博舍

人工智能简史 第2版 简述人工智能简史的内容

人工智能简史 第2版

链接:pan.baidu.com/s/1xTCH_lUrtZVmG5bPLWuWmQ?pwd=fjpk 

提取码:fjpk

1.人工智能专家尼克重磅作品全新升级;2.全方位解读人工智能的来龙去脉,一线专家细数行业经典与成败得失;3.把科学的故事讲得富于思想性,把技术的问题讲得颇具趣味性;4.获得第七届中华优秀出版物图书奖、第八届吴文俊人工智能科技进步奖,入围央视“2017年度中国好书”,获选第十三届“文津图书奖”推荐图书;5.新版全书修订,新增章节,补充人工智能演进路线图和人物关系图。

内容简介

《人工智能简史》全面讲述人工智能的发展史,几乎覆盖人工智能学科的所有领域,包括人工智能的起源、自动定理证明、专家系统、神经网络、自然语言处理、遗传算法、深度学习、强化学习、超级智能、哲学问题和未来趋势等,以宏阔的视野和生动的语言,对人工智能进行了全面回顾和深度点评。第2版中每章都有新增内容,并增加了全新的第13章,整理了人工智能几大派别的演化路线和人物的继承关系,有助读者阅读方便。本书极具专业性、思想性和趣味性,既适合缺少专业背景的读者了解人工智能的来龙去脉,作为人工智能的启迪之书,也适合专业人士了解人工智能鲜为人知的历史,提供深入学习的指导。

作者简介

尼克,曾任职于哈佛和惠普,后创业投资,2016年创立乌镇智库。无论忙闲不忘读书写字,作品多发表于《上海书评》,并有著作《UNIXSYSTEMV内核剖析》和《哲学评书》。

目录

目录第1章达特茅斯会议:人工智能的缘起11.背景22.达特茅斯会议73.AI历史的方法论114.会议之后165.预测未来:会有奇点吗?22第2章自动定理证明兴衰纪271.自动定理证明的起源282.罗宾逊和归结原理363.项重写384.阿贡小组和马库恩395.符号派的内部矛盾:问答系统和归结原理的失落416.几何定理证明与计算机代数437.定理证明系统和竞赛488.哲学问题519.现状5510.结语57第3章从专家系统到知识图谱691.费根鲍姆和DENDRAL702.MYCIN733.专家系统的成熟754.知识表示765.雷纳特和大知识系统816.语义网847.谷歌和知识图谱86第4章第五代计算机的教训931.背景942.理论基础:逻辑程序和Prolog973.五代机计划和五代机研究所1004.并发Prolog1035.美国和欧洲对日本五代机计划的反应1056.结局和教训1097.日本还有机会吗:日本下一代人工智能促进战略111第5章神经网络简史1131.神经网络的初创文章1142.罗森布拉特和感知机1203.神经网络的复兴1254.深度学习129第6章计算机下棋简史:机定胜人,人定胜天1351.机器下棋史前史1362.跳棋插曲1373.计算机下棋之初1384.“深蓝”1445.围棋和AlphaGo146第7章自然语言处理1491.乔治敦实验1502.乔姆斯基和句法分析1513.ELIZA和PARRY1584.维诺格拉德和积木世界1655.统计派又来了1726.神经翻译是终极手段吗?1747.问答系统和IBM沃森1758.回顾和展望177第8章向自然学习:从遗传算法到强化学习1831.霍兰德和遗传算法1842.遗传编程1893.强化学习1914.计算向自然学习还是自然向计算学习1975.计算理论与生物学198第9章哲学家和人工智能2031.德雷弗斯和《计算机不能干什么》2042.塞尔和中文屋2113.普特南和缸中脑2144.给哲学家一点忠告217第10章人是机器吗?——人工智能的计算理论基础2231.丘奇-图灵论题:为什么图灵机是最重要的发明?2252.相似性原则:另一个重要但不太被提及的计算理论思想2303.超计算2344.BSS实数模型2355.量子计算2376.计算理论的哲学寓意2407.超计算和人工智能242第11章智能的进化2491.大脑的进化2502.能源的摄取和消耗2513.全社会的算力作为文明的测度2544.人工智能从哪里来?2565.人工智能向哪里去:会有超级智能吗?257第12章当我们谈论生死时,我们在谈论什么?265第13章总结273附录1图灵小传281附录2人工智能前史:图灵与人工智能295附录3冯诺伊曼与人工智能301附录4计算机与智能309后记343参考文献347人名对照361

查看全部↓

人工智能发展简史

1969年,发起人之一的minsky发表言论,第一代神经网络(感知机perceptron)并不能学习任何问题,美国政府和美国自然基金会大幅削减了人工智能领域的研究经费。在20世纪70年代人工智能经历了将近10年左右的寒冬时期。

三、第二次高潮与寒冬

直到80年代,人工智能进入第二次发展高潮,卡耐基梅隆大学为日本DEC公司设计的XCON专家规则系统(专注于解决某一限定领域的问题,具备2500条规则,专门用于选配计算机配件,因此避免了常识问题)可以为该公司一年节省数千万美金。

同期日本政府拨款8.5亿美元支持人工智能领域科研工作,主要目标包括能够与人交流、翻译语言、理解图像、像人一样进行推理演绎的机器。

但是随后人们发现,专家系统通用性较差,未与概率论、神经网络进行整合,不具备自学能力,且维护专家系统的规则越来越复杂,且日本政府设定的目标也并未实现,人工智能研究领域再次遭遇了财政苦难,随之人工智能发展进入第二次寒冬。

四、第一次算力与算法爆发

上世纪90年代,计算机在摩尔定律下的计算机算力性能不断突破,英特尔的处理器每18-24个月晶体管体积可以缩小一倍,同样体积上的集成电路密集度增长一倍、同样计算机的处理运算能力可以翻一倍。

1989年,还在贝尔实验室的杨立坤通过CNN实现了人工智能识别手写文字编码数字图像。

1992年,还在苹果任职的李开复利用统计学方法,设计了可支持连续语音识别的Casper语音助理(Siri的前身),在1997年IBM的国际象棋机器人深蓝战胜国际象棋冠军卡斯帕罗夫(不再止步于州冠军,第一次真正意义上的战胜人类),同年两位德国科学家提出了LSTM网络可用于语音识别和手写文字识别的递归神经网络。

五、算力+算法+数据三驾马车聚齐:发展进入快车道

直到2006年,也就是我们身处的这不到20年的时间是当代人工智能快速发展的阶段,同年杰弗里辛顿发表了《learningofmultiplelayersofrepresentation》奠定了当代的神经网络的全新架构。

2007年还在Stanford任教的华裔女科学家李飞飞教授,发起了ImageNet项目,开源了世界上最大的图像识别数据集(超过1400万、2万多标注类别的图像数据集)。

在2006年亚马逊的AWS的云计算平台发布,进一步大幅提升了人工智能网络模型计算所需要的算力。

同时,随着2014年4G时代的到来与智能手机大规模普及,移动互联网的极速发展,催生了覆盖人起居生活工作的方方面面的各色应用,带来了神经网络训练迭代所需的养料“海量的数据”,同时随着IoT物联网的兴起、支持分布式计算(边缘计算)的传感器时序(temporal)数据指数级生成。

六、技术发展离不开政府支持,我国将人工智能列入国家战略

2017年我国政府也引发了《新一代人工智能发展规划》明确了我国新一代人工智能发展的战略目标:到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径。

到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。

人工智能发展简史–符合事物发展本质-螺旋式上升

回顾人工智能历史发展的60多年间,有上升期、有瓶颈期、有寒冬期,但却一直不断的演进进步,正如恩格斯在《自然辩证法》所说,一切事物都是由螺旋形上升运动是由事物内部矛盾引起的,矛盾双方经过反复斗争,引起对立面的两次否定,两次转化,事物的发展从肯定到否定再到否定之否定,形成一个周期性,每一周期的终点同时又是下一周期的开端。

一个周期接着一个周期,每一周期完成时出现仿佛向出发点的复归,形成由无数“圆圈”衔接起来的无限链条,呈现出螺旋形的上升运动。

而如今的我们,正处在一个人工智能高速发展时代,且已经渗透到人们日常生产、生活、工作的方方面面,大家可能会问,为什么不是10年前、20年前而是现在?

这就不得不提人工智能三要素,分别是:算法、算力和数据,三者缺一不可。而人工智能早期发展的瓶颈,很多都是因为你三要素的一种或者多种要素的缺乏,导致人工智能产业陷入短暂的困境,如下图所示。

而如今,随着4G、5G基础网络通讯设施的快速发展,使万物互联成为可能,全球有天文数字级别的人、设备、传感器被连接,产生海量的数据,而这些数据正是人工智能算法模型迭代的充足养料。

而为什么我国有建设成为人工智能创新中心的底气?因为我们国家在网络基础设施建设方面在全球最为领先,移动互动联网渗透人们生产生活最为彻底,“配送下乡”的电商平台淘宝、拼多多、京东,美团等互联网“买菜”服务下沉到社区,村子里在直播玩短视频的大爷大妈,每个人都不知不觉的在享受着“人工智能”科技发展所带来的红利,同时也被“算法”支配着时间。

困在算法里的外卖小哥、内容平台利用推荐算法向你定向投喂的“猪食内容”、“人脸”信息被滥用,“算法”的偏见与歧视,正如一切事物的两面性一样、技术的发展同时一定会带来负面的影响,引发社会舆论的挑战。

如何更好的保护人们的隐私的同时,让算法更好的为人们服务?如何让人工智能将来不会“觉醒”,失去控制甚至伤害人类?如何让深度学习这个相对黑盒更具可解释性,更安全、更鲁棒?

相信诸位也跟我刚接触这个领域一样带着许多困惑。这些学界和工业界都已经有一些尝试与探讨,我希望在这本书的有限章节中向你尽可能简要但清晰的分享。

七、人工智能的未来在哪?

未来人工智能又将去向何从,会像是科幻电影里人工智能终将觉醒、他们因为不具备”人性”可以更加理智的不会错的进化统治甚至“奴役”人类?

还是由于人类生存活动使地球的生态环境不断恶化,“病毒”不断肆虐,人类无法外出,只能沉陷于由人工智能创造的虚拟环境中,像是”头号玩家”所描述的世界,在虚幻世界中实现”自我”价值?

虽然无法先知,但是可以预见的是,人工智能未来一定会具备以下趋势:

这本书适用于所有刚刚从其他行业转型的AI产品经理,或作为一名刚毕业即将或者已经踏入职场的“新鲜人”,又或者是对于人工智能这个行业感兴趣想要了解的朋友们,希望通过我的一些经验和案例总结浓缩了七节课,希望可以帮助大家了解人工智能行业的同时,理解人工智能产品经理这个岗位,甚至可以快速实操上手。

第一章,我们介绍人工智能发展的介绍,从历史到现状再进一步尝试预见其未来。

第二章,我们介绍进入人工智能领域必知必会的基础知识,包括人工智能最为重要的三驾马车,人工智能、机器学习、深度学习之间的关系?对于AI产品经理需要理解的算法模型,如何衡量算法模型的好坏,如何建立评价体系?

第三章,我们介绍产品经理技能“方法论”,包括需求管理能力、向上管理能力、横向管理能力、项目管理能力、产品管理能力包括如何完成一个产品从0到1的构建,包括常用的管理工具/商业工具等,需要具备的数据分析能力、透过数据进行商业分析的能力等

第四章,我们介绍主要与软件算法类相关的人工智能项目,包括人脸算法技术的场景应用:智能相册、AI人像视频美妆、人体算法、手势算法、人像风格化算法等场景应,人脸AI小游戏等直接面向C端消费者场景的项目;

第五章,我们介绍软硬结合的AI算法类项目,包括智能音箱、智能电视、儿童手表、机器狗、智能座舱项目;

第六章,我们介绍B端垂直行业的AI应用类项目,包括智慧工厂、智慧办公、智慧门店项目;

第七章,我们介绍AI产品的商业模式设计。

最后,我们会推荐几本书籍和影视剧作品作为拓展性阅读,希望有余力的同学可以参考阅读。

作者:大仙河微信号:大仙河知识学堂。专注分享关于人工智能产品、智能硬件、哲学的思考。

本文由@大仙河原创发布于人人都是产品经理,未经许可,禁止转载

题图来自Unsplash,基于CC0协议返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇