人工智能细分领域常用的开发软件是什么
链接:https://www.zhihu.com/question/421105005
编辑:深度学习与计算机视觉
声明:仅做学术分享,侵删
机器学习、NLP、CV、SLAM、机器视觉、人脸识别、图像识别、语音识别、推荐系统、知识图谱等人工智能领域常用的开发软件各是什么?它们都有深度学习的功能吗?
作者:金天
https://www.zhihu.com/question/421105005/answer/1486192914
人工智能常用的开发软件?我猜测你指的是框架,当然也可能包括IDE,没关系,我将统统给予解答。
首先我认为人工智能已经变成了一个十分成熟的领域,就跟四五年前各种Java培训班,前端培训班,.NetC#等语言培训班一样,现在随处可见的人工智能速成班依旧重蹈着昔日开发领域的步伐。这并非偶然,都是市场驱动导致。
1年前我们还在苦恼一些好用的模型无法部署到更低端的芯片上,而现在我们已经有了很厉害的各个精度的量化算法,各大硬件的前向推理框架已经把速度做到了前所未有的快,甚至大家已经在思考如何做图优化,如何把深度学习模型当成是编译器来做等等;2年前我们还在纠结用什么训练框架,我们还在纠结如何用tensorflow生成需要的数据格式,而现在,我们有超过五种深度学习训练框架可供选择,有超过数十个甚至更多的深度学习周边辅助库来帮助你完成目标...
可以说,深度学习的发展之快速,领域之深入,应用之广阔,可能远超乎你的想象,它正在成为新一代的技术基石,就如同上个世纪八十年代的DOS操作系统一样。
话说回来,就我们通常什么软件,分为几个方面来阐述:这篇回答即是回答题猪的问题,同时也希望给后来者一个锦囊
深度学习模型的训练框架
这个你可以选择的很多,比如Pytorch,比如TensorFlow,比如PaddlePaddle,甚至是天元。这些都有各自的优点和缺点。在这里我只告诉大家最好的选择,至于为什么还需要大家自己去探索,或者自己去踩坑,当然这个最好永远是相对的,不是绝对的答案,我建议选择pytorch。
部署框架
我很建议每一位学习人工智能的同学,合理的选择自己的方向,在我看来,当你入门之后,摆在你面前的有两条路,一条路是学术路线,一条路是工业路线。不管你选择哪一条,我认为都有不错的前景。如果你思路开阔,喜欢阅读英文文献,我建议你深入的选择学术路线,那么就不需要过多的关注或者触碰部署方面的东西;如果你喜欢实践,你不喜欢论文里面那些不告诉输入尺寸就对比时间的傻逼,你不喜欢做一个牛逼的东西但是用不起来,那你可以深入部署,往工程方面靠。不管怎样,这两个方向其实也不冲突,关键是看个人精力是否允许你可以两条腿走路。
说道部署框架,其实现在用的比较多的是透过ONNX的方式进行转换。这在很多框架里面支持的已经很好了,比如pytorch,就可以通过onnx部署到GPU上,通过TensorRT加速可以让网络模型提速很多,也可以通过ONNX转到ncnn或者mnn,部署到移动端不在话下。
这里面其实有一个很有意思的逻辑,大家可以想一下为什么需要有一个ONNX的角色存在?不得不说微软是很有先见之名的。随着ONNX的发展,它确实已经发展成了比较标准的网络模型定义格式。未来毫无疑问也会有更多的东西在这上面构建。比如以后会极大发展起来的深度学习编译器等。
总结来说,部署框架分为CPU和GPU,GPU毫无疑问,你不管哪个公司做的,哪个人做的,都做不过英伟达,毕竟芯片是人家做的。所以说这里面有一个很确定的第一性原理在里面。CPU的就八仙过海各显神通了。业内用的比较多得是ncnn和mnn。ARM旗下主导的Tengine也是一个不错的推理框架。
数据处理
鲁迅曾经说过:数据科学家80%的工作是在数据处理上。其实没有错的,数据的准备,清洗,标签制作,数据集格式的转换等等,你将会有很大一部分工作是做这个。
那么这一部分我也推荐一些工具给大家。首当其冲的,当然是自家的库了。
pipinstallalfred-py这个库干什么的?有什么用?简单来说它就是,我直接贴github链接吧:
https://github.com/jinfagang/alfred
感兴趣的同学可以去看看。
当你需要可视化VOC的数据,coco的数据,你需要从voc转到coo,coco转到voc,voc转yolo,yolo转coco等等,你自己写脚本会累死的。有了他,你就可以找到归属感。
IDE
最后说一下写代码不能不说IDE。到目前为止,我一般只用vscode。
作者:SunArieshttps://www.zhihu.com/question/421105005/answer/1473432606
主流TensorFlow和PyTorch生态肯定少不了了。一般还会配合其他各种小工具,如sklearn、opencv、numpy等等,甚至还有按键精灵的。因为人工智能是一个大课题,不可能仅一到两个工具软件就能完解所有问题,所以工具也在发展,自己也要会写些辅助工具帮助研究。
作者:西涛
https://www.zhihu.com/question/421105005/answer/1511837167
开发框架tensorflow,pytorch,numpy,pandas,sklearn,开发IDEpycharm,vscode,jupytornotebook等
作者:marsggbohttps://www.zhihu.com/question/421105005/answer/1497062214
1.写代码VSCode用来写代码
Vscode超级推荐的快捷键:Ctrl+D
比如一个文件里一共有10个myname字符,你想把前面5个替换成youname,那么你就可以首先鼠标选中第一个myname,然后按五次 Ctrl+D后就可以选中前面5个myname,之后你只需要在键盘上写入youname,就完成了替换。
其他快捷键想到再补充
2.框架框架推荐Pytorch,或者TensorFlow>=2.0
很多人都基于Pytorch做了封装,更进一步简化框架使用门槛,比如Pytorch-lightning,fast.ai,还有我自己写的裁缝库(各种封装哈哈哈,不过感觉挺好用的)torchline
3.调试调试代码很多人都用Pycharm,但是在服务器上你怎么办呢?这里强烈推荐ipdb
pipinstallipdb用法很简单
首先运行py文件
python-mipdbmain.py之后就会进入命令调试
bmain.py:15 这个表示在第15行设置一个断点
butils/other_file.py:66同理你也可以在其他文件里设置断点,只要指定路径就好了
clear1 取消第一个断点
c运行到下一个断点
n运行到下一行代码
s 这个命令可以进入某一个函数进行调试
r这个命令是直接跳转到return语句,一般用在函数里或者for循环语句
ipdb常用的命令就是这些,欢迎补充。
4.Windows下命令行工具Cmder超级推荐,用过的都说好,比Windows自带的命令行窗口好用很多,同时支持Linux下的很多命令,用起来很顺滑。https://cmder.net/
5.代码版本控制Vscode的插件库里宝库非常多,这里推荐安装Gitgraph,有了这个后你不用再记忆那么多git命令了
6.Markdown写笔记推荐小书匠软件,好看免费还好用
其他可选:
印象笔记
OneNote
有道笔记
7.论文阅读软件还在用阿逗比的Acrobat或者福昕阅读器吗?学术论文用这些看的话各种知识点七零八落的,这个时候你需要。http://www.bookxnote.com/
是的,这个软件也是免费的哦,这个软件是Windows版本的Marginnote,关键目前是免费的,而且你可以通过搭配坚果云完成文档和笔记的云同步,简直香到不行,都舍不得推荐给你们,生怕用的人多开始收费。
8.知识脑图这里强推Xmind,懂的都懂哈哈哈
9.Visio替代品Visio常用来话流程图,但是除非你下载盗版的,不然穷逼用不起,所以我当然还是推荐几个免费的。
坚果云自带这个功能,但是好像目前版本不支持导出PDF了,所以不爱ta了
ProcessOn在线流程图画图工具,免费用户好像可以创建10个文档,其实也是够用了
重磅来了!!!Drawio最好没有之一!!!
免费、功能强大、支持导出各种格式、还可以备份到谷歌云、GitHub、gitlab、本地等,好用到想哭啊。https://app.diagrams.net/
10.Mathpix
Mathpix可以非常方便地将图片中的数学公式转化成latex代码,写论文超级方便。每个月好像只有一定数量的免费使用次数,如果你使用频率很高,可以去闲鱼买账号https://mathpix.com/
11.Mobaxterm跑实验肯定要用到服务器,这里强烈推荐MobaXterm,ssh和ftp等功能这个软件都有,用起来非常方便。12.OneCommander超级好用的文件管理器,可以以树形结构展示不同层次文件夹的内容,不用在不同文件夹里来回切换了
☆END☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「mthler」,每日朋友圈更新一篇高质量博文。
↓扫描二维码添加小编↓
十款最佳人工智能软件
市场上逐渐将人工智能软件用于程序,编程和其他目的的计算机化已变得普遍。基于AI的平台具有丰富的机器计算和学习能力,可实现业务流程的自动化。自动化可以节省大量时间和精力。这是十大最佳人工智能软件的列表。
自动化使组织能够更高效,更有利地执行工作。
此外,自动化可以帮助个人更新其技能和能力。您将要使用商业智能软件来促进公司的运营。
最佳人工智能软件1.DeepVisionDeepVision专为个人面部分析而设计,是针对安全性,安全性和商业智能的完美AI解决方案。该软件可有效监视指定区域,以根据年龄,性别和其他详细信息随时间推移识别人员。
它使用面部人口统计模型来了解目标区域内随时间变化的人口统计变化,或用于跟踪客户模式。此外,它还帮助广告商和品牌与目标受众建立联系,以进行产品展示和广告宣传。该模型的创建是通过面部匹配来跟踪个人,以量化访客的访问频率,并帮助零售商立即找到潜在的顾客。
主要特点
它可以使用支持AI的技术识别视频或图像中的个人面孔。该软件可以通过执行面部匹配来检测目标对象的位置。它具有面部识别和检测功能。该软件只需查看人的图像即可立即识别人的脸。凭借其面部人口统计功能,它可以估计人们的性别和年龄。2.Braina它是少数支持多种语言的顶级AI软件之一。Braina也可以用作虚拟语音识别软件。借助于此,可以轻松快捷地将软件语音转换为文本。这个以生产力为中心的商业智能平台支持100多种语言。
主要特点
Braina中集成的工具和功能使用户可以快速完成工作。它与多语言虚拟助手集成在一起。该软件为用户提供了完美的成绩单。另外,它还可以读回非英语文本,以便于用户理解。其无可挑剔的语音命令使用户可以使用自己的语音搜索,播放/暂停/停止媒体。使用此软件,用户可以在不费力的情况下调整窗口大小,打开网站,文件夹和文件并执行其他任务。3.GoogleCloudMachineLearningEngine
无论您是希望开展新业务还是计划对现有业务进行数字化转型,GoogleAI技术和云解决方案都将帮助您取得令人难以置信的成功。GoogleCloudMachineLearningEngine是用于训练,调整和分析模型的理想解决方案。它带有ComputeEngine,CloudSDK,CloudStorage和CloudSQL。
该软件还提供了安全耐用的对象存储的好处。其库和命令行工具允许用户利用GoogleCloud。此外,还有用于SQLServer,MySQL和PostgreSQL的关系数据库。
主要特点GoogleCloudMLEngine通过预测和监视这些预测使用户受益。用户可以管理其模型及其多个版本。该解决方案的各个组成部分包括g-cloud,它是用于管理版本和模型的命令行工具。RESTAPI,旨在帮助用户进行在线预测;和GoogleCloudPlatformConsole(用于部署和管理模型的UI界面)。4.Engati使用Engati,用户可以轻松创建规模和复杂程度不同的聊天机器人。它带有150多个模板,因此个人可以快速开始使用聊天机器人。另外,该软件还包括高级“对话流”构建器,高端集成功能以及用于在网站或任何可用渠道上部署漫游器的功能。
该平台使聊天机器人的构建比以往更加轻松。有专门设计用于部署,构建,分析和训练机器人的部分。此外,使用该软件广播的聊天机器人用户信息,门户网站用户,实时聊天和广告系列将使您受益匪浅。
主要特点
使用此软件创建具有成本效益的聊天机器人,并轻松简化客户支持。当聊天代理不在线时,它提供了自动答复的好处。该软件具有自动营销和销售功能。使用此工具,您可以构建聊天机器人,该聊天机器人可以作为交互式,即时的方式让客户获取您的品牌详细信息。通过减轻筛选过程,它也可以减轻人事经理的工作。该软件能够实时对潜在员工进行背景调查。智能聊天机器人可帮助自动解决客户请求。5.Azure机器学习工作室
Azure机器学习Studio是出色的交互式编程软件之一,最适合创建可用于预测分析的商业智能系统。它是用户用来将对象移动到界面的高级工具。
使用此软件,您将有机会探索在云上构建创新的,基于AI的应用程序的新技术。Azure还提供了创新工具,人工智能服务和可扩展基础架构的优势。此外,您还将获得构建智能解决方案所需的资源。
主要特点AzureMachineLearningStudio充当专业人员的交互式工作区。您可以借助从不同来源收集的数据来构建预测分析模型。它是一个交互式平台,可使用数据操作和统计功能来转换和分析数据。您可以轻松确定结果。将分析模块或数据集拖放到界面上,以链接和修改参数和功能,以设计能够在MLStudio中运行的合格且受过训练的模型。借助该软件,您可以通过编写R脚本来准备数据。6.TensorFlowTensorFlow是广受欢迎的开源软件,对于寻求高级数值计算工具的专业人员而言,它是一个完美的解决方案。它具有灵活的架构,可跨多个平台(包括TPU,CPU和GPU)进行计算部署。另外,它可以部署在台式机,服务器,移动设备和其他设备上。
这是Google的AI工程师和研究人员团队的创意。TensorFlow能够进行深度学习和机器学习。而且,它对可在多个科学领域中使用的核心数学表达式提供了强大的支持。
它的一些核心组件包括自然语言处理,决策,聊天机器人,图像识别,数据摄取,多语言,视觉搜索,语音识别,虚拟助手,机器学习和工作流自动化。
主要特点与多维数组有关的数值计算的理想选择为有关机器学习和神经网络的概念提供出色的支持使用CPU和GPU计算的用户受益,而两者需要一个代码用于数据集和各种机器的高度可扩展的计算7.Cortana
像GoogleNow和Siri一样,Cortana是一个智能的个人助理,可以帮助用户启动应用程序,安排约会以及许多其他虚拟任务。它还能够调整设备设置,例如将Wi-Fi切换为关闭和打开模式。该工具还可以回答您的查询,设置提醒,开灯,在线订购比萨等。
主要特点它在Bing搜索引擎上运行。它与XboxOS,iOS,Windows和Android兼容。该平台支持多种语言,包括日语,英语,法语,葡萄牙语,意大利语,德语,西班牙语和中文。使用其语音输入功能,您可以管理和安排会议/重要任务,查找定义,事实等。该工具甚至可以通过语音命令打开系统上的应用程序。8.IBM沃森这是一个基于AI的计算机系统,旨在回答用户的问题。IBMWatson与认知计算集成在一起-包括推理,机器学习,自然语言处理,人工智能等技术的融合。该工具以IBM首任首席执行官ThomasJ.Watson爵士的名字命名,可将人工智能集成到各种业务流程中。它有助于提高组织的生产率和效率,从而可以获得更好的结果。
通常,业务数据采用非结构化的形式,例如语音数据,段落等。借助IBMWatson,专业人员可以系统地整理和组织非结构化数据,以生成所需的信息。IBMWatson的处理速度约为80teraflops,是人类回答问题能力的两倍。
主要特点使用此工具,您将完全控制基本任务。它可以通过保护IP地址,维护数据所有权和保护数据洞察力来处理所有这一切。该软件经过培训,可以重新构想用户的工作流程,而不管他们的工作领域如何。它是运输,医疗保健,金融,教育(包括其他领域)的理想选择。它对几乎所有行业和企业都有深入的了解。该软件可以帮助您做出更快更好的决策。IBM甚至重视数据的最小单位。如果您的数据量很小,则可以分析并确定可能的结果。无需集成任何其他工具,它就可以使用大量数据。通过使用它,您可以轻松地从多个来源访问所需的数据。9.InfosysNia
InfosysNia是一款高度评价的商业智能软件,可以从旧版系统,人员和流程中收集信息。它将数据聚合到一个知识库中,并自动执行IT流程和业务任务。该软件旨在减少人工工作,并找到需要想象力,创造力和激情的客户问题的解决方案。
用户可以利用该平台来获得深入的见解,增强的知识以及探索机会,以简化,优化和自动化复杂的组织流程。
主要特点它有助于增强流程和系统,以增强组织及其员工的能力。它包括一个高级的对话UI。该工具具有用于编程和重复任务的自动化功能。它是结合认知自动化,RPA和预测自动化的自动化平台之一。它可以捕获,处理和重用知识,以更好地开展业务。该平台还能够为用户提供数据分析。它也可以用作机器学习工具。10.Playment它是一个数据标记平台,可以为机器人模型大规模生成训练数据。Playment增强了处理无人机,制图,自动驾驶和类似空间的业务。
该工具已由CYNGN,DriveAI和StarskyRobotics等多家知名研究机构和组织选择。
主要特点支付具有AI和人类智能的独特组合。它可用于映射输出质量。它是一种高质量的工具,能够以100%的准确性组织多个类别的图像。该平台与竞争对手分析和产品比较功能集成在一起。企业使用它来使用户意识到可以带来良好结果的事物以及可能被证明对他们的业务致命的事物。该工具附带一个图像注释套件,允许用户构建对计算机视觉技术有用的数据集。结论这些是当前可用的顶级人工智能软件。该软件非常方便,可以从头开始构建和开发智能应用程序。这些工具具有AI和机器学习的强大组合,个人可以用来改善和简化他们的业务流程。
简而言之,可以说人工智能(AI)已变成商业软件的主要元素。如今,机器学习和AI学习能力经常安装在软件应用程序中,以为客户提供无与伦比的预测和自动化功能等功能。
6大人工智能应用关键技术,终于有人讲明白了
导读:我国《人工智能标准化白皮书(2018年)》中也给出了人工智能的定义:“人工智能是利用数字计算机或者由数字计算机控制的机器,模拟、延伸和扩展人类的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术和应用系统。”
人工智能的核心思想在于构造智能的人工系统。人工智能是一项知识工程,利用机器模仿人类完成一系列的动作。根据是否能够实现理解、思考、推理、解决问题等高级行为。
在未来,人工智能应用主要会体现如下几大核心技术特点。
作者:达观数据
来源:大数据DT(ID:hzdashuju)
01机器人流程自动化(RoboticProcessAutomation,RPA)
RPA(RoboticProcessAutomation,机器人流程自动化)的定义:通过特定的、可模拟人类在计算机界面上进行操作的技术,按规则自动执行相应的流程任务,代替或辅助人类完成相关的计算机操作。
与大家通常所认为的具备机械实体的“机器人”不同,RPA本质上是一种能按特定指令完成工作的软件,这种软件安装在个人计算机或大型服务器上,通过模拟键盘、鼠标等人工操作来实现办公操作的自动化。
▲图1-1RPA是未来办公创新和发展的趋势
RPA也被形象地称为数字化劳动力(DigitalLabor),是因为其综合运用了大数据、人工智能、云计算等技术,通过操纵用户图形界面(GUI)中的元素,模拟并增强人与计算机的交互过程,从而能够辅助执行以往只有人类才能完成的工作,或者作为人类高强度工作的劳动力补充。
自2015年以来,人工智能技术和RPA在同一时间大幅度发展和进步,恰好相辅相成,汇合在了一起。自然而然地,RPA和AI两者的结合运用,带来了一股非常独特的智能化应用的发展潮流,我们称之为智能RPA技术,或者IPA技术(IntelligentProcessingAutomation),即智能流程自动化技术(如图1-2所示)。
▲图1-2智能RPA的构成:RPA+AI=IPA
换句话说就是,RPA是基础,需要与其他技术手段整合在一起,方能实现IPA及其优势。
商业社会对流程自动化的功能的期望将与日俱增,将机器学习等AI技术运用到RPA中,将人工智能功能集成到产品套件中,以提供更多类型的自动化功能,已经成为未来RPA发展的主流趋势。
02光学字符识别(OpticalCharacterRecognition,OCR)
OCR技术是指利用电子设备(例如扫描仪或数码相机)将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。通俗地说就是,对文本资料进行扫描,然后对图像文件进行分析处理,以获取文字及版面信息的技术。
OCR技术一般可分为如图3-1所示的5个阶段。
▲图3-1OCR技术的5个阶段
下面具体说明OCR的识别流程。
1.图像处理
针对图像的成像问题进行修正。常见的图像预处理过程包括:几何变换(透视、扭曲、旋转等)、畸变校正、去除模糊、图像增强和光线校正、二值化处理等。
2.文字检测
检测文本所在位置、范围及其布局,通常还包括版面分析和文字行检测等。文字检测解决的主要问题是哪里有文字,文字的范围有多大。
文字检测采用的处理算法一般包括:Faster-RCNN、Mask-RCNN、FPN、PANet、Unet、IoUNet、YOLO、SSD。
3.文字识别
在文本检测的基础上,对文本内容进行识别,将图像中的文本信息转化为计算机可识别和处理的文本信息。文字识别主要解决的问题是每个文字是什么。
文字识别常采用的处理算法包括:CRNN、AttentionOCR、RNNLM、BERT。
4.文本抽取
从文字识别结果中抽取出需要的字段或要素。
文本抽取常采用的处理算法包括:CRF、HMM、HAN、DPCNN、BiLSTM+CRF、BERT+CRF、Regex。
5.输出
输出最终的文字识别结果或者文本抽取结果。
03机器学习/大数据分析
机器学习/大数据分析是一种用于设计复杂模型和算法并以此实现预测功能的方法,即计算机有能力去学习,而不是依靠预先编写的代码。它能够基于对现有结构化数据的观察,自行识别结构化数据中的模型,并以此来输出对未来结果的预测。
机器学习是一种通过“监督”和“无监督”学习来识别结构化数据中的模式(例如日常性能数据)的算法。监督算法是指在根据自己的输入做出预测之前,会从输入和输出的结构化数据集来进行学习。无监督算法是指观察结构化数据,并对已识别的模式提供相关见解。
机器学习和高级分析可能会改变保险公司的游戏规则,例如,在提高合规性、降低成本结构,以及从新的见解中获得竞争优势。高级分析已经在领先的人力资源部门中得到了广泛应用,主要用于确定和评估领导者和管理者的核心品质,以便更好地预测行为、规划职业发展道路和下一任领导岗位归属。
04自然语言生成(NaturalLanguageGeneration,NLG)
计算机具有与人一样的表达能力和写作能力,它遵循某种规则,将从数据中观察到的信息转换成高质量的自然语言文本。例如,自动识别会议邮件中的主题、数字地名、人名地址并生成行程表备忘录,或者识别出合同条款的关键内容并将摘要的重点生成列表。
关于自然语言生成及自然语言处理的详细介绍,请阅读《详解自然语言处理5大语义分析技术及14类应用(建议收藏)》
05智能工作流(SmartWorkflow)
智能工作流是一种用于流程管理的软件工具,其中集成了由人和机器共同执行的工作,允许用户实时启动和跟踪端到端流程的状态,以便于管理不同组之间的切换,包括机器人与人类用户之间的切换,同时还能提供瓶颈阶段的统计数据。
随着社会和科技的不断进步,各个领域都开始逐步朝着自动化、智能化的方向快速发展。工作流相关技术的研究也越来越受重视,并广泛地应用于制造业、软件开发、银行金融、生物医学等不同领域。
工作流不但能够自动化地处理相关的活动和任务,减少人机交互处理过程中带来的潜在错误,而且能够精确化每一个处理步骤,最大化地提高生成效率,并且将工作流应用到动态、可变且灵活的应用场景当中。
近年来,在大数据、人工智能的背景下,工作流中的业务流程日趋复杂,所面临的环境和数据也日趋复杂,由需求分析引起的业务过程重新建模或由维护升级引起的过程模式变更和改进也变得越来越频繁。
在这种动态多变的复杂环境下,如何快速识别出任务,然后快速高效并有针对性地处理工作流问题,已成为目前工作流任务研究的关键问题。
RPA软件机器人在工作过程中,也会遇到很多类似的情况。工作流的复杂多变,会导致RPA作业流程的复杂多变,使其无法做到自适应,这将会大大影响RPA软件机器人的作业效率。
因此,需要通过智能工作流的技术,实现动态地调整RPA里的任务设定,以及RPA业务流程的自动变更和自动升级,在智能工作流的指导下实现自适应作业模式。
实现智能工作流的方法有很多,比如,美国J.H.Holland教授提出的基于遗传算法的工作流调度,PandeyS等提出的基于粒子群优化算法的启发式算法(PSO)可用于不同资源的智能调度。除此之外,还有很多基于自然界和仿生学的智能算法,比如,混合蛙跳算法、布谷鸟搜索算法、蝙蝠算法、人工蜂群算法等。
目前比较常见的方法是实现一种基于智能规划的工作流处理模式,该模式不再是单纯地将不同的活动当作对彼此没有影响的单独事件,而是有针对性地考虑多个事件的共同影响。
该模式充分考虑了工作流和智能规划之间的相似之处,通过智能规划推导出不同工作流任务之间的内在逻辑关系,并从其他的渠道和外部信息中充分挖掘潜在的关系。
逐步改进传统工作流中的问题,使用全新的智能规划的手段,从表面动作中挖掘出潜在的信息,过滤噪声数据,进而实现流程的自动修正,最后,通过前面得出的结论,有针对性地修改之前的RPA作业流程,实现自适应性的作业模式和作业过程。
06认知智能体(CognitiveAgent)
认知智能体是一种结合了机器学习和自然语言生成的技术,并在此基础上加入情感检测功能以做出判断和分析,使其能够执行任务,交流沟通,从数据集中学习,甚至根据情感检测结果作出决策。换句话说,机器会像人一样产生“情感共鸣、精神共振”,真正成为一个完全虚拟的劳动力(或者智能体)。
在客服领域,英国某汽车保险公司通过使用认知智能体技术,将客户转化率提高了22%,验证错误率降低了40%,整体投资回报率达到了330%。
当然,德勤、安永等咨询公司也坦然表示,就现阶段许多企业的流程管理与系统的基础能力来看,仍存在着大量的基础建设工作有待开展。而打造智能流程自动化所需的部分核心技术(例如认知智能体等)也还停留在雏形阶段。
智能包含三个方面,分别是计算智能、感知智能和认知智能。
在计算智能方面,计算机的速度早已远远超过人工的效率。
在感知智能方面,随着OCR、NLP等技术的发展,目前也已经能够实现很多的效果。
但是在认知智能方面,即使在某些特定领域,自然语言的处理也已经可以得到比人工更好的成绩,但是在某些领域,特别是知识理解、知识推理、知识判断等方面,还有很多需要逐步积累、逐步完善的地方。
按照机器能否产生自我认知和机器人的适用范围,人工智能分为弱人工智能和强人工智能,其中弱人工智能里的机器没有自我意识,不具备真正的推理和独立解决问题的能力,通常只适用于解决特定条件下的某种问题。当前人工智能的研究主要在弱人工智能领域。
而在强人工智能方面,机器具有一定的自我意识,能够通过学习拓展功能。对于当前不具备的功能或者当前不了解的知识,能通过自行学习获得。
当前条件下,全面的强人工智能还面临技术能力、社会伦理等多方面的挑战,但是在某些领域的特定场景下,具备认知智能能力和学习能力的人工智能软件,不仅能够优化作业流程、快速响应、覆盖更多不同的情况,同时还能够最大限度地避免技术风险和应用风险,是一个非常有价值的研究方向。
认知智能有很多种定义,其中,复旦大学肖仰华教授曾经提到过,所谓让机器具备认知智能是指让机器能够像人一样思考,而这种思考能力具体体现在如下几个方面。
第一,机器具备能够理解数据、理解语言进而理解现实世界的能力。
第二,机器具备能够解释数据、解释过程进而解释现象的能力。
第三,机器具备推理、规划等一系列人类所独有的认知能力,也就是说认知智能需要解决推理、规划、联想、创作等一系列复杂任务。
智能体是指驻留在某一环境下,能够持续自主地发挥作用,具备驻留性、反应性、社会性、主动性特征的计算实体。根据著名人工智能学者,美国斯坦福大学Hayes-Roth教授的理论“智能体能够持续执行三项功能:感知环境中的动态条件、执行动作影响环境、进行推理以解释感知信息、求解问题和决定动作”。
从前面的定义我们可以看出,认知智能体能够感知到环境中的动态条件,然后根据这些条件执行相应的动作来影响现有的环境,同时其还能够用推理来解释感知信息,求解相关问题,决定后续动作。
将认知智能体与RPA相结合,我们能够得到一个具备认知智能的机器人,它可以根据所涉及的应用系统和其他环境的变化动态感知下一步需要做的事情,同时执行相应的动作来影响对应的环境信息,实现智能录入、智能监控、智能文档处理和辅助判定。
与此同时,认知智能体通过RPA技术在处理业务的同时,还能够学习到相关的经验和知识,逐步掌握识别重点的能力。
认知智能体的研究包含了多种不同的方法,近年来,随着分布式人工智能、信息科学和网络科学的不断发展,面向动态环境下的分布式协同决策已经成为认知智能体的一个重要的研究方式。这种方式在以多无人机系统、多机器人系统为代表的典型无中心式多智能体系统中得到了广泛的应用。
与此同时,受限于自身设计,智能体对所在环境和系统常呈现出信息的部分可观测特征,而有限的智能体之间的交互和外部的约束也使得获得全局信息需要付出极高的代价。
同时,无中心式的多智能体系统在应用中呈现出了与社会网络相类似的自组结构和相应的复杂网络特征,即网络中单个智能体通常仅能连接/交互所在局部网络中的小部分智能体,传统的集中式协同模型则不再适用。
此外,类似于社会网络中人与人之间的有限信息交换便可大大提升个体的决策效率,同样的方法能否应用到相应的研究当中,也处于不断的尝试过程中。
关于作者:达观数据,中国智能RPA领域的龙头企业,独立开发了全套“RPA+AI”系统,拥有核心知识产权。达观智能RPA产品是业界不依赖微软底层开发框架、未使用第三方开源框架的RPA产品。
本文摘编自《智能RPA实战》,经出版方授权发布。
延伸阅读《智能RPA实战》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:这是一部从实战角度讲解“AI+RPA”如何为企业数字化转型赋能的著作,从基础知识、平台构成、相关技术、建设指南、项目实施、落地方法论、案例分析、发展趋势8个维度对智能RPA做了系统解读,为企业认知和实践智能RPA提供全面指导。
划重点????
干货直达????
西安交大送大一新生这本书,你读过吗?12本有趣有料的科普书盘点
终于有人把AI、BI、大数据、数据科学讲明白了
监督学习、非监督学习、强化学习都是什么?终于有人讲明白了
一条SQL引发的“血案”:与SQL优化相关的4个案例
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????