人工智能的伦理挑战与科学应对
【光明青年论坛】
编者按
2023年2月21日,中国外交部正式发布《全球安全倡议概念文件》,呼吁“加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险”。在中国式现代化进程中,人工智能的技术革新是助推我国科技创新的重要力量之一。作为最具代表性的颠覆性技术,人工智能在给人类社会带来潜在巨大发展红利的同时,其不确定性也会带来诸多全球性挑战,引发重大的伦理关切。习近平总书记高度关注人工智能等新兴科技的发展,强调要加快提升“人工智能安全等领域的治理能力”,“塑造科技向善的文化理念,让科技更好增进人类福祉”。为此,本版特组织几位青年学者围绕人工智能的伦理挑战与科学应对展开讨论,并邀请专家予以点评,以期引发学界的更多关注,为推动人工智能健康发展贡献智慧。
与谈人
彭家锋 中国人民大学哲学院博士生
虞昊 华东师范大学政治与国际关系学院博士生
邓玉龙 南京师范大学哲学系博士生
主持人
刘永谋 中国人民大学哲学院教授、国家发展与战略研究院研究员
1.机遇与挑战并存的人工智能
主持人:新技术革命方兴未艾,以人工智能等为代表的新兴科技快速发展,大大拓展了时间、空间和人们的认知范围,人类正在进入一个“人机物”相融合的万物智能互联时代。请具体谈谈人工智能给人类社会发展带来什么样的机遇?
彭家锋:人工智能、大数据、物联网、云计算等智能技术蓬勃兴起,对人类社会的方方面面产生深刻影响,推动整个社会逐步迈入智能社会。在此过程中,存在许多重大历史机遇需要我们把握。就技术治理而言,人工智能作为一种治理技术,正在助推社会治理的治理理念、治理方式、治理效能等方面的变革,将传统技术治理提升至智能化新阶段,呈现出“智能治理的综合”趋势。智能治理将全面提升社会公共治理的智能化水平,主要呈现出四个方面的特征:一是治理融合化,即促进各种智能技术与其他治理技术相互融合,大幅度提升智能社会的治理水平;二是治理数据化,即以日益增长的海量数据为基础,通过对数据映射出来的“数字世界”进行社会计算,实现治理目标;三是治理精准化,即发挥智能技术强大的感知能力、传输能力和计算能力,将传统的粗放治理转变为精准治理;四是治理算法化,即不断完善智能决策系统,尝试将程序化的算法决策扩展到更多的决策活动中,从而提高决策质量。
虞昊:人工智能有助于反思人类社会得以建立与发展的基础。随着分析式AI向着生成式AI不断演变,尤其是生成式AI初步展现出判别问题、分析情感、展开对话、创作内容等越来越具有人类特征的功能,原本属于人类的领域正被人工智能以另一套由“0”与“1”构成的计算机语言逐步侵蚀。这既是对人类社会的冲击,也势必会在更加平等的开放性框架中增强人类的主体性,促进人类社会进一步发展。
邓玉龙:总体来说,以人工智能为代表的新科技发展,显著提升了社会生产力。例如,生成式AI不但能完成传统AI的分析、判断工作,还能进一步学习并完成分析式AI无法从事的创造性工作。从人机交互的角度来看,人工智能也促进了生产关系的高效发展。具体表现在:一是刺激劳动形态的转化。人工智能高效承担大量的基础机械性劳动,人类劳动则向高阶的创造性劳动转化,由此引发社会层面的劳动结构转型、升级,并且以人工智能为中介,社会范围内的劳动整合、协调能力也实现升级。二是促进劳动场域的重构。随着劳动形态的转化和劳动的社会化扩展,人工智能将劳动从固定场域中解放出来,人类劳动的灵活性增加。相比于创造性劳动,机械性劳动更加受到空间和时间的制约,而在人工智能从技术层面替代更低边际成本的基础性劳动之后,人类劳动空间和时间的自由性实现跃迁。三是对主体的发展提出了更高要求,尤其是对主体适应社会发展提出了更高要求。人工智能技术的发展对人类传统的知识结构提出挑战,要求人类更新原有的知识结构以适应社会发展需要,也对教育提出更高要求,教育模式和教育内容需要更契合科技发展的水平,培养更加全面发展的人才。
主持人:人工智能的一系列产物在给人们带来生活便利的同时,也一定程度上引起大家对其可能引发的伦理挑战的警惕。一些人关注人工智能的风险问题,对人工智能的推进有些焦虑。如何看待这种警惕和焦虑?
虞昊:人工智能的风险以及由此带来的焦虑,是完全可以理解的。但我们无法返回一个没有人工智能的世界,人工智能已然深度介入人类社会,试图遏制人工智能的推进只能是螳臂当车。同时我们对人工智能的发展也不能放任不管,无视甚至于压制人工智能的推进只能是掩耳盗铃。因此,我们应该正视这种焦虑,在发展人工智能的过程中探求解决方案,在人工智能带来的风险中寻求危中之机。
邓玉龙:我们应正确看待这种焦虑。要看到,焦虑有其积极的意义,它体现人类的忧患意识,催生对人工智能风险的预见性思考,提醒我们注意焦虑背后人工智能技术发展存在的问题。正确对待焦虑有助于积极采取措施防范风险,辩证分析焦虑中先见性的思考,通过社会治理模式的升级化解风险问题。同时,仅有焦虑和恐惧是不够的,更重要的是积极解决人工智能发展带来的社会问题。从劳动的角度看,人工智能确实会取代部分人类劳动,推动劳动结构转型升级,让劳动向着碎片化、个体化方向发展,劳动者处于弱势地位,面临着“机器换人”的挑战。但是我们也应该理性认识到,人工智能不是对人类劳动能力的完全替代,而是对劳动者提出了更高的要求,要求劳动者掌握科学知识,将技术的发展内化为自身能力,在更具创造性的劳动中实现自身价值。
彭家锋:任何技术的发明使用,不可避免地伴随着这样或那样的风险。人工智能技术自然也不例外,在其应用过程中,同样引发了诸如隐私泄露、算法歧视、法律责任等风险问题。因此,关注人工智能的风险问题,并由此对人工智能的推进产生焦虑,具有一定理论依据和现实基础。但更应当清醒地认识到,人工智能的某些相关风险可以提前得到规避,并不必然会发生;即便真的发生,也仍可不断寻求化解风险的有效手段。以个人隐私滥用风险为例,在治理过程中,虽然不可避免地会涉及个人数据收集和分析处理,但可以通过建立完整的规范和监管体系来保护个人隐私,降低滥用风险。
2.人工智能科技竞争的“伦理赛道”
主持人:习近平总书记在以视频方式出席二十国集团领导人第十五次峰会时指出,“中方支持围绕人工智能加强对话,倡议适时召开专题会议,推动落实二十国集团人工智能原则,引领全球人工智能健康发展”。请谈谈“人工智能原则”应包含哪些内容?科技向善的文化理念对推动全球人工智能健康发展具有怎样的现实价值?
彭家锋:为应对人工智能等新科技快速发展带来的伦理挑战,2022年,中共中央办公厅、国务院办公厅印发了《关于加强科技伦理治理的意见》,其中明确了“增进人类福祉”“尊重生命权利”“坚持公平公正”“合理控制风险”“保持公开透明”等五项科技伦理原则。我认为,这五项原则基本涵盖了人工智能原则的伦理要求,彰显了科技向善的文化理念。科技向善的文化理念,根本目标是让科技发展更好地服务社会和人民,带来良好社会或社会公益的善。科技向善对推动全球人工智能健康发展至少具有以下三个方面现实价值:一是塑造公众信任。公众对人工智能的信任很大程度上并不完全由相关风险程度决定,而是取决于公众的利益与价值是否得到足够重视。后者正是科技向善的内在要求。二是引领技术创新。科技向善的文化理念将在技术创新发展过程中发挥价值引领作用。三是促进全球合作。科技向善的文化理念试图在全球范围内建立人工智能伦理规范的“最大公约数”,各国在达成伦理共识的基础之上,能够建立互信,实现更加充分深入的国际合作。
虞昊:个人认为,人工智能原则也应包含非对抗与非失控的理念。非对抗意味着不应将人工智能视作人类社会的对抗性存在,人工智能已经成为人类社会的构成性要素,我们必须持更为开放的态度去面对人工智能。非失控意味着不应放弃对人工智能的伦理规范,应以智能的方式去规范加速发展的人工智能。如果以上述理念为前提,也就是说,在支持人工智能发展的情况下,科技向善的文化理念在推动全球人工智能健康发展中就变得极为重要。此处的“善”在国家治理层面即指向“善治”,而当人工智能的发展从国家范围扩展到全球范围,“善治”就在构建人类命运共同体的意义上拥有了更贴近现实的内涵。各国应摒弃冷战思维与零和博弈,基于善意与友谊共同思考人类作为整体如何在人工智能的冲击下通往全球性的“善治”。
邓玉龙:2019年欧盟发布《可信赖的人工智能伦理准则》,2021年中国国家新一代人工智能治理专业委员会发布《新一代人工智能伦理规范》(以下简称《规范》)。与欧盟发布的伦理准则相比,《规范》体现了中国特色社会主义的制度优势,旨在将伦理规范融入人工智能全生命周期。人工智能发展的根本目的是促进人的全面发展,因此,我以为,人工智能原则还应体现共享和有序发展的要求。共享,旨在防止人工智能的技术垄断。科技发展应该兼顾全体人民的利益,而不是服务于少数群体,由全体人民共享科技发展成果,推动全球科技水平的共同增长。有序发展,旨在防止人工智能技术的无序扩张。人工智能技术的发展最终是为了提升人的幸福感,推动科技有序发展能够促进人机和谐融合,有效预防潜在无序扩张的风险。
主持人:从规范层面来说,伦理反思对规范人工智能发展的作用主要体现在哪些方面?
彭家锋:近年来,世界各主要国家在人工智能领域竞争日趋激烈,纷纷将人工智能发展置于国家发展的战略层面。比如,美国陆续出台《国家人工智能研究和发展战略计划》(2016)和《关于维持美国在人工智能领域领导地位的行政命令》(2019);欧盟先后发布《欧洲人工智能战略》(2018)和《人工智能白皮书》(2020);中国也较早发布了《“互联网+”人工智能三年行动实施方案》(2016)和《新一代人工智能发展规划》(2017)。人工智能科技竞争的客观局面已然形成。在此背景下,如果忽视人工智能技术发展所带来的全球性风险与挑战,极有可能陷入技术赶超的竞争逻辑。因此,亟须规范人工智能的科技竞争,而倡导伦理反思或许就是一条可行之路。伦理反思的意义至少在于:一是设定伦理底线。人工智能技术的开发和应用需要遵循一些基本的价值理念和行为规范。只有守住伦理底线,才有可能避免颠覆性风险的发生。二是实现敏捷治理。伦理反思是一个动态、持续的过程,贯穿于人工智能科技活动的全生命周期。为了确保其始终服务于增进人类福祉和科技向善的初衷,需要保持应有的道德敏感性,以灵活、及时、有效的手段化解人工智能带来的各种伦理挑战,确保其在科技向善的道路上行稳致远,实现良性发展。
邓玉龙:人工智能科技竞争是为了促进科学技术发展,而科学技术发展的最终目的是推动人类社会的进步。人工智能科技竞争不应该仅包括技术竞争的单一维度,更不应该通过技术优势遏制他国的科技发展,而应该是在人工智能科技条件下的综合性竞争,通过良性竞争促进全球人工智能和全人类的共同发展。其中就应该包括社会治理竞争,通过社会治理保障社会公平,因而对社会中人与人关系的伦理反思构成人工智能科技竞争的有机组成部分。首先,伦理反思对人工智能科技竞争提出了更高的要求。人工智能的公平性、可信任性、可解释与透明度、安全性不仅是伦理要求,也代表了人工智能技术的发展方向,是人工智能科技竞争需要抢占的技术制高点。科技的发展是为了人的全面发展,因而人的发展内嵌于科技发展要求,伦理反思有助于防止工具主义的泛滥。其次,伦理反思为人工智能科技竞争提供价值引导。伦理反思注重保障人的权利,科技发展并不是社会发展中的唯一衡量因素,我们还应该关注其中多样性的因素,尤其注重保护特殊群体的利益,例如防止数据鸿沟等不良影响。伦理反思有助于实现人工智能的综合性健康发展。
3.人工智能安全与人的全面发展
主持人:科学探究一直以来都是人们认识世界和了解自身的重要认知方式,人工智能等信息产业的革命如何影响着人们的认知方式?
彭家锋:人工智能等信息产业的革命,促进了科学研究新范式——数据科学的诞生,进而对人们的认知方式产生深刻影响。数据科学被认为是继实验、理论和模拟之后的新的科研范式。相较于传统科学,数据科学融合了统计和计算思维,通过人工智能等技术提供的海量数据、强大算法和算力,能够直接从数据中寻找相关关系、提取相关性或者预测性知识,进而产生一种基于相关性的科学思维模式。但这种相关性并不一定能够转化为因果关系,因为可解释性对于从数据科学技术确定的相关性中提取因果解释至关重要,而相关技术一般都缺乏必要的透明度和可解释性。数据科学更可能成为一种预测科学,但是预测并不是科学追求的唯一目标。通过揭示世界的潜在因果结构来解释和干预现象,也是科学的两个重要目标。因此,尽管数据科学能够通过分析大量数据生成相关性知识,却不能直接产生因果解释。对此,传统科学的可检验性假设方法和因果规律探求仍有其重要价值。数据科学并非取代传统科学,相反,两者将相互补充,共同成为人类探索世界的有效工具。
虞昊:显而易见的是,随着人工智能向着通用人工智能迈进,其能够为人们提供的教育资源、生活娱乐、工作讯息也越来越丰富,人们势必越来越依赖于通过与人工智能进行交互来获取外界信息。因此,当人工智能深度地构成人们认知世界的滤镜时,若不对人工智能本身具有重复性、同质性倾向的认知框架保持警醒,人工智能可能扭曲人们的认知方式直至影响人的主体创造性。
邓玉龙:以人工智能为代表的全新技术发展被称为第四次工业革命,其中最显著的特征就是机器与人类的深度融合,机器不再作为一种外在性的工具被人类使用,而是在与人类的深度关联中影响人类的认知方式。一方面,信息产业革命丰富了人类认知的联结方式。人工智能和大数据技术的发展促进人类的分析逻辑从因果关系扩展为相关关系,对相关关系的重视使人工智能可以从大数据而非小数据维度获取信息,为人类认知提供新的视角。按照传统人类认知方式的理解,因果关系要求关于世界的认知是确定性的,而这在数字时代的复杂性社会中很难实现。人工智能对相关关系的认知填补了这一缺失,允许我们在无法掌握确定信息但在掌握大量数据的条件下对未来趋势作出预测。另一方面,如果我们对人工智能等科技的输出结果和生成内容盲目信赖,将结果和内容与经验事实之间进行绝对等同的连接,误认为是事实的全部,那么我们就会丧失人文主义抽象反思的能力,对此我们应当保持警惕,始终坚持反思和批判的人文精神。
主持人:如何调适人的主体创造性与信息高度集成共享之间的关系?
彭家锋:当人们逐渐将更多创造性工作交由人工智能完成,不免让人担忧人工智能是否将会威胁到人的主体创造性。从人机关系的角度来看,这种担忧是基于一种人机敌对论的视角,认为人工智能挤压了人的主体创造性空间,是替代逻辑的延续。但从人机协作的视角出发,将人工智能看作人的得力帮手,通过创造性地使用人工智能可以赋予人类更大的创造性空间。比如,在进行文字写作、多媒体脚本、程序代码、文稿翻译等工作时,可先由人工智能高水平地完成草稿工作,然后再由人类进行一些创造性的调整和发挥。此时人工智能生成的内容将成为进一步创作的原材料,人类将以更高的效率投入创造性活动之中。当然,要实现以上效果并非易事,不仅需要思想观念的转变,还应在制度安排、教育方式等方面作出相应调整。
虞昊:面对信息高度集成共享的人工智能,人有可能转变为算法的动物。试想下述场景:当依据人工智能展开行动变得足够便捷有效时,行动者便会倾向于采信人工智能,此时,看似是人类行动者基于自然语言在进行互动,实则是算法逻辑基于计算机语言在进行数字化运转。于是,人的主体创造性被侵蚀,人可能沦为算法动物。对此类情形,我们应该保持足够的清醒与警惕。
邓玉龙:人工智能技术生成的内容(AIGC)具有高度集成共享的特性,能够高效地对人类知识进行数据挖掘、信息生成。调适人的主体创造性与信息高度集成共享之间的关系,我们需做到如下几个方面:首先,需要通过人的创造性扩大AIGC数据库,当下AIGC主要是依赖于大语言模型,以大量的网络文本作为训练数据库生成的,通过人的创造性生成可以不局限于网络文本,而是进一步扩展数据库的训练文本,从而提高其丰富度。其次,需要通过人的创造性为AIGC提供价值训练,通过人的创造性生成的价值立场、伦理法则等与AIGC的训练数据库相融合,从而建构可信赖、可持续的信息高度集成共享机制。最后,需要将人创造性生成的内容与AIGC共同作为人类知识的来源,人类知识的获得不能仅仅局限于AIGC,而是需要人发挥其主体创造性对人工智能技术生成的内容进行反思和拓展,将人类无法被数据化的、经验性的知识与AIGC数据化的知识融合成为人类知识的来源。
(本版编辑张颖天整理)
我国人工智能治理面临的机遇和挑战:基于科技公共治理视角
卢阳旭 何光喜
[摘 要]建立健全人工智能治理体系,是保障人工智能健康发展的必然要求。人工智能治理的核心议题是风险和收益的平衡,以及相关公共决策的知识合法性和参与合法性的协调。本文基于科技公共治理视角,分析了人工智能治理的两个面相,介绍了各国在人工智能治理方面的探索及面临的挑战。在梳理我国人工智能治理实践的基础上,从原则、制度建设和工具开发三个层面提出了改进我国人工智能治理体系建设的建议。
[关键词]人工智能;科技公共治理;风险;挑战
[中图分类号]D63 [文献标识码]A
一、人工智能治理问题的提出
人工智能是引领新一轮科技革命和产业变革的战略性技术,正在对全球经济社会发展产生重大而深远的影响,[1]是当前全球科技治理的焦点议题。形成一套能有效识别、促成社会意愿“最大公约数”的人工智能治理体系,有效支撑相关公共决策的制定和执行,是促进人工智能健康发展的重要保障。
(一)科技公共治理及其核心议题
作为一种特殊类型的公共治理,科技公共治理具备公共治理的一般特征:治理主体多元化、治理机制多样化。[2]同时,科技创新活动及其影响的不确定性高、知识门槛高,又使得科技公共治理有以下两个方面的核心议题。
1.科技收益与科技风险的权衡问题
科学技术的“双刃剑”效应使得人们对于科技发展一直有一种矛盾的态度,一方面担心发展太慢,让经济社会发展失速;另一方面又担心发展太快、失去控制,伤及人类。这一矛盾态度使得人们在对待科技发展特别是新兴技术的应用上,出现了“预防原则”(precautionaryprinciple)和“先占原则”(proactionaryprinciple)的持续争论。[3]“预防原则”主张,人们要更谨慎地对待科技发展蕴含的不确定性,以防其带来不可预料的危害。“先占原则”则认为科技创新自由至关重要,不应过分强调与科技发展相关的不确定性的负面影响,反倒是要在规制科技创新方面更加谨慎,以免失去科技发展带来的机会。简单说,前者更强调“安全的科学”,后者则更加强调“科学的安全”。[4]
2.“知识合法性”和“参与合法性”的张力问题
科技活动有很强的专业性,较之一般公众,科学家具有很强的知识优势,更有可能作出“知识上”的正确决策,科技相关决策应该主要听科学家的——这是很长时间以来,科学与政治、科学家与公众之间的默契。但是,随着科学的体制化和职业化,知识权力与各种经济和社会利益的深度纠缠,科学家的独立性和客观性不再毋庸置疑。同时,科技对社会的深度纠缠使得科技决策所需的科学知识之外的“社会知识”越来越多,而公民权利意识的增强则意味着公众会越来越不愿意只是被动地接受科学家们的决定。[5][6]换句话说,没有多主体参与的科技公共决策可能在知识上是不完备的,在程序上是“不合法的”。[7]
(二)人工智能治理的两个面相:“影响的治理”与“技术的治理”
1.影响的治理:人工智能的伦理、法律和社会影响
影响的治理是人工智能治理的核心面相,基本原则是以人为本,基本问题是风险和收益的权衡。20世纪90年代人类基因组计划设立专门的研究项目,关注与基因技术相关的伦理、法律和社会议题(Ethical,Legal,andSocialIssuesELSI)。这个框架同样适合于对人工智能影响的分析,目前人们对于人工智能影响的讨论基本上也是从这三个相互联系的层面来展开的。
人工智能伦理议题的核心,是人与人工智能系统的关系,表现在两个层面:一是人工智能持续发展给人类地位带来挑战,虽然目前人工智能还处于狭义人工智能阶段,但人们对通用人工智能和超级人工智能的预期加重了这方面的担忧。二是人工智能的误用和滥用给人与人、人与自然之间伦理关系带来挑战,比如隐私、歧视、尊严、安全、公平正义等。人工智能法律议题的核心,是何种法律规制能够帮助人类在人工智能发展过程中实现“趋利避害”。人工智能社会议题的内容相对宽泛,而且随着人工智能对工作和生活渗透广度和深度的增加,还会有各种新的议题出现。当前,人们关注的主要议题,包括就业、收入分配、深度造假、政治选举等等。[8][9]
需要指出的是,虽然人们对人工智能的潜在风险有很多担心,但总体判断还是好处要大于风险,而且人类社会有机会、有办法去争取实现收益最大化、风险最小化。比如,2018年12月欧盟委员会高级专家组发布的《可信赖的人工智能伦理准则(草案)》(DraftEthicsGuidelinesForTrustworthyAI)指出,总体而言人工智能所带来的收益要大于风险。同月,日本内阁府发布的《以人类为中心的人工智能社会原则(草案)》(SocialPrinciplesofHuman-centricAI(Draft))也认为人工智能技术是其推进“社会5.0(society5.0)”建设的关键,要尽可能有效、安全地利用它并避免其带来的负面影响。
2.技术的治理:人工智能系统的治理
技术的治理是人工治理的从属面相,基本目标是保障技术系统安全、可控。具体要求主要包括:一是强调人工智能系统要可解释、透明、长期安全并符合社会价值观,要提高算法的透明性、完善数据共享标准和规范。二是要在人工智能系统的可靠性检验和安全性确认等方面寻找新的方法,以保证人工智能系统处于不间断的人类监管之中。比如,2016年美国政府发布的《国家人工智能研发战略规划》提出,在初始设计阶段就要从技术、标准、审查层面保证人工智能系统可控、安全、符合社会伦理。
但人工智能技术治理面临两个方面的挑战:一是人工智能内生偏差和不可理解问题。人工智能算法高度依赖于大数据,而在很多场景下,数据质量(比如样本的代表性)是很成问题的;不可理解性既包括开发者无法确切理解人工智能系统自我学习过程和决策结果,也包括算法对于使用者和监管者而言的不可理解性。[10]二是算法透明化的安全顾虑和法律争议。国家和公司层面的激烈竞争,以及算法、数据及其分析方法通常掌握在少数国家、少数公司手中这一客观事实,使得它们很容易从现行法律框架中搬出私人财产、商业机密、国家安全等作为拒绝公开的理由。
二、各国人工智能治理的探索和挑战
(一)各国人工智能治理的探索
1.影响的识别:共识和差异
近年来,随着研究的深入和实践的增多,全球人工智能治理的一般性议题越来越集中,主要包括人类的尊严和自主性、隐私和数据安全、就业和社会不平等、人工智能系统的可信赖性及恶意使用等。与此同时,人工智能向各领域的快速渗透也让人工智能治理的具体性议题持续增多。据不完全统计,仅在各项能从公开渠道获得的人工智能提案中,涉及的议题就已超过50个。[11]随着人工智能对各领域渗透程度的进一步加深,未来还会有更多利益点和风险点被触及和识别。
需要指出的是,各国在议题上的共识并不代表在认知、态度和政策举措方面取得共识。以隐私保护为例,虽然各国都认同应该保护隐私,但在不同的制度和文化背景中,人们对于隐私的理解,以及隐私的重要性排序存在明显差异。比如,有研究者将不同社会和群体对待隐私保护的态度划分为三种类型:“隐私优先”(High-Privacyposition)、“隐私平衡”(Balance-Privacyposition)和“隐私限制”(Limited-Privacyposition)。[12]“隐私优先”论赋予隐私更高的价值排序,认为应该赋予个人更大的“数据控制权”,同时它对于隐私的界定也相对比较宽泛。与之相反,“隐私限制”论则认为,虽然应该保护隐私,但当它与其他社会价值(比如公共安全、言论自由等)不一致的时候,应该让位于后者。“隐私平衡”论介于二者之间,在强调隐私保护的同时,也认为不应该对隐私有过于宽泛的定义和过强的保护,在隐私保护方面则强调发挥个人自主、机构和行业自律的作用。事实上,上述分歧明显地体现在美国和欧盟个人数据和隐私保护的立法和监管思路上。相对来说,欧盟在个人数据和隐私保护上更接近于“隐私优先论”,2018年5月正式生效的《一般数据保护条例》(GeneralDataProtectionRegulation,GDPR)确立了“数据可携带权”“被遗忘权”等个人数据控制权,并要建立统一的执法机构。与之相反,美国在强调个人数据和隐私保护的同时,在个人数据控制权立法保护方面要更加谨慎,更接近于“隐私平衡论”甚至“隐私限制论”。对美国、英国和德国等国企业的实证研究也发现了各国对于隐私的认知差异:美国与英国企业的隐私官员一般从避免损害消费者预期的风险管理角度看待隐私保护,而德国、法国和西班牙三国企业主要从人权角度看待隐私。[13]
2.机制的探索:参与和协同
人工智能发展迅速、渗透性强、议题多样复杂。政府、科研机构、大学、企业和社会组织等都有各自的利益诉求和信息优势,多元参与、充分沟通有利于提高人们对人工智能收益和风险的共同认知,并承担共同责任。虽然人工智能治理是个新议题,但从欧美各国的实践来看,它们基本延续了在转基因、纳米、合成生物学、信息技术等新技术治理方面的理念和架构。以一系列法律为核心的正式制度为人工智能治理提供了基本的制度框架和互动规则,例如欧美国家广泛存在的对重大科技公共议题的议会听证制度。对话会、民意调查以及政策制定者和专家之间的社会网络等非正式治理活动也有利于信息的及时传递和各方利益的表达。比如,在奥巴马政府时期,白宫科技政策办公室就人工智能主题举办了一系列旨在广泛征求社会各界意见的研讨会,在此基础上相继发布了《为人工智能的未来作准备》(PreparingForTheFutureOfArtificialIntelligence)《美国国家人工智能研究和发展战略计划》(TheNationalArtificialIntelligenceResearchandDevelopmentStrategicPlan)和《人工智能,自动化与经济》(ArtificialIntelligence,Automation,andtheEconomy)三份报告,较为系统地阐述美国人工智能发展战略、伦理规范和治理机制。2018年以来,美国国会就个人数据和隐私保护相关议题连续举行了多场听证会,Facebook、谷歌、亚马逊等企业巨头均被邀出席。2018年5月,美国政府又在白宫举办人工智能峰会,邀请谷歌、亚马逊、英特尔等企业巨头,以及顶级学术机构的专家等上百位代表参加,重点讨论AI研发、人才培养、制约AI创新发展的体制和特定部门的AI应用等4个议题。2017年6月,英国上议院成立了人工智能专门委员会,负责研究人工智能发展所带来的经济、伦理和社会问题。2018年4月,该委员会发布了《英国人工智能:准备、意愿与能力》(AIintheUK:ready,willingandable)的报告。
当然,人工智能治理过程中多方参与和协同的方式、效果受到特定国家利益集团的结构和制度环境的深刻影响。人工智能的快速发展必然会冲击现有的利益格局,不同利益集团之间的博弈直接决定了各方在相关决策中的话语权和影响力。以隐私保护为例,数据收集者、数据聚合者(主要指各类数据交易平台)、数据使用者和数据监管者这四类利益主体之间的博弈过程会深刻影响一个地区、国家甚至全球的隐私保护政策。[14]同时,人工智能治理过程中利益博弈、政策制定和执行活动都嵌入特定的政策网络当中,会受到其他领域法律法规和政策执行体制的推动和掣肘。总之,欧美国家在推动人工智能公共治理方面的基本经验,不是简单地让知识合法性或参与合法性占据绝对的优势地位,而是把二者间的张力纳入特定的制度框架内,并通过各种具体的活动程序和技术小心翼翼地保持它们之间的微妙平衡。
3.工具的建立:规范和倡导
工具的多元化和适应性是实现有效治理的重要条件。近年来,国际组织、各国政府和立法机构、研究机构等各类主体积极探索建立多样化的人工智能治理工具。法律的约束力强,是人工智能治理可依赖的重要工具,但由于其刚性强,各国在以法律来规制人工智能方面还是相对比较谨慎,尽量平衡风险规制和促进人工智能创新发展的双重需要。总体而言,以美国和欧盟为代表的一些国家和地区在人工智能相关立法方面采取的基本策略,是差别化和场景化——对人工智能不同应用领域进行专门立法。目前,美国和欧洲等国家和地区在自动驾驶方面已有比较成熟的立法,很多国家(地区)也试图加强对深度造假、智能投顾和智能医疗等人工智能应用重点领域的立法规制。[15]
行业技术标准、从业人员行为规范等也是人工智能治理的重要工具。2017年,电气电子工程师协会(IEEE)发布《人工智能设计的伦理准则(第2版)》,对人工智能伦理事项进行了扩充,而且目前还在持续更新和迭代。国际电信联盟(ITU)、国际标准化组织和国际电工委员会第一联合技术委员会(ISO/IECJTC1)等机构也在紧锣密鼓地进行相关标准的研究和制定工作。同时,一些知名科学家、企业家发起国际性的治理倡议,试图在观念和规范层面凝聚全球共识。比如,2017年1月,由未来生命研究所(FutureLifeInstitute)发起,霍金、马斯克领衔推动全球联署的“阿西洛马人工智能23条原则”(AsilomarA.I.Principles)已有超过1000名人工智能/机器人研究人员以及超过2000名其他领域专家签署。该原则从科研目标、科研经费和文化、科学和政策的互动、系统安全可控和透明性,到负责任、隐私、自主性、利益共享、符合人类价值观和不颠覆人类社会秩序等方面提出了23条人工智能研发和应用原则,呼吁全世界严格遵守,共同保障人类未来的利益和安全,在业界引起了很大反响。2018年12月,一项旨在推动人工智能治理全球合作,促进人工智能可持续发展的《负责任地发展人工智能蒙特利尔宣言》(MontrealDeclarationforaResponsibleDevelopmentofArtificialIntelligence)也开始了全球签署。这些国际性的、跨领域的努力为全球人工智能治理合作提供了重要帮助。
(二)全球人工智能治理面临的主要挑战
1.收益和风险的有效识别与公正分配
人工智能是一项正在快速发展且具有重大深远影响的新技术,对它的治理面临着巨大的技术和经济社会影响的“双重不确定性”。如何确保收益和风险的平衡,实现收益的公正分配、风险的合理分担是全球人工智能治理面临的巨大挑战。以就业为例,虽然人们知道人工智能将推动更大范围、更具“劳动替代性”的自动化进程,并重塑全球产业链和就业结构,但替代的规模和方式,影响的大小和结构却众说纷纭、难有定论。再有,人工智能如何加速推动资本替代劳动,是否会加剧“资本回报率高于经济增长率”的趋势,[16]造成劳动参与率和劳动收入占国民收入的比例进一步下降,高端就业岗位和普通就业岗位间的收入差距进一步扩大,让人工智能带来的生产效率提高、社会财富增长等好处主要由少数大企业、大资本和高端技术人员和管理者获得?2018年2月,剑桥大学生存风险研究中心(CentrefortheStudyofExistentialRisk,CSER)等机构联合发布《人工智能的恶意使用:预测、预防和缓解》(TheMaliciousUseofArtificialIntelligence:Forecasting,Prevention,andMitigation),认为滥用人工智能不仅会放大旧风险,还会产生新风险,让数字空间、物理空间和政治领域的风险类型更加复杂。总之,不同国家、群体和个人在人工智能相关风险面前的脆弱性是存在结构性差异的,如何降低风险并更合理分配风险是全球人工治理面临的关键挑战。
2.知识合法性与参与合法性的动态平衡
人工智能具有很高的技术门槛,相比于用户、监管者等主体,技术专家拥有很强的知识优势。但人工智能技术具有极强的渗透能力,将来会出现在工作和生活的各种场景当中,与每个人的利益密切相关。在这种情况下,与人工智能相关的公共决策所需的不仅仅是客观的技术知识,公众的利益诉求和价值判断同样非常重要。探索各种能够促进政府、企业、科学共同体和公众四类主体共同参与、协商共治的方式,不仅能够增加复杂决策所需的技术知识和社会知识,更能增加人工智能治理的参与合法性。但必须指出的是,在现实的人工智能治理活动中,四类主体内部并非“铁板一块”,而是普遍存在着各种观念和利益的分化与差异:政府内部存在不同级别和不同部门间的观点或利益差异;科学界内部存在不同学科间、不同技术路线的差异,而且很多所谓的“科学之争”还混杂着复杂的利益纠葛;产业界内部存在不同产业、不同厂商间的利益差异;公众内部的观念、利益分化则更加普遍。总之,纵横交错的利益关系、知识和政治的深度交织都增加了人工智能治理知识合法性和参与合法性之间的张力和平衡难度。
3.全球人工智能产业竞争和治理合作的良性互动
加强人工智能治理的全球合作是国际社会的共识,但各国、各大企业积极争取掌握更大话语权也是全球人工智能治理的客观事实。2019年2月,美国总统特朗普签署《美国人工智能倡议》,提出要应对来自战略竞争者和外国对手的挑战,并确保美国在人工智能领域的领先地位。2018年3月,欧洲科学与新技术伦理组织(EuropeanGrouponEthicsinScienceandNewTechnologies,EGE)发布的《关于人工智能、机器人与“自主”系统的声明》(StatementonArtificialIntelligence,Roboticsand‘Autonomous’Systems)提出,欧盟要启动相关流程,为机器人技术和自主系统的设计、生产、使用和治理制定一个共同的、国际公认的伦理和法律框架。2018年4月,英国议会发布的《英国人工智能:准备、意愿与能力》(AIintheUK:ready,willingandable)更是提出,英国要利用法律、研究、金融服务和民间机构方面的优势,通过在人工智能伦理与准则制定方面的领先来引领人工智能的发展。
三、我国人工智能治理的探索和挑战
(一)我国加强人工智能治理的主要探索
1.高度重视人工智能发展风险研判和防范
2017年7月,国务院发布《新一代人工智能发展规划》,要求必须高度重视人工智能可能带来的安全风险挑战,加强前瞻预防与约束引导,最大限度降低风险。2018年10月,习近平总书记指出,要加强人工智能发展的潜在风险研判和防范,维护人民利益和国家安全,确保人工智能安全、可靠、可控;要加强人工智能相关法律、伦理、社会问题研究,建立健全保障人工智能健康发展的法律法规、制度体系、伦理道德。
2.积极推进法律法规和政策体系建设
近年来,我国通过分散式立法的方式,修订和出台相关法律法规,重点加强了对个人数据、电子商务、智能金融、自动驾驶等与人工智能发展紧密相关领域的修法和立法工作,努力完善促进人工智能健康发展所需的法律框架。比如,2018年8月十三届全国人大常委会审议通过《中华人民共和国电子商务法》,努力在允许算法推荐和大数据画像等新技术发展和消费者合法权益保护之间寻求平衡。中国人大网公布的《十三届全国人大常委会立法规划》显示,个人信息保护法、数据安全法均被列为第一类项目,即条件比较成熟、任期内拟提请审议。一些政府行业监管部门也陆续出台了一系列部门规章,积极适应本领域人工智能应用的监管需要。比如,中国人民银行等部门联合出台的《关于规范金融机构资产管理业务的指导意见》规定,金融机构应当向金融监督管理部门报备人工智能模型的主要参数以及资产配置的主要逻辑,在促进算法透明和人工智能监管框架等方面做出重要尝试。
3.搭建人工智能治理多方参与平台
2017年11月,由科技部、发改委等15个部门共同构成的“新一代人工智能发展规划推进办公室”宣布成立,负责推进新一代人工智能发展规划和重大科技项目的组织实施。来自高校、科研院所和企业的27名专家组成的“新一代人工智能战略咨询委员会”也同期成立,负责为新一代人工智能发展规划和重大科技项目实施,以及国家人工智能发展的相关重大部署提供咨询。为进一步加强人工智能领域相关伦理、法律和社会问题研究和人工智能治理国际交流合作,2019年2月,新一代人工智能发展规划推进办公室决定成立“新一代人工智能治理专业委员会”。2019年4月,科技部发起“为了AI健康发展:新一代人工智能治理准则建议征集”活动,向政府部门、企业、高校、科研院所和各界人士公开征集建议。在人工智能标准化方面,2018年1月,国家标准化管理委员会宣布成立国家人工智能标准化总体组和专家咨询组,负责全面统筹规划和协调管理中国人工智能标准化工作。
(二)我国人工智能治理面临的主要挑战
1.从跟随者到领跑者的角色转换
长期以来,我国科技发展处于“跟跑”状态,科学研究和产业应用方面会遇到的伦理、法律和社会问题大部分都已由先发国家“蹚过”了,我们可以跟在后面学习借鉴国际经验,不走或少走弯路。当前,新一代人工智能对全世界来说都是一个新事物,在治理方面没有现成的经验。我国人工智能部分领域核心关键技术实现重大突破,市场应用深度和广度迅速增长,与之相关的伦理、法律和社会问题的研究和治理不可能再跟在后面学了——从“跟着学”到“带头做”是一个巨大的角色转变。
2.科技公共治理机制不健全
人工智能治理活动嵌入在特定的科技公共治理制度中,而后者是一个从理念到制度、程序再到具体技术的完整系统。虽然近年来我国在人工智能治理领域已经作出富有成效的探索,但我国科技公共治理体制机制方面的诸多不足还是会给人工智能治理带来诸多挑战,突出表现在以下几个方面:一是产业界、公众参与科技公共决策的依据、程序等仍然缺乏明确、详细的法律规定。二是以知识生产、共识达成和决策扩散等为目标的系列公共治理方法和工具开发不够。三是在开放创新和全球合作共治的大背景下,主动参与国际人工智能治理合作的理念、机制和专业人才准备不足。
四、结论和建议
探索形成一套有效的人工智能治理机制和平台、治理方法和工具,以实现治理结果的趋利避害、治理过程的科学民主,是保障人工智能持续健康发展的内在要求。鉴于全球人工智能治理现状以及我国的具体国情,本文提出以下建议:
一是原则层面,根据收益和风险结构进行分类、分级处理。一方面人工智能在不同领域中的应用所带来的收益和风险存在很大差异;另一方面在人工智能创新和产业化链条的不同阶段和环节,收益和风险的大小和结构也存在很大差异。没有必要,也很难用一个标准来简单地加总利害。从目前国际人工智能治理经验和我国治理实践来看,未来我国人工智能治理遵循的基本原则,是根据风险类型和大小,对不同场景下的人工智能系统开发和应用采用不同的监管模式和治理机制,努力实现创新和安全、知识合法性和参与合法性之间的动态平衡。
二是制度规范层面,人工智能公共治理法治化。首先应当在法律层面规范人工智能治理程序,将相关决策过程纳入法治轨道。其次要在科研经费投入、科研活动监管、公众参与方式和程度等方面,都明确相应的制度安排,在项目形成机制、各类利益相关方代表的产生方式和意见表达程序等内容作出可操作的程序设计。[17]
三是技术层面,开发多样化的人工智能治理技术工具箱。在充分借鉴国际人工智能治理方法和工具的基础上,围绕知识生产、共识形成和行动促进这三个人工智能治理的关键问题,开发适合我国制度环境和社会基础的系列工具。
[ 参 考 文 献 ]
[1]习近平,推动我国新一代人工智能健康发展,2018-10-31.
[2]俞可平.国家治理评估:中国与世界[M].北京:中央编译局出版社,2009:3-8.
[3]翟晓梅,邱仁宗.合成生物学的伦理和管治[N].科学时报,2010-7-19.
[4]卢阳旭,龚旭.科学资助中的控制权分配——以科学基金机构职能变迁为例[J].科学学研究,2019(3).
[5]诺沃特尼,斯科特,吉本斯.反思科学:不确定性时代的知识与公众[M].冷民,等,译.上海:上海交通大学出版社,2011.
[6]马森,魏因加.专业知识的民主化:探寻科学咨询的新模式[M].姜江等译.上海:上海交通大学出版社,2010.
[7]王奋宇,卢阳旭,何光喜.对我国科技公共治理问题的若干思考[J].中国软科学,2015(1).
[8]国家人工智能标准化总体组.人工智能伦理风险分析报告[R].2019.http://www.cesi.ac.cn/201904/5036.html.
[9]贾开,蒋余浩.人工智能治理的三个基本问题:技术逻辑、风险挑战与公共政策选择[J].中国行政管理,2017(10).
[10]汝绪华.算法政治:风险、发生逻辑与治理[J].厦门大学学报(哲学社会科学版),2018(6).
[11]曾毅.构建新一代人工智能准则[N].光明日报,2019-1-24(16).
[12]Margulis,ST.PrivacyAsaSocialIssueAndBehavioralConcept[J].JournalofSocialIssues,2003.59(2):243-261.
[13]Bamberger,KA,Muligan,DK.2015,Privacyontheground:drivingcorporatebehaviorintheunitedstatesandEurope[M],MITPress.
[14]克雷格,卢德洛芙.大数据与隐私:利益博弈者、监管者和利益相关者[M].赵亮、武青译.2016.长春:东北大学出版社.
[15]汪庆华.人工智能的法律规制路径:一个框架性讨论[J].现代法学,2019(2).
[16]皮凯蒂.21世纪资本论[M].巴曙松,等,译.北京:中信出版社,2014.
[17]何哲.人工智能时代的政府适应与转型[J].行政管理改革,2016(8).
[作者简介]卢阳旭,中国科学技术发展战略研究院副研究员;何光喜,中国科学技术发展战略研究院研究员。