《人工智能伦理与治理报告》内容解读
2021年8月15日,由清华大学数据治理研究中心主办的“人工智能伦理与治理”专题研讨会于云端举行,来自中央党校、中国社科院、清华大学、复旦大学、浙江大学、中国政法大学、电子科技大学、山东大学、北京化工大学、中国农业大学、对外经济贸易大学、山东师范大学等高校的多位专家学者共聚一堂,围绕人工智能伦理的核心关切和治理方式等问题展开深入研讨。会议由清华大学社会科学学院副院长、计算社会科学平台执行主任孟天广副教授主持。
会上,清华大学数据治理研究中心项目研究员严宇、戴思源和李珍珍共同汇报了《人工智能伦理与治理报告》。报告将人工智能伦理分为安全、透明、公平、个人数据保护、责任等八个维度,通过问卷调查的方式收集了公众针对这些伦理维度的关切情况及治理方式。报告特别关注了算法伦理问题,专门就算法透明、算法公开及数据保护三个方面展开讨论。最后,报告还提出了人工智能伦理治理的“中国方案”。以下为汇报内容:
严宇:美国人工智能监管以发展和创新为先
清华大学数据治理研究中心项目研究员严宇表示,从伦理治国的跨国比较来看,美国的人工智能监管是以发展和创新优先为导向的。
严宇指出,在全球范围内,各国都已经看到人工智能技术对社会的影响,总体可以分为乐观派和悲观派两大派系。乐观派认为人工智能技术极大地促进了经济社会发展;相对来说,悲观派会更多地关注潜在的伦理风险。“由此会产生两种不同的措施,比如乐观派会积极采用战略规划和政策文件来推动人工智能技术的发展与应用;悲观派则会对人工智能伦理开展专项调查,甚至出台具体措施,对伦理风险进行规制。”
严宇在对人工智能伦理治理体系进行跨国比较后表示,美国为了保持其在人工智能领域的全球领先地位,既看重发展,又会考虑伦理风险。“但总体来说美国仍然是以发展和创新优先。”美国非常强调政府和企业、学校、研究机构等社会组织的合作。从顶层设计上来看,联邦政府曾发布行政命令和战略规划,推动人工智能的发展。这些战略规划也提出要对人工智能的伦理问题进行规制,但是其监管仍然是将发展和创新放在更优先的地位。
在严宇看来,不同于美国以发展和创新为先的监管体系,欧盟的监管体系更加严格。“欧盟人工智能企业的数量、规模和影响力虽然排在美国和中国之后,但是它的人工智能监管和治理却在全球有相当的影响力,形成了以强监管为核心特征的治理体系。”
对于邻国日本的人工智能技术发展,严宇表示,日本在试图从中寻找平衡,一方面肯定人工智能的重要作用,另外一方面又要强调重视它的负面影响。日本为此建立了一系列伦理的准则。
严宇介绍道,过去十年,中国的人工智能技术发展速度非常迅猛,近几年中国也越来越关注人工智能的伦理及治理问题。组织和制度方面,中国建立了新一代人工智能治理专业委员会,发布了《新一代人工智能发展规划》,提出要建立规范的伦理体系和法律法规;治理原则方面,形成了《网络安全标准实践指南》,专门提出对人工智能的伦理安全风险开展防范和治理。监管体系方面,中国正在大力推动国家人工智能安全和评估体系。
戴思源:网民关心反垄断时代人工智能相关的数据权利
研究发现,网民关心反垄断时代人工智能相关的数据权利。戴思源的团队从安全、透明、公平、个人数据保护、责任、真实、人类自主、人类尊严八个维度对人工智能伦理进行梳理,并结合小数据和大数据展开实证分析。小数据主要来自清华大学数据治理研究中心在2021年7月份展开的有关人工智能应用与公众认知的网络问卷调查,共收集2654份,有效数2041份;大数据来自新浪微博的网民讨论数据,提取人工智能相关关键词条共4496万条,另外一个大数据来源是今日头条有关人工智能的1.9万篇文章和相关评论2.5万条。
戴思源表示,网民对各个维度都有所关注,其中在安全、公平、个人数据保护、责任方面,表示关切的人数最多。对比之下,对透明、人类自主和人类尊严这几个维度较少关注。
在人工智能应用的生活场景中,戴思源的团队将其划分为智能门禁、智能家居和信息类APP等几个类别,让受访者对人工智能技术选择各个层面因素进行排序。“总的来看,在所有场景当中,有用性和伦理因素都是最重要的因素,影响受访者是否使用该类人工智能产品。”戴思源说。
同时,戴思源的团队也对社交媒体与资讯大数据展开分析。他们在对新浪微博的数据按上述八个伦理维度进行细分之后发现,微博网民主要关注安全、透明、隐私保护和责任等方面。通过词云图进一步分析,发现在安全维度上,公众主要对人工智能技术的安全性表示关切;透明维度上,公众主要对物联网金融信息公开、特斯拉自动驾驶的数据公开、人工智能技术细节的公开展开讨论;隐私保护方面,公众主要集中于人脸识别等技术的滥用、互联网企业利用大数据杀熟等现象展开讨论;可靠性维度上,公众主要讨论人工智能产品是否能够为用户提供可靠的服务。
戴思源指出,针对不同的企业,新浪微博的网民对于特斯拉的讨论度最高。“这可能与特斯拉在行业的技术领先优势及社会舆情事件密切相关。”另外,阿里、华为等企业的讨论热度也紧随其后。微博网民更倾向于从人工智能所取得的技术进展和革新来讨论企业。
戴思源表示,阿里巴巴反垄断案、抖音诉腾讯不正当竞争案等高点赞文章的主题都同平台垄断等新型市场垄断形式密切相关。“这反映出网民关心新型垄断形式所主导下的人工智能发展以及与此相关联的数据权利。”
李珍珍:较多受访者认为不应公开算法源代码
研究发现,公众对算法公开的支持态度主要集中在算法应用和推广阶段,但较多受访者认为不应公开算法源代码。
李珍珍针对算法的伦理问题提出三个关切点:算法的透明、公平和数据保护。她的团队通过问卷调查收集公众对于算法透明、算法公开的态度,总结公众对算法透明和公开的五个维度:一是人工智能企业应该向社会披露算法的目的、范围和用途;二是企业应该向社会解释算法的步骤、原理和细节;三是企业应该向社会公开算法的源代码;四是企业应该向社会披露算法使用的风险;五是企业应该接受社会对算法开发和应用的监督。
调研结果显示,从整体上看,公众对算法透明和公开持普遍支持态度,绝大部分受访者对于算法的目的、范围、用途、算法风险、算法开发应用这些方面选择比较同意或者非常同意。然而,对于公开算法的步骤、原理、细节以及公开算法的源代码,持同意态度受访者比例会显著降低,特别是较多受访者都认为不应该公开算法源代码。
李珍珍表示,公众对算法公开的支持态度主要集中在算法应用和推广阶段,即在使用人工智能产品过程中直接受算法影响的那个阶段。而对算法的设计过程,尤其是源代码,大多数人并不认为应该公开。
在当前算法社会中,用户成为被算法评估的对象。李珍珍指出,我们应该选择适当的措施来保障算法的公平,规避算法歧视。“我们对于算法公平的调查,将有助于科技工作者研发出更具公平原则的算法,这种公平原则需要符合公众对公平概念的普遍理解。”
另外,李珍珍还提到算法伦理问题很大程度上是关注个人数据和隐私保护。团队在调查中发现,公众认为最重要的个人信息包括自己的基本信息、人际关系信息、经济情况信息等。另外,在隐私泄露、信息盗用、信息删除、信息查阅等个人信息和隐私潜在风险的四个方面,网民对于个人隐私泄露和信息盗用最为担心。
“算法社会的内生风险和伦理问题需要我们在未来进一步规范算法的研发和应用,系统讨论算法伦理及其风险治理,让算法更好地服务人类社会。”李珍珍说。
回顾“人工智能伦理与治理”专题研讨会:
人工智能伦理与治理研讨会成功举办
孟天广:人工智能伦理及其治理要打通科技社群与社会大众
吕鹏:人工智能伦理问题需实证证实或证伪
陈水生:人工智能伦理和治理需要“发展”和“监管”双轮驱动
李锋:人工智能伦理不能脱离社会经济状况和历史视角
孙宗锋:需研究公众对人工智能伦理关注重心的背后原因
赵娟:人工智能治理框架应处理四对关系
熊易寒:把算法还原成普通人能理解的逻辑
吴超:算法技术问题最根本的解决方法是发展技术本身
贾开:应从技术与社会互嵌角度重视人工智能治理框架
曲甜:从技术与组织关系分析人工智能的治理模式
宁晶:网络用户使用技能和心理效能影响算法接受度
张小劲:算法治理应致力于促发展、防滥用并消除污名化现象
更多与会专家发言内容,欢迎查看专题报道,或关注清华大学数据与治理研究中心官方微信公众号“数据与治理”。
(来源:中新经纬APP,未经授权禁止转载)
人工智能的伦理挑战
原标题:人工智能的伦理挑战控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。
一
维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?
实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。
首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。
然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。
二
所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。
不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。
三
这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。
(作者:蓝江,系南京大学哲学系教授)
人工智能迫切需要一个“伦理转向”
原标题:人工智能迫切需要一个“伦理转向”当前人工智能的发展主要受益于以深度学习为代表的机器学习技术,这让计算机可以从大量数据中自主学习与进化,从而作出比人类更高效、更精准、更廉价的预测与决策。正因如此,人工智能作为新的通用型技术,被认为将给经济和社会带来变革性影响,已被各国上升到国家战略和科技主权高度,成为不断升温的全球科技竞争的新焦点。
在应用层面,人工智能已经渗透到各行各业,算法帮我们过滤掉垃圾邮件,给我们推荐可能喜欢的歌曲,为我们翻译不同的语言文字,替我们驾驶汽车。新冠肺炎疫情暴发以来,人工智能在辅助医疗诊断与新药研发等方面崭露头角,无人物流配送、无人驾驶汽车等新模式助力非接触服务发展。总之,人工智能潜力巨大,可以成为一股向善的力量,不仅带来经济增长,增进社会福祉,还能促进可持续发展。
但与此同时,人工智能及其应用的负面影响与伦理问题也日益凸显,呼吁人们在技术及其产业化之外更加关注伦理视域。例如,人工智能模型训练及其应用离不开大量数据的支持,可能导致违法违规或过度收集、使用用户数据,加深人工智能与数据隐私保护之间的紧张关系;人脸识别技术在一些场景的应用也引发了国内外对该技术侵犯个人隐私的争议。人工智能技术也可能被不法分子滥用,例如用来从事网络犯罪,生产、传播假新闻,合成足以扰乱视听的虚假影像等。
随着算法歧视的不断发酵,人工智能参与决策的公平性问题也备受关注。有研究发现,很多商业化的人脸识别系统都存在种族、性别等偏见,这样的技术用于自动驾驶汽车,就可能导致黑人等深色皮肤的人更容易被自动驾驶汽车撞到。人工智能在招聘、广告投放、信贷、保险、医疗、教育、司法审判、犯罪量刑、公共服务等诸多方面的应用也伴随公平性争议。此外,人工智能的知识产权保护问题也日益浮现,目前人工智能已能够独立创造诗歌、小说、图片、视频等,知识产权制度将需要尽快回应人工智能创造物的保护问题。自动驾驶汽车、AI医疗产品等人工智能应用一旦发生事故,也面临谁来担责的难题。最后,人工智能的应用可能取代部分手工的、重复性的劳动,给劳动者就业带来一定冲击。
2020年被认为是人工智能监管元年,美欧采取的监管路径大相径庭。欧盟《人工智能白皮书》提出的“重监管”模式更多倚重事前的规制,考虑为技术开发与应用设置严苛条件;美国《人工智能应用监管指南》提出的“轻监管”模式更多倚重标准、指南等弹性手段,考虑为人工智能应用设置避风港、“监管沙箱”等。在全球科技竞争日趋激烈、数字经济日趋成为国家核心竞争力等背景下,考虑到我国科技行业发展实际,我国对人工智能需要创新治理,倚重敏捷监管、伦理治理、技术治理等多元手段来共同确保人工智能正向应用与向善发展。
首先,监管不仅需要对人工智能应用分级分类、以问题和风险防范为导向,而且需要具有敏捷性与适应性。人工智能技术的一个核心特征是快速发展迭代,制定强制性法律必然赶不上技术发展步伐,所以国外大都采取出台指南、伦理框架等“软法”。此外,自动驾驶汽车、智能医疗等人工智能应用的发展落地仍面临较多法规政策障碍,需要考虑修订阻碍性的法律法规,同时通过“数字沙箱”“安全港”“试点”等方式推动其试验与应用落地。
其次,采取伦理治理,把伦理原则转化为伦理实践。目前,国内外很多科技公司都出台了人工智能伦理原则,也在通过伦理审查委员会、伦理嵌入等方式落实其伦理原则。行业的这些伦理治理措施已在国内外获得较大共识,更能适应AI技术发展。
再次,以技术手段防范人工智能滥用。例如,深度合成作为一项人工智能应用,在影视制作、教育、医疗、娱乐等领域具有很大正向应用价值,但也可能被不法分子滥用来制造、传播虚假影像以从事欺诈欺骗活动。对此,行业内已在积极研发、部署内容鉴别与溯源技术,以对抗深度合成的滥用。面对复杂性与迭代速度不断增强的人工智能应用,技术治理将发挥越来越大的作用。
(作者:曹建峰,系腾讯研究院高级研究员)
(责编:赵超、吕骞)分享让更多人看到
人工智能的伦理问题与治理原则
第一类问题来自我们对人工智能系统对其决策结果的伦理意义缺乏判断的忧虑。人工智能往往被用来解决一个具体问题,而且只能通过已有的有限数据来作出决策,往往无法像人一样理解更广的社会和伦理语境。故此,我们对人工智能缺乏对决策后果的伦理意义的认知有恐惧,这是完全可以理解的。当人工智能决策的后果涉及一个结果和另外一个结果之间的比较时,往往造成难以预料的后果。例如,人可能给人工智能系统一个获取食物的指令,结果这个系统却杀死了人的宠物。这是因为人工智能对某个结果的伦理意义无法完全理解,以致于错误地执行了指令。我们对人工智能对决策结果的伦理判断能力不足的忧虑,在人工智能技术本身缺乏透明度(黑箱问题)时就更加严重了。人工智能采纳的机器学习往往因为算法(例如机器学习)和算力限制的原因,无法回溯机器作出决定的具体机制。无法回溯会带来我们在事先预测后果和事后作出纠正的能力的局限,导致我们在决定是否应用人工智能技术的问题上踌躇不决。
第二类问题来自我们对人工智能的潜力的忧虑。人工智能可能成为人类全部决定的参与和影响者,但我们尚且不知道没有任何已知的伦理准则能指引上述行为。人类创造的“上帝”无力护理这个世界,这让我们恐惧震惊。我们担心随着人工智能的发展,它会导致已有的社会问题进一步恶化,同时可能带来新的社会问题。
从上述前提出发,笔者从目的、手段两个层面提出思考人工智能伦理(嵌入机器的伦理)的两个基本方向:技术必须促进人类的善(体现在人的根本利益原则);在越来越发达的机器的自主性背景下确认人的主体性(体现在责任原则)。换言之,认识到新的技术本身的特征和它的潜在社会影响,我们看到人工智能伦理要强调:(1)人可以利用人工智能得到更大的能力(行善/伤害),因此有更大的责任,所以应当更加强调归责性;(2)人工智能则必须服从人类设定的伦理规则。这也是《人工智能标准化白皮书(2018)》中提出了人工智能设计和应用中应遵循的两个基本原则的基本依据。违反人的根本利益原则的人工智能,无论是用来欺诈顾客的营销算法、用于司法造成歧视部分公民的司法决策系统,还是对个人信息的过度收集和滥用,都违反人工智能伦理原则。
根据人工智能伦理风险的具体性质与特征,可从算法、数据和应用三个方面度来梳理人工智能的风险。对伦理风险的治理,需要立法和政策明确各相关主体的责任,包括信息提供者、信息处理者和系统协调者。此外,人工智能还可能对社会产生远期发展的风险,如对既有的就业、市场竞争秩序、产权等法律制度的挑战,甚至生产方式的根本变革,这些我们将其归入长期和间接的伦理风险之中。
算法方面
算法方面的风险主要包括算法安全问题、算法可解释性问题、算法歧视问题和算法决策困境问题。算法安全问题产生于算法漏洞被黑客攻击和恶意利用的挑战,同时算法从设计、训练到使用中面临可信赖性问题和算法随时可用对可靠性带来挑战。
算法可解释性涉及人类的知情利益和主体地位,对人工智能的长远发展意义重大。国务院颁布《新一代人工智能发展规划》,同时,潘云鹤院士提到人工智能应用的一个需要关注的问题是算法的不可解释性。算法可解释性问题在国外也引起媒体和公众的关注。例如,电气和电子工程师协会(IEEE)在2016年和2017年连续推出的《人工智能设计的伦理准则》白皮书,在多个部分都提出了对人工智能和自动化系统应有解释能力的要求。美国计算机协会美国公共政策委员会在2017年年初发布了《算法透明性和可问责性声明》,提出了七项基本原则,其中一项即为“解释”,希望鼓励使用算法决策的系统和机构,对算法的过程和特定的决策提供解释。2017年,美国加州大学伯克利分校发布了《对人工智能系统挑战的伯克利观点》,从人工智能的发展趋势出发,总结了九项挑战和研究方向。其中之一,即第三项,就是要发展可解释的决策,使人们可以识别人工智能算法输入的哪些特性引起了某个特定的输出结果。
与可解释性问题常常同时出现的是算法歧视问题,即在看似中立的算法中,由于算法的设计者的认知存在某种偏见,或者训练算法使用了有问题的数据集等原因,带来了人工智能系统决策出现带有歧视性的结果。这类例子媒体时有报道,例如在金融领域“降低弱势群体的信贷得分”、“拒绝向‘有色人种’贷款”、“广告商更倾向于将高息贷款信息向低收入群体展示”等。
算法歧视主要分为“人为造成的歧视”“数据驱动的歧视”与“机器自我学习造成的歧视”三类。人为造成的歧视,是指由于人为原因而使算法将歧视或偏见引入决策过程中。数据驱动造成的歧视,是指由于原始训练数据存在偏见性,而导致算法执行时将歧视带入决策过程中。算法本身不会质疑其所接收到的数据,只是单纯地寻找、挖掘数据背后隐含的模式或者结构。如果数据一开始就存在某种选择上的偏见或喜好,那么算法会获得类似于人类偏见的输出结果。机器自我学习造成的歧视,是指机器在学习的过程中会自我学习到数据的多维不同特征,即便不是人为地赋予数据集某些特征,或者程序员或科学家刻意避免输入一些敏感的数据,但是机器在自我学习的过程中,仍然会学习到输入数据的其它特征,从而将某些偏见引入到决策过程中,这就是机器自我学习造成的歧视。
算法决策困境源于人工智能自学习能力导致的算法结果的不可预见性。为此要减少或杜绝算法决策困境,除了提高算法的可解释性,还可以引入相应的算法终结机制。
数据方面
数据方面的风险主要包括侵犯隐私的风险和个人敏感信息识别与保护的风险。在现代社会,隐私保护是信任和个人自由的根本,同时也是人工智能时代维持文明与尊严的基本方式。人工智能时代下侵犯隐私的风险更大,受害者也更多。
传统法律规范对隐私的保护集中于对个人在私人领域、私人空间活动的保护,以及个人私密的、非公开的信息保护。在个人信息的基础之上,法律规范区分普通个人信息和个人敏感信息。法律通常对个人敏感信息予以更高的保护,例如对个人敏感信息的处理需要基于个人信息主体的明示同意,或重大合法利益或公共利益的需要等,严格限制对个人敏感信息的自动化处理,并要求对其进行加密存储或采取更为严格的访问控制等安全保护措施。个人敏感信息在授权同意范围外扩散,或者个人信息的扩散超出收集、使用个人信息的组织和机构控制范围,以及使用者超出授权使用(如变更处理目的、扩大处理范围等),都可能对个人信息主体权益带来重大风险。
人工智能技术的应用极大地扩展了个人信息收集的场景、范围和数量。图像识别、语音识别、语义理解等人工智能技术实现海量非结构化数据的采集,而人工智能与物联网设备的结合丰富了线下数据采集的场景。例如,家用机器人、智能冰箱、智能音箱等各种智能家居设备走进人们的客厅、卧室,实时地收集人们的生活习惯、消费偏好、语音交互、视频影像等信息;各类智能助手在为用户提供更加便捷服务的同时,也在全方位地获取和分析用户的浏览、搜索、位置、行程、邮件、语音交互等信息;支持面部识别的监控摄像头,可以在公共场合且个人毫不知情的情况下,识别个人身份并实现对个人的持续跟踪。这些都需要法律进一步地规范。
社会方面
与社会相关的伦理问题主要包括算法滥用和误用。算法滥用和误用是指人们利用算法进行分析、决策、协调、组织等一系列活动中,其使用目的、使用方式、使用范围等出现偏差并引发不良影响或不利后果的情况。例如,人脸识别算法能够提高治安水平、加快发现犯罪嫌疑人的速度等,但是如果把人脸识别算法应用于发现潜在犯罪人或者根据脸型判别某人是否存在犯罪潜质,就属于典型的算法滥用。由于人工智能系统的自动化属性,算法滥用将放大算法所产生的错误效果,并不断强化成为一个系统的重要特征。
算法滥用主要由算法设计者出于经济利益或者其他动机的操纵行为、平台和使用者过度依赖算法、将算法的应用盲目拓展到算法设计未曾考虑的领域等。电商平台算法设计者推荐不符合用户利益的产品,或者娱乐平台为了自身的商业利益对用户的娱乐或信息消费行为进行诱导、导致用户沉迷等,都是算法设计者操纵行为的展现。在医疗领域过度依赖人工智能平台的读图诊断,导致误诊,以及在安防领域和犯罪误判导致的问题,都直接关系到公民的人身安全与自由。
应当注意的是,与社会相关的伦理问题有如下特性:其一,它们与个人切身利益密切相关,如算法应用在犯罪评估、信用贷款、雇佣评估等关切人身利益的场合,对个人切身利益的影响广泛。其二,它们带来的问题通常难以短时间应对,例如深度学习是一个典型的“黑箱”算法,如果深度学习为基础建立的模型存在歧视,应对时难以查清原因。其三,在商业应用中出现这类问题时,由于资本的逐利性,公众权益容易受到侵害。
人工智能治理原则与实践
人工智能技术的特质及其伦理挑战,给社会的治理带来了问题。传统上,治理所预设能够遵循规则的主体(Agent),也就是人本身。今天我们认识到人工智能的特征在于其高度的自主性,即其决策不再需要操控者进一步的指令,考虑到这种决策可能会产生人类预料不到的结果,人工智能技术的设计者和应用者必须在人工智能技术研发、应用的各个环节贯彻伦理原则,以实现对人工智能的有效治理。
在传统技术领域,常见的防止损害的方式是在造成伤害之后进行干预。但是,等待人工智能系统造成伤害之时才考虑干预,很多时候为时已晚。一个更好的方法是将即时和持续的伦理风险评估和合规体系建设作为系统运行的一个组成部分,即时和持续评估人工智能系统是否存在伦理风险、并在损害产生之前以及损害不大的时候就通过合规体系进行处理。即时和持续的风险评估对于人工智能系统的保障要比按下“紧急按钮”要有效得多。
故此,我们在讨论人工智能治理应遵循的思路和逻辑时,必须警醒行业自律的有限性和立法的滞后性。如阿西莫夫等科技伦理的思想者所意识到的,必须将伦理在技术层面就进行明确,才能保证治理的有效性。构建人工智能的伦理标准是治理不可或缺的一面。此外,根据法律和政策本身的特征来制定法律、完善政策、设立管制机构,也是治理必须执行的方法。
国内外人工智能治理方面的探索值得我们关注和借鉴。例如,欧盟通过对机器人规制体现了依据人工智能伦理来设计治理体系的前沿探索。美国于2016年出台的战略文件就提出要理解并解决人工智能的伦理、法律和社会影响。英国政府曾在其发布的多份人工智能报告中提出应对人工智能的法律、伦理和社会影响,最为典型的是英国议会于2018年4月发出的长达180页的报告《英国人工智能发展的计划、能力与志向》。
联合国于2017年9月发布《机器人伦理报告》,建议制定国家和国际层面的伦理准则。电气和电子工程师协会(InstituteofElectricalandElectronicsEngineers,IEEE)于2016年启动“关于自主/智能系统伦理的全球倡议”,并开始组织人工智能设计的伦理准则。在未来生命研究所(futureoflifeinstitute,FLI)主持下,近4000名各界专家签署支持23条人工智能基本原则。
我国也在这个方面开展了探索与实践。2017年发布的《新一代人工智能发展规划》提出了中国的人工智能战略,制定促进人工智能发展的法律法规和伦理规范作为重要的保证措施被提了出来。2018年1月18日,在国家人工智能标准化总体组、专家咨询组的成立大会上发布了《人工智能标准化白皮书(2018)》。白皮书论述了人工智能的安全、伦理和隐私问题,认为设定人工智能技术的伦理要求,要依托于社会和公众对人工智能伦理的深入思考和广泛共识,并遵循一些共识原则。
人工智能技术的开发和应用深刻地改变着人类的生活,不可避免地会冲击现有的伦理与社会秩序,引发一系列问题。这些问题可能表现为直观的短期风险,如算法漏洞存在安全隐患、算法偏见导致歧视性政策的制定等,也可能相对间接和长期,如对产权、竞争、就业甚至社会结构的影响。尽管短期风险更具体可感,但长期风险所带来的社会影响更为广泛而深远,同样应予重视。
人工智能技术的日新月异与治理体系相对稳定性之间不可避免地存在矛盾,这需要我们明确应对人工智能的基本原则。在国际范围内比较,人工智能伦理基本原则以2017年1月在阿西洛马召开的“有益的人工智能”(BeneficialAI)会议提出的“阿西洛马人工智能原则”(AsilomarAIPrinciples),以及电气和电子工程师协会(IEEE)组织开展的人工智能伦理标准的工作受到了最多的关注。此前,各国也提出了机器人原则与伦理标准。作者认为,我国人工智能的研究和应用应遵循两个人工智能伦理基本原则,即人的根本利益原则和责任原则。
人的根本利益原则
人的根本利益原则,即人工智能应以实现人的根本利益为终极目标。这一原则体现对人权的尊重、对人类和自然环境利益最大化以及降低技术风险和对社会的负面影响。人的根本利益原则要求:
(1)在对社会的影响方面,人工智能的研发与应用以促进人类向善为目的(AIforgood),这也包括和平利用人工智能及相关技术,避免致命性人工智能武器的军备竞赛。
(2)在人工智能算法方面,人工智能的研发与应用应符合人的尊严,保障人的基本权利与自由;确保算法决策的透明性,确保算法设定避免歧视;推动人工智能的效益在世界范围内公平分配,缩小数字鸿沟。
(3)在数据使用方面,人工智能的研发与应用要关注隐私保护,加强个人数据的控制,防止数据滥用。
责任原则
责任原则,即在人工智能相关的技术开发和应用两方面都建立明确的责任体系,以便在人工智能应用结果导致人类伦理或法律的冲突问题时,人们能够从技术层面对人工智能技术开发人员或设计部门问责,并在人工智能应用层面建立合理的责任体系。在责任原则下,在人工智能技术开发方面应遵循透明度原则;在人工智能技术应用方面则应当遵循权责一致原则。
透明度原则
透明度原则要求人工智能的设计中,保证人类了解自主决策系统的工作原理,从而预测其输出结果,即人类应当知道人工智能如何以及为何做出特定决定。透明度原则的实现有赖于人工智能算法的可解释性(explicability)、可验证性(verifiability)和可预测性(predictability)。
权责一致原则
权责一致原则,是指在人工智能的设计和应用中应当保证问责的实现,这包括:在人工智能的设计和使用中留存相关的算法、数据和决策的准确记录,以便在产生损害结果时能够进行审查并查明责任归属。权责一致原则的实现需要建立人工智能算法的公共审查制度。公共审查能提高相关政府、科研和商业机构采纳的人工智能算法被纠错的可能性。合理的公共审查能够保证一方面必要的商业数据应被合理记录、相应算法应受到监督、商业应用应受到合理审查,另一方面商业主体仍可利用合理的知识产权或者商业秘密来保护本企业的利益。
应当明确,我们所说的人工智能伦理原则,不仅应当由人工智能系统的研发和应用的人类主体遵守(包括在研究机构、行业领域的科技企业和科技工作者),而且这些原则应当嵌入人工智能系统本身。机器如何遵循伦理规则这一点,有人仍有质疑。典型的看法是,伦理规则只是给人的,没有可能给人工智能系统(包括机器人)设定伦理规则。的确,传统上伦理原则所针对的是能够遵循这些原则的主体(Agent)也就是人本身。但是,考虑到人工智能的特征在于机器对人的智能的“模拟、延伸和扩展”,即其决策不需要操控者一步步的指令,同时这种决策可能会产生人类预料不到的结果,人工智能系统也应当受到伦理规则的规制。
结论
社会必须信任人工智能技术能够给人带来的利益大于伤害,才有可能支持继续发展人工智能。而这种信任,需要我们认识和探讨人工智能领域的伦理和治理问题,并且在发展人工智能技术发展的早期就有意识地加以运用。今天学者、科技工作者和社会已经有基本共识,就是负责人工智能系统的研发和应用的人类主体,包括在研究机构、行业领域的科技企业和科技工作者,应当服从一些基本的伦理原则。本文提出的两个基本伦理原则,是国内在这方面思考的总结和升华。除了人工智能的基本伦理原则,前人给我们的另一个启发是人工智能伦理应该嵌入系统本身。当我们越来越依赖于机器人代替我们作出决策时,我们应当在这个决策过程中嵌入伦理思考,而不是等待决策结果已经给我们带来负面影响之后再去纠正。
本文希望用一种更清醒的眼光去看待人工智能伦理和治理问题。学者和公众需要一起探讨:我们有没有可能防止人工智能给个人和社会带来的损害?只有在这个问题得到更深入的思考和妥善解决的时候,人工智能的发展才有真正的基础。
转自丨法理杂志返回搜狐,查看更多
科学网—人工智能引发的伦理问题及其规制
人工智能引发的伦理问题及其规制精选已有7143次阅读2020-11-2616:49|系统分类:人文社科
人工智能引发的伦理问题及其规制
李侠
(上海交通大学科学史与科学文化研究院)
2020年8月29日,埃隆・马斯克(ElonMusk)在加州弗里蒙特举行了一场发布会,正式向全世界展示了自己的脑机科学公司Neuralink对猪进行脑机接口技术的成果,该芯片可以实时监测到小猪的脑电信号,遗憾的是我们还无法知道小猪在想什么,但这项技术所揭示的未来太令人期待了,这则报道迅速轰动世界也是人们内心偏好的真实反映,它重新激发了人们对于脑机接口技术(brain-computerinterface,BCI)的热情。
所谓的脑机接口,通俗来说就是在人脑(或动物)与外部设备之间建立直接的联系,由此形成信号的接收与发送,并实现相应的功能。按照脑机接入的方式可以分为两类:侵入式脑机接口(马斯克这次演示的就属于此类)与非侵入式脑机接口。前者的优点在于获得的脑电信号更好,便于分析与处理,而后者收集到的信号质量较差、容易受到噪声干扰。因此,侵入式脑机接口是目前国际学术研究的前沿。脑机接口已经实实在在地出现在我们的面前,随着植入头脑的各类芯片与传感器的日益微型化、功能集成化、加上近年来人类对大脑功能了解的深入、脑机融合的日趋完善、创口的微小化、以及电池功能的增强,脑机接口技术取得重大突破绝非幻想,而是一种可以预见得到的发展趋势。
人们之所以对脑机接口技术的发展趋势持乐观态度,是因为社会上对于脑机接口技术有着巨大的市场需求,它所拥有的潜在商业价值是推动该项技术发展的重要推手。仅就目前可以想象得到应用来看,脑机接口市场前景广阔,下述三种情形是最有可能优先发展的领域,如果该项技术成熟,那么日益困扰老年人的老年痴呆症现象将得到极大缓解;修复残疾患者的大脑缺陷,从而实现部分身体功能的恢复,以及可以实现治疗抑郁等精神疾病;更有甚者可以实现神经增强功能,如大脑的计算速度与记忆能力都是远超人类的,如果未来植入的芯片与大脑更好地兼容,那么人类的计算速度与记忆能力都将得到根本性的改变,制造超人不再是梦想。上述三种情形在科学上几乎都有成功案例。如对残疾人来说,通过意念实现部分身体功能,这类实验成功的很多,如已经被广泛采用的脑深部电刺激技术,这就是大名鼎鼎的“脑起搏器”,其原理就是通过植入脑部的电极向大脑的特定部位发送电脉冲,这一技术主要用于治疗帕金森病和强迫性精神障碍等疾病,已经被美国食品药品监督管理局批准。
再比如,美国著名的视觉脑机接口专家都博勒(WilliamDobelle,1941-2004),他的皮层视觉脑机接口主要用于后天失明的病人。1978年,都博勒在一位男性盲人杰瑞(Jerry)的视觉皮层植入了68个电极的阵列,并成功制造了光幻视(Phosphene)。植入后患者能看到清晰度以及更新率较低的图像。如果说都博勒的工作是40年前技术的体现,那么现在这方面的研究也有了最新进展,失明患者看到的视野比以前要好许多,有理由预测,随着一些关键难题的突破,视觉脑机接口将惠及更多的失明患者。
还有科学家把人造海马体植入到因海马体受损而丧失记忆形成功能的老鼠脑中,并成功让老鼠恢复了部分记忆形成功能(伯杰等人)。基于上述案例,我们大体上可以清晰判断出脑机接口技术正在向日常生活领域扩散,一旦有技术上的突破,这种趋势将无可逆转。
问题是脑机接口技术虽然具有如此广阔的应用前景,但也不可避免地带来某些人类从来没有遭遇过的伦理困境。对此,瑞典数学家奥勒•哈格斯特姆曾指出,脑机接口技术带来的两种常见的伦理问题是:隐私和认知能力的“军备竞赛”。关于隐私问题,这已经成为高科技时代具有普遍性的伦理困境,每一次技术升级,都会导致隐私状态随之发生改变,从人类历史上看,从农业社会、工业社会到后工业社会,人类的隐私范围是逐渐缩小的。总体而言,技术进步导致公共领域扩张,而私人领域日益被技术侵蚀,隐私也随之日益变小,人变成了透明人,隐私的消失也就意味着个人自由的萎缩。对于脑机接口技术而言,这种情况尤为紧迫。一旦通过大脑植入设备可以轻易获取我们大脑内的电信号,其内容完全可以被破译出来,这就导致有很多个人或机构想要获取这些信息,从而利用这些信息实施对我们基于特殊目的的操控,如商家的促销、管理者对于雇员的监视、或者国家对于全民的监视等。这种过程是渐进的,在温水煮青蛙效应中,人类的隐私一点点失去,我们不知道这是否就是人类为技术进步所必须付出的代价。上述担忧绝非杞人忧天,据资料介绍,1999年斯坦利(GarrettStanley,现在埃默里大学EmoryUniversity任职)教授,在哈佛大学通过解码猫的丘脑外侧膝状体内的神经元放电信息来重建视觉图像。他们记录了177个神经元的脉冲列,使用滤波的方法重建了向猫播放的八段视频,从重建的结果中可以看到可辨认的物体和场景。同理,利用这套技术也可以重建人类的视觉内容。看到这类实验,你还认为脑机接口所引发的隐私问题还很遥远吗?更何况遥远并不意味着不可能。
再来说说由脑机接口所带来的认知能力的“军备竞赛”问题。由于电脑在精确计算、数据传输与记忆方面比人类的表现强很多,那么,随着技术的发展与完善,总会有一些人尝试在大脑中植入一些芯片,使自己的能力与计算机的能力进行整合,这将造就认知超人,试问我们正常人再怎么努力也无法达到电脑所具有的记忆能力,这种事情一旦开始就无法停下来,从而陷入“军备竞赛”的游戏框架下,因为没有人敢于停下来,否则他将被淘汰。问题是这种神经增强完全打破了人类由自然选择以来所形成的所有关于公平的规范?此时优秀将不再是对于人的能力的褒奖,而是对他植入大脑的设备的褒奖?那么人类的价值又何在呢?也许影响更为深远的是,脑机接口技术的军备竞赛式滥用,还会造成整个社会分层的固化,毕竟任何新技术在早期都是昂贵的,其最初的使用者大多是有钱有势者,这种现实决定了脑机接口技术会更深层次地造成社会的固化,从而使社会秩序遭到毁灭性的破坏。
以脑机接口技术为标志的人工智能发展引发出一系列我们目前尚无法完全预料到的后果,它事关人类的未来,因此,必须从伦理层面对于它的发展进行有目的的约束。2020年上半年,美国五角大楼正式公布人工智能的五大伦理原则,即负责、公平、可追踪、可靠和可控。这个说法作为伦理原则没有错,但是如何在实践中落实,仍存在很多不明确之处,为此,我们需要构建一套全流程的伦理规范机制,把伦理责任分解,采取分布式伦理,即人工智能从制造到应用每个环节都承担相应的伦理责任,只有这样,人工智能才能最大限度上既增进社会的福祉,又把其潜在的风险最小化。目前的调查与研究显示,在新技术发展的进程中,每个人的责任都是有限的,但是其后果却是严重的。由于人类对于微小的恶的不敏感性,导致最初对于风险呈现出整体的麻木状态,到后来小风险的累积就成为高科技面临的严重伦理问题。这已成为一种风险扩散的普遍模式,为此,我们需要构建一个新的伦理责任体系。
由于人工智能本身的复杂性,以及未来发展的不确定性,导致人工智能责任的明确归属变得更为困难和模糊,如何防范其可能带来的风险也就变得越发困难,甚至会出现无法追责的伦理缺席现象。因此,传统的针对单一主体的伦理规范原则开始失灵,为此我们必须构建一种新的伦理约束机制,从而实现对人工智能从前端、中端到末端全覆盖的有效伦理风险防范机制。为此,我们借用英国伦理学家卢恰诺•弗洛里迪提出的分布式道德概念构建人工智能的伦理风险防范框架示意图,根据这张框架图我们可以把人工智能伦理风险防范分为三部分:首先,是前端的AI设计者的伦理责任(责任1,简称R1),其次,是中端使用者的伦理责任(责任2,简称R2),第三,是末端受众的责任(责任3,简称R3)。
我们不妨假设人工智能所引发的伦理风险总量用公式表示为:ΣR=R1+R2+R3,其中,R1≥R2≥R3。这三段式伦理分布的规约机制分别是:1、对于设计者而言,他有多种动机(从善、中性到恶的选择),这一部分伦理风险要通过具有强制性的政策手段(严重违规就上升到法律规约)来遏制,所有负责任创新都是从动机上防范伦理风险的发生;2、对于使用者而言,他要为自己的使用承担相应的伦理责任;3、受众作为社会成员,有监督人工智能使用的间接责任(个体责任最小,但是由于公众数量庞大,无数微小的努力汇聚起来就是强大的伦理风险防范力量),2与3的激活需要利用科学文化的规训作用,在高科技时代没有人是旁观者,只有伦理责任的全覆盖,高科技的伦理风险才会被最大限度上遏制,具体内涵见下图:
【博士跋】这篇小文章是暑假期间应《科学画报》徐老师之邀而写,这次一共写了三篇,这是其中之一,预计发表在《科学画报》2020(12)期上。《科学画报》是诞生于1933年的中国最老的科普杂志,杂志品相很不错,这是第二次应邀写作科普文章。发表时略有删减,这是原稿,与徐老师合作愉快,是为记!
2020-11-26于南方阴雨中
说明:文中图片来自网络,没有任何商业目的,仅供欣赏,特此致谢!
https://blog.sciencenet.cn/blog-829-1259998.html上一篇:两张有趣的图下一篇:浅议生物医学技术引发的伦理问题收藏IP:101.88.43.*|热度|