人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能论文2000字范文(精选8篇)
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。本文精选了8篇最新"人工智能论文范文",以供大家参考和研究。
人工智能论文2000字范文一:浅谈人工智能与机器人的发展
摘要:随着社会经济的飞速发展,在当今信息时代,人工智能与机器人已经属于前沿研究领域。在大部分人的意识中,对机器人是有一定概念的。但是这种概念,更多的是通过科幻小说的描写和人们的想象得到的。在现实发展过程中,虽然也有机器人的身影,但是版本都太低,仅停留在表面,智能效果并不好,在发展阶段还处于突破阶段,人工智能也同样如此。人工智能与机器人发展这两者是相辅相成的,目前对机器人研究要发展,其突破方向就是培养高智商的机器人。该文从人工智能发展史、人工智能在发展中所遇到的困境以及人工智能在机器人领域中的发展三个方面来做具体阐述,为以后相关行业人员,提供参考订阅。 关键词:人工智能;机器人;自动化;发展趋势 人工智能与机器人都同属于计算机的分支,是从20世纪中叶兴起来的。从定义上来讲,理解起来还算简单,但是对工智能与机器人比较难定义。虽然大家都清楚这两者的意义,然而,如果是比较统一的文字定义,网络上或者是相关书籍上是无法查阅到明确定义的。在对人工智能和机器人的研究过程当中,其涉及学科多,以至于这两者的发展慢慢已经渗透到高中生的学习领域。在很多时候,包括笔者在内的很多人,都会把人工智能和机器人的定义搞混,单纯觉得两者说的是同一个东西。但实际上人工智能比机器人更加复杂。人工智能是通过计算机应用,对人大脑的思维和智能进行模仿;而机器人则是应用某些技术,造出与人的行为较为相似的机器做的人,模仿人类行为。对于高中生而言,不仅需要详细深入了解这两者的定义和区别,更需要从古至今了解这两者的发展以及现状,为将来的研究提供理论合基础,时刻准备着为祖国科技做出贡献。 1人工智能发展史 说起人工智能,发源时间是从20世纪中叶开始。在1956年的达特茅斯学院会议上"人工智能"这个词正式出现在世界上,科学家也是从这个时候开始真正踏上智能研究的道路。通过科学家的研究,10年的时间,人工智能迎来第一次发展高潮,计算机被应用于社会的各个领域。也是通过这个现象,在数学方面、自然语言方面领域的应用给了很多科学家希望,因此,各大项目都逐渐建立起来。 因为内基梅隆大学为数字设备公司设计了一套名为XCON的"专家系统"的系统,处于冰冻期的人工智能迎来第二次发展高潮,这套专家系统主要用于商业模式,通过利用人工智能,建立了具备完善专业知识和经验的计算机智能系统。但是,好景不常在,没过多久又处于冰封状态了。 在1987年,专家系统并没有发展得那么好,在苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机后,专家系统光辉不在,开始走下坡路。尽管如此,人工智能的研究始终在继续。于1997年,IBM公司所生产的深蓝打败了国际象棋世界冠军卡斯帕罗夫;在2009年,螺丝联邦理工学院发起又一计划"蓝脑计划",生产已经成功模拟了部分鼠脑;在今年,大家都关注的谷歌AlphaGO战胜韩国李世乭。这3个案例的成功,都展现出了人工智能方面的研究成果,其研究成果也跟随时间的推移在不断刷新。社会经济在发展,人们在智能科学技术上投入的资金和技术还有精力也越来越多,这一方面的发展只是时间问题。 2人工智能的发展困境 2.1人工智能的发展现状 目前,人工智能处于飞速发展的阶段,很多人工智能公司如雨后春笋般相继现世。在公司成立之后,相继被国际比较大型的IT企业收购,处在网络行业竞争激烈的时期,谁都在争夺行业的有利地位。在人工智能的发展进程中,当然,随着人工智能也兴起了很多新兴行业,象自然语言处理、智能机器人、虚拟私人助理、手势控制等。根据网络上相关报道以及部门统计,人工智能行业已经成为21世纪世界各国争相投资和创业的重要选择。据统计,在人工智能行业,全世界的投资金额接近50亿美元。虽然我国人工智能方面的研究相对于欧洲发达国家比较晚,但是随着社会经济的发展人工智能的发展速度较快。 2.2人工智能的发展困境 就目前所有研究资料显示,人工智能的研究困境主要体现在2个方面,分别是计算机博弈和机器翻译,而博弈说白了是竞争。计算机博弈分为多种多样,最为简单的博弈应该是只要操作就可以的,象联机作战游戏。但是实际上来说计算机的博弈主要体现在对技术的操作、应对措施以及智能模仿等方面。人与人之间的竞争涉及方方面面,主要都集中在脑力和体力2个方面,而计算机技术,它是无法根据人的思维和智能去演算出机器博弈的,而这个点就是计算机技术研究所面临的困境。而具体要解决这一世界性的难题,就必须加强人们对技术方面知识的研究,熟悉生物神经学科,不断加强对知识性学科的学习。 机器翻译很多人都会使用。如果某段话不会翻译,就打开某个软件,笔者平常会用几个软件综合一下,把你需要翻译的中文打在输入框内,然后在输入结束后按翻译按键,下框就会自动弹出所对应的英文句子,但是这是非常简单的翻译,而且个人觉得非常不准确,很多语法都无法把握,偏重于中式翻译。而在翻译过程中,实际起作用的还是程序,严格来说,并没有实现自动化翻译。笔者认为,最主要的还是要通过计算机对人类思维的了解和使用语言习惯和知识点进行比较深入地分析,才能够真正完成机器的自动化翻译。 目前来看,人工智能在计算机博弈和机器翻译出现障碍,在世界范围内,机器翻译还是比较广泛运用的,且具有良好的发展前景。 3人工智能在机器人领域中的发展 在现实生活当中,人们的认知方式和生活方式因为人工智能发生了改变。科学家们对于人工智能和计算机的完美结合给予高度重视,大家都把人工智能机器人作为研究的重要领域,而所谓的人工智能机器人,就是可以对人类行为和思维进行模仿,并且相似的机器人。但是就目前的研究状况而言,常常可以看见机器人搬运其物块或是移开物块等,机器人所做的只是在模仿人的行为。对于这些简单的行为机器人的制造并不难,但是难就难在无法将机器人赋予人的思维和智能,就像无法制造出能够与国际象棋世界冠军卡斯帕罗夫对赛的智能机器人。人工智能运用在机器人当中主要表现在2个方面,第一是人工智能系统集成,第二则是多元信息采集。这样做的目的是,将计算机和系统综合起来,使利用率更高。需要认识到的是,单一的系统是无法让计算机得到发展和完善的,计算机必须满足同时拥有多个系统,才能对突发情况进行应对和解决,进而具备了"思维".对于机器人来说,多元信息采集是极其重要的。通过对IT系统的使用,将知识进行系统整理,从而得到更加广泛的知识,这样一来,机器人的智能就会得到提高。 结语 综合上述说法,我们可以看出,人工智能的发展还是比较曲折的,从20世纪中叶到现在,经历了3次高潮,也经历多次冰封时期,几经沉浮终于在世界的发展过程中占有极其重要的地位,且在未来的发展中也将会继续受到重视。尽管如此,我国人工智能的发展相对于欧洲发达国家而言,还是比较落后的。人工智能机器人的发展是一个国家技术经济发展的重要标志,对今后社会经济的发展和中国在全球的地位也具有非常重要的意义。 因此,对于智能机器人的发展,我国应该给予高度重视。中国应当明确发展目标、认清国际形势;培养相关技术人才,有效地运用人工智能技术,缩小中国与世界人工智能方面的水平差异。希望通过国家和科学技术人才的支持和努力,能让我国智能机器人的发展进入一个新台阶,发展达到新高度,在未来的发展过程中起到重要的作用。 参考文献 [1]孙静,张帆,王国庆,等。物联网时代人工智能机器人的发展趋势探讨[J].科技经济导刊,2017(31):12-13. #p#分页标题#e#人工智能论文2000字范文二:人工智能技术在新冠病毒肺炎疫情防控中的应用
摘要:归纳了人工智能技术在新型冠状病毒肺炎疫情防控工作中的应用情况,分别从医疗辅助机器人、大数据分析、云平台、远程医疗、智能检测5个方面进行分析,阐明人工智能在疫情防控中的优势,剖析人工智能在医疗领域的发展前景,为今后人工智能在医疗领域的广泛应用提供参考。 关键词:新型冠状病毒肺炎;人工智能;大数据;机器人;云平台;远程医疗;智能检测 2019年12月,新型冠状病毒肺炎病例在武汉出现,2020年1月20日,国家卫生健康委员会将新型冠状病毒肺炎纳入《中华人民共和国传染病防治法》规定的乙类传染病,并采取甲类传染病的预防、控制措施[1,2].截至2020年2月12日24:00,全国新型冠状病毒肺炎确诊病例52526例,死亡1367例[3].面对疫情全面暴发的严峻形势,医疗防护物资紧缺,医护人员高强度负荷,疫苗和新药亟待研发,公众居家恐慌,疫区优质医疗资源匮乏等,人工智能(artificialintelligence,AI)利用虚拟现实技术,在疫情防控的关键作用逐渐显现,如机器人配送物资,5G网络查房问诊,大数据助力新药研发,远程医疗会诊,智能筛查疑似病例,云平台办公和在线学习。本研究对人工智能技术在此次疫情中的实际应用进行综述,旨在凸显人工智能在疫情防控中的优势,为今后人工智能在医学领域的广泛应用提供参考。 1概述 人工智能是计算机科学的一个分支,由计算机科学、信息学、语言学、控制论、心理学、语言学等多学科相互融合发展起来的,旨在对人的思维、学习、知识储存过程进行模拟和系统应用[4].人工智能技术企图通过挖掘智能的实质,生产出新的类似人脑且能做出快速反应的机器,涵盖算法、芯片、软硬件平台和应用[5].人工智能的核心是算法,基础是数据及计算能力,该领域的主要研究包括自然语言、机器学习、图像识别技术、语言识别技术、神经网络学习等[6,7].随着人工智能技术的逐渐成熟,开展智慧医疗成为医疗领域的热点,也是今后发展和优化医疗服务的趋势[8].目前,该技术在我国医疗健康领域的应用才刚刚起步,并未广泛投入使用,此次新型冠状病毒肺炎疫情的防控,给人工智能技术的开拓应用提供了一个实战平台,让我们看到了人工智能技术在医疗领域的巨大潜力和重大价值。 2人工智能技术在新型冠状病毒肺炎疫情防控中的应用 2.1医疗辅助机器人 医疗辅助机器人的开发应用一直是人工智能在医疗领域应用中备受关注的一大领域[9].广东省人民医院在抗击新型冠状病毒肺炎疫情防控工作中引进了2名机器人"新员工",主要承担送药、送餐、回收被服和医疗垃圾、实时影像监控病区动态等工作;它们集成先进的无人驾驶技术,可自主识别地图和工作环境,自主避开障碍物,实现点对点的物资配送,每台机器人相当于3名配送员,减少了医务人员进入隔离区的频次,在提高配送效率的同时降低了临床工作人员交叉感染的风险。火神山医院投入使用了一批医疗服务机器人--"豹小弟",它们分工明确,承担着红外测温、发热问诊、引领病人、初步诊疗、化验单递送、药品运输等工作,代替了医护过程中简单重复且耗力的工作,在减轻医护人员工作量的同时,减少了医护人员在诊疗过程中交叉感染的机会。这次疫情中投入使用的不止是医疗机器人,还有物流机器人,京东物流的智能配送机器人、苏宁的无人智慧物流仓在武汉市医疗物资的打包、分拣、配送中发挥了高效的作用。#p#分页标题#e# 2.2大数据分析 我国经历了严重急性呼吸综合征(SARS)、甲型H5N1禽流感、甲型H1N1流感疫情等突发公共卫生事件,此次新型冠状病毒肺炎疫情的防控工作虽然挑战艰巨,但比以往任何一次疫情所能调动的科技资源的水平都高,大数据技术的应用为新型冠状病毒肺炎疫情的防控工作提供了数据支撑,利于国家疫情防控工作制定精准、有效的决策,实时识别和监控高危人群,避免了疫情的进一步扩散。另一方面,疫情数据的实时动态更新和公开发布,避免了谣言及公众因不了解实情相互猜疑引起的恐慌。面对节后复工这一节点的来临,各省市政府机构都在积极利用大数据技术,精准掌握各疫区人员的流动动态,定向指导各类人群的风险识别,合理安排居家隔离及至医院就诊。此外,大量的数据分析也为此次新型冠状病毒肺炎新药和疫苗的研发提供了数据支持,利用人工智能的超大计算力,为大规模文献筛选、病毒基因测序、蛋白筛选等研发工作节省了研发时间。医疗卫生及互联网领域专家表示,利用互联网大数据对重大公共卫生突发事件进行群防群控,是未来疫情防控的关键手段和重要支撑。 2.3远程医疗 远程医疗以远程信息(包括影像、图片、文字、音视频)的传送和交流为主,从"互联网+"的概念来看不算新技术,但由于医疗体制和技术本身的限制,在医疗领域并未广泛应用[10].此次疫情下远程医疗系统的应用让我们看到了它不可估量的价值。面对新型冠状病毒肺炎疫情的不断蔓延,被隔离的病人陷入了极度的恐慌和焦虑情绪,将远程医疗系统引入病区,展现出不可估量的应用价值。(1)宽慰病人:隔离病人需要的更多是被安慰和关心,医生通过远程医疗设备进行远程查房,除了了解病人病情,更多的是同病人交流,给予适当人文关怀,减轻病人的恐慌和抵触情绪。(2)缓解物资紧缺:远程诊疗可以减少医务人员同病人的直接接触,减少防护用品的使用,缓解防护物资的紧缺。(3)远程会诊:基于5G网络,疫区的新型冠状病毒肺炎急重症病人通过远程医疗向其他省市临床医疗中心寻求帮助,获取了远程诊疗意见,实现了优质医疗资源的互通。由此可见,远程医疗的有序开展有利于优化隔离病房的病人管理,安抚隔离病人的紧张情绪,促进优质医疗资源下基层,更好地普及医学知识,进行专业的心理疏导,从而缓解公众的紧张情绪。 2.4人工智能检测 此次疫情防控期间,人工智能测温仪也因地制宜,投入使用。它通过温感摄像头、人脸识别、热成像体温检测系统,能够在2m内快速采集体温,并将身份信息和体温匹配形成数据表,一旦识别出疑似发热者,系统便会自动报警,帮助工作人员及时、准确锁定发热人员。人工智能测温仪可以在1min内实现200~300人同时通过单行道进行快速体温检测,同时升级了人脸识别系统,即使被检测者佩戴口罩,也能实现快速筛查。目前已在部分医院、火车站、机场等人群密集场所投入使用,具有高效、安全、可靠等特点,能够节省人力,减少体温监测人员的感染风险,满足了疫情防控的需要。此外,一些辅助诊断的智能评价体系也正式上线,如上海公共卫生临床中心应用的新型冠状病毒肺炎智能评价系统,从新型冠状病毒肺炎病人CT影像中提取智能参数,可对肺炎严重程度进行自动量化评估,为医生评估CT影像提供参考。 2.5云平台 当前疫情形势严峻,减少外出、避免人员聚集是对疫情传播最有效的遏制,在疫情防控的总体部署下,出现了新的办公和学习模式,众多企业在节后复工时采取远程办公模式,单位通过云平台组织网络会议,员工通过云平台进行居家办公;此外,教育部也连续下发通知,要求延期开学并开展网上教学,老师和学生通过线上教学、云课堂实现师生间的在线学习和交流。 3启示 此次新型冠状病毒肺炎的确诊人数已经超过了SARS,而且新型冠状病毒肺炎的潜伏期较长,传播力也较SARS强,但值得庆幸的是,我国现在的科学技术水平已远超SARS时期,可以调动更广阔、更先进的科技资源和技术力量。人工智能技术的应用在抗击新型冠状病毒肺炎疫情中发挥了积极作用,它不再只是停留在人们概念里的高新技术,从医疗辅助机器人、大数据分析、云计算、远程医疗、智能检测的设想到变为一个个切实可行的案例,人工智能彰显了它在医疗领域广阔的应用前景。随着人口老龄化的出现和慢性病病人数量的逐年上升,公众对医疗健康的需求不断增加,人工智能在临床的应用能够解放人力、提高效率,让有限的医疗资源发挥最大的价值。 参考文献 [1]国家卫生健康委员会。中华人民共和国国家卫生健康委员会公告(2020年第1号)[EB/OL].[2020-02-07]. [2]国务院应对新型冠状病毒感染的肺炎疫情联防联控机制。关于印发近期防控新型冠状病毒感染的肺炎工作方案的通知[EB/OL].[2020-02-10]. [3]国家卫生健康委员会。新型冠状病毒肺炎疫情防控工作疫情通报[EB/OL].[2020-02-13]. [4]贺倩。人工智能技术发展研究[J].现代电信科技,2016,46(2):18-21. [5]孔祥溢,王任直。人工智能及在医疗领域的应用[J].医学信息学杂志,2016,37(11):2-5. [6]HAMETP,TREMBLAYJ.Artificialintelligenceinmedicine[J].Metabolism,2017,69:36-40.TAGS:人工智能人工智能技术人工智能论文伦理与治理,人工智能时代下的困境与出路
原标题:伦理与治理,人工智能时代下的困境与出路
目前,以智能化、网络化、数字化为核心特征的第四次工业革命正在来临。人工智能技术作为数字资源与智能技术的集大成者,成为第四次工业革命中的聚焦点。在大数据与成熟的机器算法的基础之上,以人工智能技术为代表的新一代信息技术在市场应用的迭代中逐渐成熟并渗透到了政治、经济、社会等各个领域,在其加持下出现了智能制造、物联网、机器学习等一大批先导产业。而2020年的过去半年,在全球抗疫的背景下,人工智能在医疗、城市治理、工业、非接触服务等领域快速响应。它从“云端”落地,在疫情之中出演关键角色,提高了抗疫的整体效率。人工智能与其他产业前所未有的紧密结合,再一次验证了人工智能作为新一轮科技革命和产业变革的重要驱动力量对社会的真正价值。事实上,人工智能技术最大的特点就在于,它不仅仅是互联网领域的一次变革,也不属于某一特定行业的颠覆性技术,而是作为一项通用技术成为支撑整个产业结构和经济生态变迁的重要工具之一。它的能量可以投射在几乎所有行业领域中,促进产业形式转换,为全球经济增长和发展提供新的动能。自古及今,从来没有哪项技术能够像人工智能一样引发人类无限的畅想,而在利好人类的同时,人工智能也成为了一个国际性的科学争议热题。人工智能技术的颠覆性让我们也不得不考虑其背后潜藏的巨大危险,早在2016年11月世界经济论坛编纂的《全球风险报告》列出的12项亟需妥善治理的新兴科技中,人工智能与机器人技术就名列榜首。时下,智能技术在全球生产链中的赋能已经开始逐渐扩散到社会生活和世界政治领域中。人工智能的发展为全球化进程和国际社会带来了新的问题和挑战,对人工智能技术进行有效的治理已成为现实境况的迫切要求。为机器立心,为智能立命由于人工智能技术不是一项单一技术,其涵盖面及其广泛。而“智能”二字所代表的意义又几乎可以代替所有的人类活动,即使是仅仅停留在人工层面的智能技术,人工智能可以做的事情也大大超过人们的想象。事实上,人工智已经覆盖了我们生活的方方面面。从垃圾邮件过滤器到叫车软件;日常打开的新闻是人工智能做出的算法推荐;网上购物,首页上显示的是人工智能推荐的用户最有可能感兴趣、最有可能购买的商品。人工智能对人类生活的影响从操作越来越简化的自动驾驶交通工具到日常生活中的面部识别上下班打卡制度等等。这些影响有的让人们深有所感,有的则悄无声息浸润在社会运转的琐碎日常中。当然,在辅助社会发展更加超前与方便的同时,人工智能也埋下了一些隐忧。总体而言,人工智能的治理进程中的治理客体可以分为两个部分:一是对技术本身的治理;一是对衍生问题的规范治理。对于人工智能技术本身来说,技术的发展使得机器智能的边界在不断扩展。智能机器人领域的研究已经持续了四五十年,不只是原始的工业机器人,服务机器人也有30多年的研究历史。这些研究大大增强了机器的运行能力,使机器可以替代人类自己进行活动,甚至某些能力已经超越了人类。目前,这些技术已经大量投入使用。近五六年来,机器学习的算法快速发展。尽管距离机器完全理解“发生了什么”还有很长一段路要走,但随着更好、更便宜的硬件和传感器出现以及设备之间实现无线低延迟互联,还有源源不断的数据输入,机器的感知、理解和联网能力将会有更广阔的发展空间。相比于基本元件运算速度缓慢、结构编码存在大量不可修改原始本能、后天自塑能力有限的人类智能来说,人工智能虽然尚处于蹒跚学步的发展初期,但未来的发展潜力却远远大于人类。几乎可以确定的是,机器智能未来必将超越人类智能。尽管无法确定其会在何时发生,也没有像奇点理论那样给出一个确切的时间点,但毫无疑问,这个趋势一定是存在的。而基于此的人工智能技术治理,就需要人类先跳出科技本身,从人文的角度先为机器立心。其中,就包括相关领域的科学家在对人工智能技术的开发和应用时的价值取向以及道德观念培养。此外,对于一项新生技术,其本身是没有攻击性的,造成危害的往往是对这种技术的使用,人工智能也是如此。在过去的数百年里,人类学会了使用机械能,学会了用电,学会了制造各种机械,学会了制造飞机、汽车。在过去的数十年里,人类也学会了计算机、互联网、云计算、人工智能和5G通信技术。这些都是可以利用的工具,包括运用云端的智能扩展信息和知识搜索的广度、加深推理的深度、帮助我们做非常复杂的运算。而如何更好地掌握和利用这些技术,利用人工智能技术本身来帮助人类最大程度地发挥智能潜力,便是治理人工智能技术本身的破题关键所在。当人工智能走入“伦理真空”地带除了对于人工智能技术的危机治理,我们无法回避的是对人工智能衍生问题的规范治理。首先,就业问题是人工智能治理领域中最接近民生保障,也是最需要解决的问题。由于资本的逐利性,在科学技术是第一生产力的时代,人工智能所表现出的巨大的生产力必然吸引资本蜂拥而至,而数字经济的发展将进一步促进企业的自动化和数字化转型。于是,自动化将缩小社会的横向分工,人工智能将实现生产的半自动化、全自动化,从而消除了生产对人类个体差异性的依赖。随着人工智能研发的深入,更加完善的功能使得人工智能在社会分工体系中越来越占据主导地位。这就减弱了横向分工之间的差距,普通劳动者之间技术的差异性将会逐渐丧失。当人工智能对劳动者的代替性越来越强时,普通劳动者的生存状态并不会得到很大的改善。相反,随着劳动力对技术依赖性的增加以及由此造成的劳动力本身在分工体系中竞争力的下降,劳动者的生存状态会进一步的恶化。除了缩小社会的横向分工,人工智能技术的垄断将会阻隔社会的纵向分工。在信息时代,基于大数据以及计算机应用的自动化生产成为了拉动经济增长的主要驱动力。资本追逐利润的本质使得大量资金都流入了那些掌握前沿科技的企业和人才手里,这样就会造成一些常规性的工作被代替,最终将会造成的整个社会失业率的增加。另一方面,一些本来就处于社会分工等级上层、掌握前沿科技的企业,由于资本的大量流入使得这些企业的地位更加稳固,甚至通过新的技术垄断切断了其他企业以及劳动者突破社会分工的机会,进而将不平等的社会分工等级秩序的牢笼扎得更紧。倘若社会分工顶层和底层间出现了不可逾越的断裂带,这将使得社会两极分化更加严重。其次,由于人工智能需要依赖大量的数据,在人工智能的不断研究开发与应用中,也就存在许多数据管理的难题。当海量信息数据唾手可得,个体位置信息、关注内容、行程安排等极易被获取分析。个体敏感信息、私密内容就可能“无死角”暴露在大众视线。大数据信息动态监控,使个体用户操作“痕迹”被收集挖掘成为可能。有了人工智能助力,不仅能了解你是“谁”,更能预测你将成为“谁”。尽管大数据等智能化手段在开展群体分类时能提供诸多便捷,但也使得许多传统意义上并非隐私的信息变成了个体敏感信息,这就增加了人们隐私受到侵害的可能性和伦理风险概率。这些数据算法的过度依赖或应用范围的盲目扩大,既在社会现实层面上为不法分子提供了随意窃取、滥用信息资源的机会,又在道德层面上引发了伦理道德风险。最后,人工智能技术的发展对国际关系提出了挑战。从世界历史的发展过程中我们可以得出经验,每一轮新的世界大战和工业革命都会迅速地重构社会秩序和国际格局。以人工智能技术为代表的第四次技术革命是科技的集大成者,因此其所造成的影响更是颠覆性的。在经济方面,2018年9月,麦肯锡全球研究所针对人工智能对世界经济的影响做的专题报告显示:到2030年,人工智能可能为全球额外贡献13万亿美元的GDP增长,平均每年推动GDP增长约1.2亿。这意味着,人工智能对国家经济的推动是巨大的。而在这一轮新的工业革命浪潮中,谁掌握了人工智能技术的主要力量,谁就有可能以垄断性的地位占据未来数年内全球经济的命脉。在军事方面,区别于其他类型的科技,人工智能技术和核武器一样,属于军民两用型科技。世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,纷纷开始在军事领域加大人工智能战略部署,尤其是在自主武器方面的研发力度,只为了能够占领新一轮科技革命的历史高点。当人工智能技术赋予国家更多政治和军事力量时,也加剧了国际社会的安全困境,这也给人工智能的治理带来了全球性的挑战。事实上,我们已经走进了一个现代性“伦理真空”的特殊地带,这个真空正是由传统伦理学的缺失与现代自然科学的发展带来的。由于人工智能发展所带来的全世界范围内人类行为方式、思维方式的变化是加速、不可逆转的,而传统伦理学的发展却是缓慢的、滞后的,这就使现代社会出现了巨大的伦理真空地带。因此,在大力发展人工智能的同时,必须高度重视可能出现的社会风险和伦理挑战。加强人工智能伦理学研究,揭示人工智能发展面临的伦理难题,有效治理人工智能,发挥人工智能的真正价值是未来值得关注的问题。