的中位数仅为2500人,之后的公司拥有量则更少。此外,对数据和知识的分享也随之成为一个问题。例如,谷歌收购的DeepMind公司最近研发了一项可以从细胞的DNA中预测人体内每一种蛋白质结构的AI技术,这极有可能触发世界生物和医学研究的众多突破性发现。然而,科学界首先要获得谷歌的允许才可以使用DeepMind创造出的知识,用以以开展后续研究。换言之,科技巨头公司对AI技术、人才和数据的主导掌控有可能限制其他人和机构利用该项技术,甚至妨碍科技进步。与此同时,鉴于AI本身是一项对人类兼具积极和消极双重影响的新兴技术,如果仅掌握在少数巨头公司手中,缺乏公众监督和参与,将很难避免潜在的风险与负面影响。一方面,巨头公司运营的网络平台多以定向广告推送为其重要利润来源,自然会优先考虑研发有助于提升定向推送精准度的人工智能应用,且有意无意地忽略其他更具社会公益价值的技术创新。由此导致的研发投资分布不均会对AI产业整体健康发展产生不利影响。另一方面,巨头公司往往倾向于“前瞻性”收购尚处于初创阶段的AI科技公司,主要用于支持其网络平台已有产品线,但这又会抑制AI技术取得更深入创新突破的可能性。有鉴于此,巴斯卡·查克拉维蒂(BhaskarChakravorti)提出,各国都应对科技巨头公司过度掌控AI技术和产业链的问题加以规范和监管。他还建议美国政府相关决策部门尽快采取三项行动:第一,通过美国国家科学基金会等联邦研究机构大幅增加对AI的公共投资,以对冲私有资本“野蛮收购”的负面影响,维护更多样化的创新技术研发;第二,整合创建统一的AI技术治理框架,改变当前全国上下治理规则碎片化的局面,以遏制AI有害影响,并有效保护用户隐私;第三,升级现行反垄断机制。长期以来,美国政府对科技巨头公司的反垄断执法更多集中于改变它们在社交媒体、搜索、应用商店和在线零售上的压倒性控制地位,对处置技术垄断削弱数字经济市场竞争的问题重视不足。并且,政府对互联网平台更偏重事后监管的模式也不尽合理,应强化关于事前防范、过程监督的机制建设,为科技初创企业的生存发展营造良好环境。此外,政府还可考虑适当发挥反垄断执法的杠杆功能,激励科技巨头公司优先研发对全社会有益的人工智能应用,并向公众开放相关数据。互联网生态所具有的扁平化和去中心化等特点曾令不少人预期世界将变得更加平等、透明,垄断现象也会渐趋消失。然而,现实却未尽如人意。迈入数字经济时代,市场垄断问题不但没有减少,反而出现了不同于传统经济的诸多新垄断形态。众所周知,垄断将阻碍数字产业整体发展、减缓创新,最终损害用户利益。当科技巨头公司对AI的掌控渐成垄断之势,尽快在国家层面制定针对性公共政策,深刻创新AI治理与监管机制,已成为保持数字经济活力,成就可持续发展的迫切需要。
浅谈人工智能的伦理问题
浅谈人工智能的伦理问题
资料整理,仅供参考
引言2018 年3月 18日晚上 10 点左右,伊莱恩·赫兹伯格(ElaineHerzberg)骑着自行车穿过亚利桑那州坦佩市的一条街道,突然间被一辆自动驾驶汽车撞翻,最后不幸身亡。这是一辆无人自动驾驶汽车,尽管车上还有一位驾驶员,但车子由一个完全的自驾系统(人工智能)所控制。与其他涉及人与AI技术二者之间交互的事件一样,此事件引发了人们对人工智能中道德和法律问题的思考。系统的程序员必须履行什么道德义务来阻止其研发产品导致人类的生命受到威胁?谁对赫兹伯格的死负责?是该自动驾驶汽车公司测试部们?人工智能系统的设计者,甚至是机载传感设备的制造商?
关于人工智能的伦理讨论一直在进行,从人工智能研究的开始,重点主要集中在讨论可能性和对未来影响的理论工作,但对人工智能实际应用中研究讨论较少。尽管学术界对人工智能伦理道德的关系进行探讨已经持续了几十年,但并没有得出普遍的人工智能伦理是什么,甚至应该如何定义命名也没有统一规范化。近年来,随着社会科技技术的不断发展,人工智能的发展取得重大的突破。人工智能相关伦理研究讨论日益广泛,影响着我们的生活。在当前AI伦理受到越来越多讨论研究的背景下,本文主要通过对一些案例分析人工智能的伦理问题,结合本学期《工程伦理》课程所学,谈谈自己的理解与收获。
人工智能及其案例讨论分析“人工智能”被设计为一种为从环境中获取因素的系统,并基于这些外界的输入来解决问题,评估风险,做出预测并采取行动。在功能强大的计算机和大数据时代之前,这种系统是由人类通过一定的编程及结合特定规则实现,随着科学技术的不断进步,新的方法不断出现。其中之一是机器学习,这是目前AI最活跃最热门的领域。应用统计学的方法,允许系统从数据中“学习”并做出决策。关注技术的进步,我们更关注的是在极端情况下的伦理问题。例如在一些致命的军事无人机中使用AI技术,或者是AI技术可能导致全球金融体系崩溃的风险等。
对大量的数据进行汇总分析,我们可以利用AI技术帮助分析贷款申请人的信誉,决定是否给予贷款以及额度,同时也可以对应聘者进行评估,决定是否录取,还可以预测犯罪分子再次犯罪的几率等等。这些技术变革已经深刻影响着社会,改变着人们生活。但是,此类技术应用也会引发一些令人困扰的道德伦理问题,由于AI系统会增强他们从现实世界数据中学到的知识,甚至会放大对种族和性别偏见。因此,当遇到不熟悉的场景时,系统也会做出错误的判断。而且,由于许多这样的系统都是“黑匣子”,人们往往很难理解系统做出判断的内在原因,因此难以质疑或探究,给人们决策带来风险。举几个具体例子:2014年,亚马逊开发了一种招聘工具,用于识别招聘的软件工程师,结果该系统却表现出对妇女的歧视,最后该公司不得不放弃了该系统。2016年,ProPublica在对一项商业开发的系统进行了分析,该系统可预测罪犯再次犯罪的可能性,旨在帮助法官做出更好的量刑决定,结果也发现该系统对黑人有歧视偏见。在过去的两年中,自动驾驶汽车在依靠制定的规则和训练数据进行学习,然而面对陌生的场景或其系统无法识别的输入时,无法做出正确判断,从而导致致命事故。
由于这些系统被视为专有知识产权,因此该私人商业开发人员通常拒绝提供其代码以供审查。同时,技术的进步本身并不能解决AI核心的根本问题—经过深思熟虑设计的算法也必须根据特定的现实世界的输入做出决策。然而这些输入会有缺陷,并且不完善,具有不可预测性。计算机科学家比其他人更快地意识到,在设计了系统之后,不可能总是事后解决这些问题。越多人认识到道德伦理问题应该被当作在部署一个系统前所要考虑的一个问题。
对失业、不平衡问题的讨论与思考人工智能的重要的道德和伦理问题,既是社会风险的前沿,也是社会进步的前沿。我们讨论两个突出问题:失业、不平衡问题。
1.失业
几十年来,为了释放人类劳动,我们一直在制造模仿人类的机器,让机器替代我们更有效地执行日常任务。随着经济的飞速发展,自动化程度越来越高,大量新发明出现在我们生活中,使我们的生活变得更快,更轻松。当我们使用机器人替代我们人类完成任务,即让手工完成的工作变成自动化时,我们就释放了资源来创建与认知而非体力劳动有关的更复杂的角色。这就是为什么劳动力等级取决于工作是否可以自动化的原因(例如,大学教授的收入比水管工的收入还多)。麦肯锡公司最近的一份报告估计,到2030年,随着全球的自动化加速,接近8亿个工作岗位将会消失。例如,随着自动驾驶系统兴起,AI技术引发了人们对失业的忧虑,大量的卡车司机工作岗位可能受到威胁。我们人类将有史以来第一次开始在认知水平上与机器竞争。最可怕的是,它们比我们拥有更强大的能力。也有一些经济学家担心,作为人类的我们将无法适应这种社会,最终将会落后与机器。
2.不平衡
设想没有工作的未来会发生什么?目前社会的经济结构很简单:以补偿换取贡献。公司依据员工一定量的工作来支付其薪水。但是如果借助AI技术,公司可以大大减少其人力资源。因此,其总收入将流向更少的人。那些大规模使用新技术的公司,其少部分人将获得更高比例的工资,这导致贫富差距在不断扩大。在2008年,微软是唯一一家跻身全球十大最有价值公司的科技公司。苹果以39位居第二,谷歌以51位居第三。然而,到2018年,全球十大最有价值公司前五名均是美国科技公司。
当今世界,硅谷助长了“赢者通吃”的经济,一家独大的公司往往占据大部分市场份额。因此,由于难以访问数据,初创企业和规模较小的公司难以与Alphabet和Facebook之类的公司竞争(更多用户=更多数据,更多数据=更好的服务,更好的服务=更多的用户)。我们还发现一个现象,就是这些科技巨头创造的就业机会相比于市场上其他公司往往少很多。例如,1990年,底特律三大公司的市值达到650亿美元,拥有120万工人。而在2016年,硅谷三大公司的价值为1.5万亿美元,但只有190,000名员工。那么如今技能变得多余的工人将如何生存,这样趋势下去会不会引发社会暴乱,科技巨头应不应该承担更多的社会责任,这些都是值得我们思考的问题。
人工智能伦理问题建议由上文可知,缺乏对伦理的认知,会对社会及人类生活造成的一定风险,因此,为加强AI伦理因素在实际应用的正确导向作用,应从以下几个方面入手:
1.明确定义道德行为
AI研究人员和伦理学家需要将伦理价值表述为可量化的参数。换句话说,他们需要为机器提供明确的答案和决策规则,以应对其可能遇到的任何潜在的道德困境。这将要求人类在任何给定情况下就最道德的行动方针达成共识,这是一项具有挑战性但并非不可能的任务。例如,德国自动驾驶和互联驾驶道德委员会提出:建议将道德价值观编程到自动驾驶汽车中,以优先保护人类生命为重中之重。在不可避免的致命撞车事故发生时,汽车不应基于年龄,性别、身体或心理构造等个人特征来选择是否要杀死一个人。
2.众包人类道德伦理
工程师需要收集足够的关于明确道德伦理标准的数据,以适当地训练AI算法。即使在为道德价值观定义了特定的指标之后,如果没有足够的公正数据来训练模型,那么AI系统可能仍会难以取舍。获得适当的数据具有挑战性,因为道德伦理规范不能始终清晰地标准化。不同的情况需要采取不同的方针,在某些情况下可能根本没有单一的道德伦理行动方针。解决此问题的一种方法是将数百万人的道德伦理困境的潜在解决方案收集打包。例如,麻省理工学院的一个项目,其展示了如何在自动驾驶汽车的背景下使用众包数据来有效地训练机器以做出更好的道德决策。但研究结果还表明,全球道德价值观可能存在强烈的跨文化差异,在设计面向人的AI系统时也要注意考虑这一因素。
3.使AI系统更加透明
政策制定者需要实施指导方针,使关于伦理的AI决策,尤其是关于道德伦理指标和结果的决策更加透明。如果AI系统犯了错误或产生了不良后果,我们将不能接受“ 算法做到了 ”作为借口。但是我们也知道,要求完全算法透明性在技术上不是很有用。工程师在对道德价值进行编程之前应该考虑如何量化它们,以及考虑运用这些人工智能技术而产生的结果。例如,对于自动驾驶汽车,这可能意味着始终保留所有自动决策的详细日志,以确保其道德伦理责任。
结束语伦理问题的出现是工程活动发展的必然要求。以人工智能技术为基础的现代工程活动日益复杂,对自然和社会的影响越来越深刻。同时,作为工程活动中的关键角色,工程师群体在一定意义上具有改变世界的力量。正所谓“力量越大,责任也就越大”。工程师在一般的法律责任之外,还负有更重要的道德责任。作为AI领域的工程技术人员,不断创新人工智能技术的同时也要关注实际应用中的伦理道德,相信人工智能技术可以让世界变得更加美好!