博舍

艾瑞:2023年中国人工智能行业发展观察 中国人工智能产业发展的短板包括

艾瑞:2023年中国人工智能行业发展观察

导语:2021年,中国人工智能产业继续大踏步前进,计算机视觉核心产品市场规模接近千亿元,智能语音市场亦保持高速增长。

导语:自2010年人工智能在语音和视觉两个领域产生突破性进展以来,技术突破工业红线就成为社会的共同期待。经过了近年来的高速发展,中国人工智能产品技术已经广泛出现在决定企业产生经济效益的各个环节,推动传统行业启动效率变革、动能转换之路。人工智能作为创业企业标签的属性在变弱,而越来越成为千行百业的经营主体都在积极尝试和运用的生产要素。2021年,中国人工智能产业继续大踏步前进,计算机视觉核心产品市场规模接近千亿元,智能语音市场亦保持高速增长。在未来的发展中,如何像人类一样将多模态信息融合分析、突破依赖数据输入的局限、与知识和常识结合解决高层次问题以及主动感知与适应复杂变化等都将是人工智能技术可期待的下一次拐点。

一、2021年中国人工智能发展概述

1.人工智能将成为数字经济时代的核心生产力

数字经济是以数据为关键生产要素、以现代信息网络为重要载体、以数字技术应用为主要特征的经济形态。发展数字经济,微观上可能重塑传统的企业经营模式和经营理念;宏观上,数据作为生产要素的重要性不断提升,将对现有基于要素比较优势而形成的国际分工格局带来影响。近年来,我国数字经济发展迅速,2020年我国数字经济规模为39.2万亿元,占GDP比重达到38.6%,较2019年提升2.4个百分点,对整体经济产值的影响进一步加大。发展数字经济,将打通供应链上下游、产业链的不同环节与服务链的各个节点,通过产业的数字化升级,实现效率变革、动力变革、质量变革,助力新发展格局的形成与发展。2021年3月我国十四五规划纲要出台,提出“打造数字经济新优势”的建设方针并强调了人工智能等新兴数字产业在提高国家竞争力上的重要价值。人工智能作为关键性的新型信息基础设施,被视为拉动我国数字经济发展的新动能。

2.人工智能于各环节提升经济生产活动效能

人工智能技术及产品在企业设计、生产、管理、营销、销售多个环节中均有渗透且成熟度不断提升。同时,随着新技术模型出现、各行业应用场景价值打磨与海量数据积累下的产品效果提升,人工智能应用已从消费、互联网等泛C端领域,向制造、能源、电力等传统行业辐射。以计算机视觉技术主导的人脸识别、光学字符识别(OCR)、商品识别、医学影像识别和以对话式AI技术主导的对话机器人、智能外呼等产品的商业价值已得到市场充分认可;且除感知智能技术外,机器学习、知识图谱、自然语言处理等技术主导的决策智能类产品也在客户触达、管理调度、决策支持等企业业务核心环节体现价值。

3.资本回暖,过会企业二级市场融资通道即将打开

经过2020年新冠疫情的行业洗牌后,2021年以来,资本回暖,资金流入更为成熟的企业(C轮及以后)的同时,也流入了众多A+轮及以前的初创企业,投资者重拾对人工智能创业回报的信心。此外,多家AI企业集中进行IPO使得行业融资实现了跨越,云从科技、旷视科技、格林深瞳、云天励飞均顺利过会,并拟在科创板上市,其人工智能融资即将打开二级市场的通道。

二、中国计算机视觉赛道发展现状及发展趋势

1.市场规模:市场规模接近千亿元,计算机视觉赛道仍是AI商业化主阵地

自人工智能第三次浪潮兴起以来,计算机视觉一直是商业化落地进程最快的赛道,近年来,在深度学习算法的加持与带动下,计算机视觉技术及软硬件产品在泛安防、金融、互联网、医疗、工业、政务等领域得到广泛应用。通过对下游行业需求统计测算,2021年,中国计算机视觉核心产品的市场规模达到990亿元,已接近千亿元大关。此外,与计算机视觉相关的计算机通信设备销售、工程建设、传统业务效益转化等带动相关产业规模超过3000亿元。

2.投融资市场:随着赛道逐渐趋于成熟,投融资热度出现下滑

2017年至2021年11月,计算机视觉类相关融资事件共计282起,涉及融资总金额达820亿元。2018年是计算机视觉赛道的融资爆发期,融资金额高达273亿元。而2019年以来,受疫情影响以及市场饱和度不断提升,赛道融资热度有所降低,融资轮次与金额再未达到2018年的水平。2021年,计算机视觉赛道融资金额下滑至75亿元,但融资次数较2020年明显提升。计算机视觉头部厂商在部分应用领域深耕多年,市场格局趋于稳定,留给初创企业的机会逐渐减少,因此新进入厂商尝试进入工业、医疗等想象空间大且技术成熟度相对较低的市场,预计新一轮的融资热潮有望在未来2-3年到来。

3.发展特征:工业与医疗成为近年来计算机视觉最受关注领域

2017年至2021年11月,国内共有198家计算机视觉企业获得投资,其业务领域遍布公安、交通、金融、工业、医疗等各行各业。近年来,计算机视觉产品技术在工业与医疗领域的应用受到极大关注,制造业是国民经济的支柱,对计算机视觉的使用包括智慧现场安监、智能辅助运输、工业视觉质检以及智能工业机器人等方向,链条长且场景多样,孕育了一批新兴AI企业;医疗领域,以计算机视觉为核心技术的医学影像辅助诊断产品已经由实验室走进各大医院之中,AI医学影像辅助诊断的普及对于减轻医生负担、提升基层医疗机构诊断水平有着重要意义与价值,也是近期资本市场关注的焦点。

4.发展趋势:多模态信息融合分析以及主动感知将是计算机视觉实现飞跃的下个关口

计算机视觉作为商业化程度最高、应用场景最广的人工智能赛道,从技术层面来看,在分类、定位、检测、分割等基本语义感知研究任务上已经取得很好的表现,在真实场景中也能够较好应对实战考验。在未来的发展中,如何像人类一样将多模态信息融合分析、适应三维世界、突破依赖数据输入的局限、与知识和常识结合解决高层次问题以及主动感知与适应复杂变化等都将是计算机视觉技术可期待的下一次拐点。

从未来市场发展来看,通用技术的平台化输出以及公安、金融等具备明确政策支持且产品普及度已经较高的领域目前已基本被互联网巨头、安防头部企业以及AI上市企业或独角兽等玩家占据,市场格局已逐步明朗;而工业、医疗和能源等极具战略意义的新兴领域还拥有极大的发展空间,但对于上述或陷入长审批周期、或限于审慎性难以快速释放需求的行业,计算机视觉企业的主要机遇则在于抢先打通产品进入行业生态圈的渠道和链条,以及谋划通过政府、行业生态圈的核心集团企业等途径,积极参与公共服务平台建设,建立从上向下拓展的先发优势,抢先获得大量训练数据与场景理解,形成产品提升的护城河。

三、中国智能语音赛道发展现状及发展趋势

1.市场规模:垂类语音核心产品规模近60亿,AI语音助手算法产值约24亿

智能语音技术可通过声音信号的前端处理、语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)等形成完整的人机语音交互。智能语音技术落地分为三类应用场景,分别为以语音识别、语音合成和语音转写为主的垂类应用、消费级智能硬件中加载的语音助手和ChatBot对话机器人产品。2020年,垂类语音核心产品规模约为58亿,AI语音助手算法产值约为24亿。未来随着疫情催化和产业的数智化转型加速,垂类语音应用在教育、公安和医疗等领域加速场景落地,且智能硬件搭载AI语音助手的功能性定位让其随着智能终端的规模扩大具备强需求增长动能。两类智能语音应用未来增长态势趋显,2021年至2026年的五年CAGR将分别达到21.3%和35.4%。

2.投融资市场:资本市场回归平稳,2021年垂类初创企业较为活跃

2018年至2021年11月,智能语音类相关融资事件共计120起,涉及融资总金额达153亿元。从融资热度来看,智能语音赛道在2018年进入快速发展期,2019年进入融资爆发期,而后进入平稳发展阶段。从融资轮次来看,智能语音企业融资阶段多集中在A+轮及以前和PreB到B+轮,两者占比高达72%。2021年,切分垂类场景的智能语音初创企业较为活跃,新进入厂商纷纷瞄准以医疗、招聘、工业等为代表的智能语音市场,期望获取行业经验和细分场景加成下的竞争性优势。

3.发展特征:智能语音与语义理解、知识图谱、行业应用的创新发展

在技术侧,智能语音行业发展仍然面临着声纹识别的不稳定性、语音识别的鲁棒性以及训练场景的长尾性的落地挑战;而在应用侧,智能语音技术已逐步从纯技术形式应用,转向“语音+AI技术+行业“的创新式发展。受供给侧的业务增长突破和需求侧的客户诉求推动,智能语音技术调用不仅是单纯为转写“人说了什么”或者输出“机器要说什么”,而是正逐步与语义理解、知识图谱等AI技术融合,让使用智能语音技术的机器本体更加具备认知性和行业关联性,结合行业Know和甲方需求输出整体性、结果导向性的实用解决方案。

4.发展趋势:智能语音加速产业落地融合,硬件中语音交互入口的功能性定位带来强需求增长动能

目前,智能语音的语音识别、语音合成和语音转写能力已落地应用在互联网、医疗健康、司法、教育和工业等多行业领域。基于智能语音技术实现文本到语音、语音到文本的快速转换,在各产业应用中实现语音文本的信息同步,让资料整理和信息检索都更加方便快捷,让机器与人类的交互更加快速直接。从规模占比来看,互联网、司法和教育仍占据三大头部应用领域。从业务增长性来看,国家颁布教育“双减”政策,课后服务学生的自主阅读学习给智能语音应用产品带来较大市场;另外在医疗信息化背景下,医疗加速智能应用体系建设,以语音应用为入口切入电子语音病历、导诊机器人、辅助诊断治疗等领域,已从三甲医院逐步向下渗透。未来,消费级硬件所搭载的AI语音算法将成为硬件智能化的基础标配门槛,随着物联网和5G的技术发展,智能硬件带来强大增长动能,AI语音助手的算法产值也将不断升高。

四、中国AI企业典型案例解析

1.易道博识:聚焦文字、人脸与图像识别的AI技术研究与应用开发服务商,以一站式机器学习训练平台为底座,打造高效的AI模型应用

易道博识由来自中科院、清华大学、北京大学等的多名顶尖人工智能专家共同组建,是国家级高新技术企业及专精特新企业,拥有发明专利、实用新型专利50余项,计算机软件著作权35项,商标知识产权30余个。公司致力于人工智能领域的技术研究与应用开发,基于自主研发的赛博(CyberBot)机器学习平台,实现文字识别、人脸识别、图像识别三大核心技术功能,为证券、银行、保险、互联网、汽车金融、地产多个行业量身打造AI+智能OCR识别解决方案,现已与600多家知名企业和机构建立合作。

赛博(CyberBot)学习平台是易道博识自主研发的一站式机器学习训练平台,集智能数据管理、数据标注、模型训练和模型部署应用功能于一身,提供计算机视觉、OCR和NLP等领域数据驱动模型应用的高效解决方案。该平台可有效缓解B端、G端逐渐增长的、从感知到认知多类型的AI应用模型开发、训练到部署的完整需求,输出AI技术服务能力,提高AI应用模型在各行业的渗透速率与价值空间。赛博平台可以根据客户需求整体部署到客户的私有化环境里,实现内部循环,一方面保证了数据安全性,一方面大大降低了编程工作量和使用门槛、节约了AI开发时间、减轻了对专业数据科学家与算法工程师的依赖,按需柔性匹配生产。

2.慧算账:以平台为内部开发管理工具,对外提供AI智慧财税服务,助力客户实现数字化转型

慧算账致力于使用AI工具为中小微企业提供AI智慧财税服务,以改善并解决数字经济背景下国内财税服务市场面临的业务痛点即中小企业需记账报税、但外聘会计成本高,部分代理记账公司数字化程度低且记账服务专业性差等问题。慧算账SaaS财税服务平台集成了记账报税、知识库、智能客服与CRM等模块,采用了RPA的自动化技术与OCR、ML、KG、NLP等AI技术,针对财税服务市场的业务痛点做通用与定制化的应用开发,目前已开发出票据识别、智能记账等应用。从服务模式看,慧算账以SaaS财税服务平台为内部开发管理工具,对外输出AI智慧财税服务与工具,助力记账报税的自动化、释放人力,为中小微企业的数字化与智能化转型提供了便捷灵活的创新型财税服务。

以票据识别与记账、智能会计核算、知识图谱问答为例,慧算账提供了便捷高效的AI智慧财税服务。票据识别方面,可实现自动化的格式统一与图像质量矫正,识别出票据类型(发票、回单、交通票、费用票等),并自动导入数据信息。智能会计核算方面,可自动将文字转化为词向量、实现数据归一,并根据输入信息搭建业务模型,输出指定的结果。知识图谱方面,可自动提取问题中的关键词,更新知识存储,基于知识库回答会计问题,提升记账的专业性。从效果上看,慧算账为下游的中小企业提供的智慧财税服务覆盖数百个科目、近千个业务场景,业务自动化能力超95%,助力客户实现数字化转型;同时,慧算账也为其他代理记账公司提供AI工具,提升其记账服务的数字化与智能化水平。

(本文为艾瑞网独家原创稿件转载请注明出处)

2023年中国人工智能基础层行业研究报告

2021年中国人工智能基础层行业研究报告原创艾瑞艾瑞咨询

核心摘要:

算力、算法、数据是人工智能产业发展的三大要素。基于此,艾瑞定义人工智能基础层是支撑AI应用模型开发及落地的必要资源,主要包括智能计算集群、智能模型敏捷开发工具、数据基础服务与治理平台三大模块。发展人工智能基础层可多环节提效AI技术价值的释放,解决需求方人工智能生产力稀缺问题,且依托AI基础层资源,AI企业可有效应对下游客户的长尾应用需求,将其高频应用转化为新主营业务,寻找业务增长突破点。此外,基础层工具属性标志着AI产业社会化分工的出现,AI产业正逐步进入各产业深度参与、双向共建的效率化生产阶段。据艾瑞测算,2020年人工智能基础层市场规模为497亿元,为AI产业总规模的33%,AI芯片的高增长是产业规模增长的主要拉动力。未来,伴随各行业智能化转型的迫切需求,艾瑞认为人工智能基础层的各模块工具有望走向集约型的生产模式,更多企业将自研开源框架,国产的操作系统与数据库等软件配套设施将稳步崛起,算力模块的智能服务器国产化率也将逐步提升。

人工智能基础层定义

支撑各类人工智能应用开发与运行的资源和平台

算力、算法、数据是人工智能产业发展的三大要素。据此,人工智能基础层主要包括智能计算集群、智能模型敏捷开发工具、数据基础服务与治理平台三个模块。智能计算集群提供支撑AI模型开发、训练或推理的算力资源,包括系统级AI芯片和异构智能计算服务器,以及下游的人工智能计算中心等;智能模型敏捷开发工具模块主要实现AI应用模型的生产,包括开源算法框架,提供语音、图像等AI技术能力调用的AI开放平台和AI应用模型效率化生产平台;数据基础服务与治理平台模块则实现AI应用所需的数据资源生产与治理,提供AI基础数据服务及面向AI的数据治理平台。AI基础层企业通过提供AI算力、开发工具或数据资源助力人工智能应用在各行业领域、各应用场景落地,支撑人工智能产业健康稳定发展。

人工智能基础层价值

AI基础层是支撑AI应用模型开发及落地的必要资源

开发一项人工智能模型并上线应用大致需经历从业务理解、数据采标及处理、模型训练与测试到运维监控等一系列流程。过程中需要大量的AI算力、高质量数据源、AI应用算法研发及AI技术人员的支持,但大部分中小企业用户并不具备在“算力、数据、算法”三维度从0到1部署的能力,而财力雄厚的大型企业亦需高性价比的AI开发部署方案。依靠AI基础层资源,需求企业可降低资源浪费情况、规避试错成本、提高部署应用速度。作为支撑AI模型开发及落地的必要资源,AI基础层可在多环节提效AI技术价值的释放;其工具属性也标志着AI产业社会化分工的出现,AI产业正逐步进入低技术门槛、低部署成本、各产业深度参与双向共建的效率化生产阶段。

人工智能基础层进阶之路

粗放式单点工具向集约型、精细化资源演进

智能化转型趋势下,企业部署AI项目的需求正经历着变化,对数据质量、模型生产周期、模型自学习水平、模型可解释性、云边端多样部署方式、人力成本及资金投入、投资回报率等的要求都逐步走高。在上述需求特点及自动机器学习、AI芯片硬件架构等技术发展的共同推动下,AI基础层资源的整体效能水平也在不断进化,以有效降低需求企业的AI开发成本。大致涵盖相互交融的三个阶段:雏形期,算法/算力/数据各模块多为粗放式的单点工具,新兴产品及赛道逐步出现;快速发展期,各赛道活跃度显著提升,参与者积极探索产品形态与商业模式,基础层服务体系逐步完善、资源价值凸显;最后则向成熟阶段过渡,各赛道内企业竞争加剧,逐步跑出头部企业。同时各赛道间企业生态合作增多,一站式工具平台出现。

基础层初步成型是AI产业链成熟的标志

基础层资源促进AI产业链各环节价值传导顺畅、分工明确

现阶段,已初步成型的AI基础层资源可有效缓解下游行业用户逐渐增长的、从感知到认知多类型的AI应用模型开发及部署需求。细看基础层内部,一方面,数据资源、算力资源和算法开发资源三者之间的分工更为明确和有序。数据基础服务及治理平台企业为AI产业链供应数据生产资料;智能计算集群产出高质效的生产力;智能模型敏捷开发工具则负责模型开发及模型训练等,输出AI技术服务能力,提高AI应用模型在各行业的渗透速率与价值空间。另一方面,基础层厂商的数量保持增长、厂商业务范围持续扩大,可提供专业定制化或一站式的基础资源服务。由此,基础层完成AI工业化生产准备,通过直接供应和间接供应的形式,将基础层资源传送到下游的AI应用需求端,产业链向顺畅的资源输送及价值传导方向演进。

AI基础层解决人工智能生产力稀缺问题

基础层资源缓解甲方在对待人工智能投资上的“矛盾”

根据艾瑞2020年执行的CTO调研,2019年超过51%的样本企业AI相关研发费用占总研发费用比重在10%以上,2020年65.9%的企业AI研发占比达到10%以上。一方面是甲方企业不断增长的对智能化转型的强劲需求,一方面则是在AI应用开发与部署过程中企业普遍面临的数据质量(49%)、技术人才(51%)等基础资源配置难点。且目前只有少数企业可以完成AI项目实施前设定的全部投资回报率(ROI)标准,因此甲方企业在投资AI项目时相对审慎。AI基础层资源则可有效缓解甲方利用AI技术重塑自身业务时的投资矛盾,提升模型生产效率,降低部署成本:数据资源集群具备数据采标与数据治理能力,且一站式的数据平台可对实时数据进行统一管理,提高数据利用率;高效的AI算力集群与调度系统可满足模型训练与推理需求,降低总拥有成本(TCO,TotalCostofOwnership);基于算法开发平台演化出的语音识别、计算机视觉、机器学习等专业的AI模型生产平台,可提供高效、一站式的AI模型生产服务。

人工智能基础层产业图谱

人工智能基础层市场规模

AI企业业务突破、智能化转型趋势等多因素驱动产业规模增长

AI企业突破业务增长瓶颈的需求是人工智能基础层发展的驱动力之一。当前人工智能核心产业规模保持线性增长态势,且增速趋于平稳与常态化。为寻求产值增长突破点,AI企业发力探索开拓市场的有效手段。依托人工智能基础层资源建设,AI企业可有效应对下游客户的长尾应用需求,再将高频应用转化为新主营业务。此外“新基建”、半导体自主可控等相关政策扶持、传统行业智能化转型等因素也都在助推人工智能基础层资源的发展。据艾瑞测算,2021-2025年,人工智能基础层市场规模CAGR为38%,整体产业规模发展速度较快、空间较为广阔,总体呈现持续增长的走势。2020年,中国人工智能基础层市场规模为497亿元,为人工智能产业总规模的33%,市场规模相较去年同比增长76%,AI应用模型效率化生产平台创收增长、AI芯片市场规模随着云端训练需求出现较高增长等是同比增速的主要拉动力;2021-2024年同比增速趋于平缓下降,市场开始恢复稳步增长态势。到2025年,中国人工智能基础层市场规模将达到2475亿元,云端推理与端侧推理芯片市场持续走高使得人工智能基础层整体市场同比增速稍有抬升。

算力:超算/数据中心的存量与增量判断

从算力需求与节能减排规定看存量替换与增量增长

现有的超算/数据中心以建设单位为标准,可分为两类:1)以国家或地方为建设单位的G端超算中心,服务对象主要为国家牵头的重点科研单位、高校研究院等,此类超算中心是解决国家安全、科学进步、经济发展与国防建设等重大挑战性问题的重要手段,近两年受国家与地方的高度重视与扶持,建设与升级超算中心的趋势愈加明朗。但由于数据网络安全与计算精度要求高,建设周期较长,此类超算中心的数量在中短期内增长缓慢,长期来看则会成为替换存量与增量增长的贡献主力之一。2)以智能云厂商或IDC服务商为建设供应主体的B端超算/数据中心,为互联网公司、其他类型的企业或事业单位提供主机托管、资源出租、增值或应用服务,是存量与增量市场变化主要推力。

从市场变化趋势来看:1)存量市场:日渐增加的AI计算负载需要处理力更强、能耗承受度更大的数据中心,同时,一系列有关控制数据中心PUE值的节能审查规定相继出台,一味盲目扩建、新建数据中心已难合时宜,促进老旧数据中心绿色化改造的减量替代方案因此诞生。微型、中小型数据中心会逐渐被改造为集约型的大型数据中心,符合节能减排相关标准、机柜数量与异构组合增多的集约型超算/数据中心将在存量市场中占据主流。2)增量市场:考虑到边缘计算可分担AI计算任务、兼具低延时优势,管理边缘计算中心则需要布局相应的大型云端数据中心,故增量市场会被异构的边缘计算数据中心与云端超算或大型数据中心扩充。

算力:云化AI算力

开放共享虚拟AI算力资源,实现AI模型海量训练与推理

AI是一种高资源消耗、强计算的技术,AI算力的强弱直接关联到AI模型训练的精度与实时推理的结果。若企业独立部署AI算力,不仅需要建设或租用机房这类重资产与网络宽带资源,还需要购置物理机、内存、硬盘等硬件设备,而且购置设备存在采购周期不确定、硬件资源过度铺张、专业管理团队缺乏等问题。所以,独立部署AI算力资源是一项耗时耗力的工作。将AI算力云化是一种高效能、低成本的有力解决方案。具备先天性业务优势的云服务商搭建数据中心,先将AI服务器算力资源虚拟化,开放给AI模型开发者,做到按需分配,如给短视频业务的开发者优先配备CPU+GPU方案,而后对算力资源的调度工作进行统一管理。由此,“物美价廉”的算力有序注入各行各业的AI模型中,减轻了井喷式数据爆发所带来的模型训练负担,并能及时根据用户使用情况弹性扩充或缩减虚拟算力资源空间,达到方便、灵活、降本增效的效果。

算力:端-边-云的算力协同

端-边-云实现AI算力泛在,加速AI模型训练与推理

在人工智能与5G等技术的冲击下,设备端产生大量实时数据,若直接上传到云端处理,会对云端的带宽、算力、存储空间等造成巨大压力,同时也存在延时长、数据传输安全性等问题。因此,为缓解云端的工作负载,云计算在云与端之间新增了若干个边缘计算节点,从而衍生出端-边-云的资源、数据与算力协同。在算力协同的业务模式下,靠近云端的云计算中心承担更多的模型训练任务,贴近端侧的各设备主要进行模型推理,而二者之间的边缘侧则负责通用模型的转移学习,帮助云端分散通用模型训练任务、处理实时计算的同时,也解决了终端算力不足、计算功耗大的难题。未来,边缘计算的发展会催生出更适宜边缘计算场景的算力集群异构设计,其异构化程度将会高于传统的数据中心,异构设计的突破将会进一步提高端-边-云的整体计算效能,进而加速AI模型的训练与推理。

算力:AI芯片市场规模

当前以训练需求为主,推理需求将成为未来市场主要增长动力

AI芯片是人工智能产业的关键硬件,也是AI加速服务器中用于AI训练与推理的核心计算硬件,被广泛应用于人工智能、云计算、数据中心、边缘计算、移动终端等领域。当前,我国的AI芯片行业仍处于起步期,市场空间有待探索与开拓。据艾瑞统计与预测,2020年我国AI芯片市场规模为197亿元,到2025年,我国AI芯片市场规模将达到1385亿元,2021-2025年的相关CAGR=47%,市场整体增速较快。从AI芯片的计算功能来看,一开始,因AI应用模型首先要在云端经过训练、调优与测试,计算的数据量与执行的任务量数以万计,故云端训练需求是AI芯片市场的主流需求。而在后期,训练好的AI应用模型转移到端侧,结合实时数据进行推理运算、释放AI功能,推理需求逐渐取代训练需求,带动推理芯片市场崛起。2025年,云端推理与端侧推理成为市场规模增长的主要拉动力,提升了逐渐下滑的AI芯片市场规模同比增速。

算法:智能模型敏捷开发工具商业价值分析

API规模经济+AI应用模型效率化生产平台的杠杆增效

智能模型敏捷开发工具的出现与驱动AI业务的外因以及企业自身的内因紧密相关。从外因看,规模化多场景的业务不断衍生出长尾需求,原有的应用需及时更新;从内因看,囿于开发企业有限的经营成本与AI技术人才,其资源主要投放到现阶段的主营业务,现有人员难以推动业务的智能化改造。对此,可有效解决AI应用模型设计与开发过程中通用或特有问题的智能模型敏捷开发工具逐步成为备选方案。AI开放平台与AI应用模型效率化生产平台作为其中的代表性工具,不仅能减少由0到1的开发成本,而且可降低人工智能市场的参与门槛,提升开发效果。AI开放平台属于API资源的一种,其可帮助技术领先企业开放AI能力与先进资源,从而延伸价值链,形成规模经济与长尾经济,利用开发者的创新应用来反哺开放平台。AI应用模型效率化生产平台可提供较为前沿的技术、经济合理的模型生产经验以及为实现敏捷开发而打包的数据、算力与算法资源。具体而言,其采用自动机器学习技术,很大程度上降低了机器学习的编程工作量、节约了AI开发时间、减轻了对专业数据科学家与算法工程师的依赖,让缺乏机器学习经验的开发者用上AI,加快开发效率。

算法:智能模型敏捷开发工具增长模型

API与定制方案共拓产业广度与深度,AI柔性生产贴近需求

在人工智能产业发展的过程中,智能模型敏捷开发工具可持续拓宽与深挖AI业务的广度和深度。从广度讲,AI开放平台形成平台效应,调用平台API的开发者聚集创新,针对不同业务场景的开发成果数量逐渐增多,提高了技术产品的利用率,打造出轻量化的输出模式、降低单位开发成本,并且构建出动态更新的服务池;与此同时,一站式AI应用模型效率化生产平台逐步填充因场景多元化而衍生出的长尾业务模型,丰富模型供应市场的种类与数量。从深度讲,二者均从业务前端发掘潜在或外显的市场需求,针对刚需应用与高价值环节延伸出多条增量建设与运行需求业务线,瞄准市场风口的同时,敏捷、经济地消化个性化或碎片化需求,根据需求柔性匹配生产。

算法:AI技术开放平台市场规模

产业受API经济带动,主要收入贡献来源为计算机视觉类

随着数据量与AI算力的提升,可落地的场景与算法的交互变得愈加频繁,二者结合开发出的AI应用模型就需要更大量地通过API调用AI技术开放平台的AI技术能力。据艾瑞统计与预测,2020年我国AI技术开放平台市场规模为225亿元,到2025年,相应规模可达到730亿元,2021-2025年的相关CAGR=26%。受API经济兴起的影响,2020年市场规模同比增速走高较快,2021年下滑后恢复平稳态势。按AI技术能力划分,计算机视觉类与语音技术类收入占比达72.2%,是收入的主要贡献来源。人脸识别、人体识别、OCR文字识别、图像识别等构成了计算机视觉类业务的主要技术能力,且计算机视觉类的技术价格相较于其他技术而言更高,应用领域也更为广泛。现阶段的市场集中度相对分散,未来,能持续投入成本、研发出强劲算法的厂商有望占领更多的市场份额,市场集中度亦会因此提升。

算法:AI应用模型效率化生产平台市场规模

集成式的模型开发工具包,产业恰逢伊始,前景有待开拓

AI应用模型效率化生产平台是全栈式的、可实现流水线开发的AI应用模型生产工具。假若每次开发模型都需要算法工程师单独完成从生产到上线的全流程搭建,就会导致很多时间的耗损与AI模型开发成本的浪费。集成了数据、算法与算力的相应开发工具的模型开发工具包——AI应用模型效率化生产平台应运而生。据艾瑞统计与预测,2020年我国AI应用模型效率化生产平台市场规模为23亿元;到2025年,相应规模可达到204亿元,2021-2025年的相关CAGR=49%。2020年,AI应用模型效率化生产平台相关业务拓展相对较快、产品恰逢创收伊始阶段,故同比增速增幅较快。与此同时,因参与技术门槛偏高,具备能力的厂商较少,市场尚未形成稳定状态,市场集中度偏高。

数据:人工智能数据基础服务定义

以AI训练与调优为目的提供的数据采集、标注与质检等服务

人工智能基础数据服务是指为各业务场景中的AI算法训练与调优而提供的数据库设计、数据采集、数据清洗、数据标注与数据质检服务。整个基础数据服务流程围绕着客户需求而展开,最终产出产品以数据集与数据资源定制服务为主,为AI模型训练提供可靠、可用的数据。数据采集、数据标注与数据质检是较为重要的三个环节。数据采集是数据挖掘的基础,提供多源的一手数据和二手数据;数据标注对数据进行归类与标记,为待标注数据增加标签,生产满足机器学习训练要求的机器可读数据编码。数据质检为数据的客观性和准确性设置检验标准,从而为AI算法的性能提供保障。AI基础数据服务商可着重在以上三个环节建立壁垒,以巩固行业地位。

数据:AI基础数据服务市场规模

行业规模稳步向前,图像、语音类内容继续向新兴场景开拓

高质量的数据是提高AI应用模型训练速度与精度的必要准备之一,而行之有效的AI基础数据服务又为提高数据质量奠定了坚实的基础。因而,提供通用化、精细化、场景化的AI基础数据服务才能满足日渐增长的AI应用模型训练需求。据艾瑞统计与预测,2020年我国AI基础数据服务市场规模(含数据采集与标注)为37亿元,到2025年,相应规模可达到107亿元,2021-2025年的相关CAGR=25%,整体增速呈现稳步提升的趋势。从市场细分收入结构来看,图像类与语音类收入占总收入规模的88.8%,是业务的主要构成部分;图像类与语音类收入基本持平,图像类业务以智能驾驶与安防为主,而语音类业务以中英大语种、中国本土方言以及外国小语种为主。目前,行业中也相应地分成了以图像类或语音类为主的供应商阵营,各类供应商将会继续立足于主营业务,深挖现有应用场景的业务细分需求,从而带动未来收入的增长。

数据:面向人工智能的数据治理定义

产生于业务,围绕于AI,追溯于治理

在大数据时代背景下,金融、零售、公安、工业等不同行业的业务场景衍生出诸多应用,多元的AI模型开发需求因此产生。AI模型开发的原材料是数据,但在挖掘模型数据时,往往面临模型与数据无法拉齐的问题,所以需要溯源到前置环节,从一开始就把数据治理的工作做好,面向AI的数据治理这一概念也就由此出现。面向AI的数据治理是指,以具体业务产生的AI模型开发与训练为目的,使用各个数据组件与人工智能技术,对数据进行针对性与持续性的诊治与管理。相比于传统的数据治理,其更新了数据接入、数据汇聚、数据分析的功能,并新增了AI模型开发与应用组件,以应对海量实时数据迸发、模型需及时对接数据等情形。面向AI的数据治理的特点在于,其对接企业现有的数据、积累新的AI数据而非重新进行AI数据的数据库建设,而且提供针对实时数据的处理办法、优先解决业务落地的困难,并持续挖掘具体业务的数据资产价值。

数据:面向AI业务的数据积累与治理模型

锚准方向,双轮驱动为智能化转型速度与质量赋能

在大数据应用的驱动下,具有相当数据规模的企业的多条业务条线往往会产生大量的结构化与非结构化数据,愈加需要企业内部的数据及时融通,但企业不可能完全抛弃现有的数据库系统、更换一套完全符合面向AI业务开发的数据治理系统;另一方面,智能化转型浪潮推动着企业的AI应用开发需求增长,但数据开发缺少统一标准、数据与业务场景割裂,让面向AI的数据治理的工作面临两难的局面。对此,艾瑞认为面向AI的数据治理并非完全舍弃已有的数据治理结构,而是在原有的基础上,进行数据治理结构的改造,让治理工作更多为AI开发服务,从而完成AI业务数据的积累。面向AI的数据治理工作完成后,才能驱动AI应用模型开发高效、高质运行,而模型开发反过来会为面向AI的数据治理工作提供指导。业务系统与数据系统像两个锚准工作方向的齿轮,共同滚动。符合业务场景需求的AI应用模型、MLKGNLP等AI技术加速促进两个齿轮的转动,使企业的业务系统运转效率向高质高效发展,为企业带来更可观的智能化转型业务发展速度与业务服务质量。

数据:面向AI的数据治理市场规模

存在数据中台带来的业务冲击,后期恢复稳步爬坡态势

在数字化转型与智能化转型的大趋势下,数据治理工作一般伴随着数据中台的搭建以及AI应用模型的开发而展开。数据治理属于数据中台的构成组件,数据治理的工作与服务则属于数据中台建设、运营与维护中不可缺少的环节。与此同时,以AI应用模型所需的数据标准去治理数据,结合AI技术提升数据的可用度与模型的训练效率,才能够更好更快地为人工智能业务前端服务,改善供应商的业务流程与消费者的消费体验。据艾瑞统计与预测,2020年我国面向AI的数据治理市场规模为14亿元,到2025年,相应规模可达到50亿元,2021-2025年的相关CAGR=28%。2018年,数据中台概念兴起,其规模在2020年处于爆发点,而数据治理作为数据中台的组件,也于同期迎来增长爆发点,从而带动面向AI的数据治理。2020年后,数据中台市场规模增速开始降温,数据治理也随之回落,面向AI的应用模型开发业务在该过程中的带动作用有限,故2021年的业务同比增速出现拐点。后期,面向AI的应用模型开发业务的带动效应逐步凸显,规模增速呈现稳步爬坡态势。

一站式基础层资源平台

泛在需求下AI模型生产模式的变迁与资源集成

在人工智能由技术落地应用阶段向效率化生产阶段转变的背景下,艾瑞认为人工智能基础层的各模块工具有望走向集约型的生产模式。该模式主要能赋予开发企业以下价值:1)开发方式改进:从客户需求分析到解决方案部署形成独立的闭环,构建端到端的工作流。在强大算力的支持下,完成数据采集、数据标注、数据治理、数据应用、模型设计、参数调优、模型训练、模型测试、模型推理的全栈式流水线生产。2)管理效率提升:将数据、算法与算力委托给专业的服务商,实现一站式托管,打通三者之间的衔接壁垒,提高交互友好性,让开发者专注于业务。3)部署成本降低:集成数据、算法、算力的各个软件与硬件,企业可在一个平台内按需选择自己所缺失的模块组件并自由搭配,有效避免因采购不同供应商的产品或服务而带来的隐性成本损失与显性成本损失。

基础层全栈自主可控展望

自主可控稳步向前,内外兼修

信创产业涉及到核心技术问题,受到国家的大力扶持。比如,2020年12月,财政部、发改委、工信部等部门就联合发布了《关于促进集成电路产业和软件产业高质量发展企业所得税政策的公告》,文中明确指出:国家鼓励的集成电路线宽小于130纳米(含),且经营期在10年以上的集成电路生产企业或项目,第一年至第二年免征企业所得税,可见国家对国产芯片的重视。在信创产业稳步推广的的趋势下,人工智能基础层的各模块也在逐个突破“卡脖子”的关键点,朝着全栈国产化的方向迈进。算法模块相对其他两个模块而言,因开源框架协助,算法开发相对容易,但依然面临开源框架商用版限制的潜在风险,同时,使用开源框架难以友好对接到AI企业的业务逻辑,基于这两点,部分企业已开始自研开源框架并取得一定成效;数据模块的各类操作系统与应用软件在较大程度上仍以国外企业为主导,而国产的操作系统与数据库等软件配套设施正在稳步崛起,已存在相应的产品与服务可供客户选择;算力模块的智能服务器的国产化率逐步提升,AI芯片虽然仍以英伟达的GPU为主导,但国内部分企业开始自研AI芯片,产生了一批针对通用GPU、ASIC与FPGA的先行玩家。总的来说,基础层全栈的自主可控建设还处在萌芽阶段,未来将在“可用”的建设要求上打好根基,向“好用”的状态演变,并且从以政府政策引导为主的局面向以企业产品自由竞争的局面转变。

原标题:《2021年中国人工智能基础层行业研究报告》

阅读原文

收藏!“十四五”中国新一代人工智能产业发展前瞻 核心产业规模将达4000亿元

当前位置:前瞻产业研究院»经济学人»研究员专栏收藏!“十四五”中国新一代人工智能产业发展前瞻核心产业规模将达4000亿元UVc分享到:郑晨•2021-04-1610:20:42来源:前瞻产业研究院E37582G02023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告2023-2028年全球人工智能芯片(AI芯片)行业市场调研与发展前景研究报告2023-2028年中国大数据产业发展前景与投资战略规划分析报告2023-2028年中国云计算产业发展前景预测与投资战略规划分析报告2023-2028年中国生物识别技术行业市场调研与投资预测分析报告

新一代人工智能是基于新一代信息技术的发展和人类智能活动规律的研究,用于模拟、延伸和扩展人类智能,其呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点。

“十三五”以来,我国新一代人工智能产业的科研活跃度高、国际影响力增强、也涌现了具有国际影响力的AI企业。“十四五”时期我国新一代人工智能产业将如何发展,本文将从发展重点、发展目标两大方面进行分析。

1、“十三五”发展回顾

——科研活跃度高、国际影响力增强

新一代人工智能是基于新一代信息技术的发展和人类智能活动规律的研究,用于模拟、延伸和扩展人类智能,其呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点。

回顾“十三五”,我国在人工智能领域各顶级国际会议上的活跃度和影响力不断提升。数据显示,2018-2019年,我国人工智能领域论文发表量、专利申请量均有所增长;同时,2015-2020年,在全球前100篇人工智能论文高被引论文中,中国产出占21篇,居第二位。

我国也在自动机器学习、神经网络可解释性方法、异构融合类脑计算等领域中都涌现了一批具有国际影响力的创新性成果:

——涌现了具有国际影响力的AI企业

“十三五”以来,我国人工智能企业的国际竞争力也日益凸显。截至2019年末,我国约有797家人工智能企业,占全球人工智能企业总数的14.8%,数量仅次于美国:

同时,据中国科学院大数据挖掘与知识管理重点实验室公布的“2019年全球人工智能企业TOP20榜单”中,中国有7家企业上榜,且中国有5家企业排名榜单前十。

2、“十四五”发展重点解读

——开源算法平台构建、重点领域创新

根据《“十四五”规划纲要和2035年远景目标纲要》,“十四五”期间,我国新一代人工智能产业将着重构建开源算法平台、并在学习推理与决策、图像图形等重点领域进行创新。

此外,在2021年全国“两会”期间,全国人大代表们围绕人工智能的发展与应用建言献策:

——六项重点任务

同时,根据国务院于2017年7月印发的《新一代人工智能发展规划》,其中提出了面向2030年我国新一代人工智能发展的六项重点任务:

3、“十四五”发展目标解读

——2025年:核心产业规模将达4000亿元

根据《新一代人工智能发展规划》,到2025年,我国人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展,人工智能核心产业规模将超过4000亿元,带动相关产业规模超过5万亿元;到2030年,我国人工智能理论、技术与应用总体达到世界领先水平。

——2023年:布局建设20个左右试验区

此外,为加快落实《国务院关于印发新一代人工智能发展规划的通知》,科技部于2019年8月印发《国家新一代人工智能创新发展试验区建设工作指引》,旨在有序推动国家新一代人工智能创新发展试验区建设。截至2021年3月末,我国已有14个市+1个县获批建设试验区;至2023年,试验区数量预计将达20个左右。

——各省市发展目标汇总

此外,全国各省市也围绕新一代信息技术产业的产业规模、龙头企业数量等内容,提出了“十四五”时期的发展目标:

更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资、IPO募投可研等解决方案。

更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动。

前瞻产业研究院-深度报告REPORTS2023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告

本报告前瞻性、适时性地对人工智能行业的发展背景、供需情况、市场规模、竞争格局等行业现状进行分析,并结合多年来人工智能行业发展轨迹及实践经验,对人工智能行业未来...

查看详情

本文来源前瞻产业研究院,内容仅代表作者个人观点,本站只提供参考并不构成任何投资及应用建议。(若存在内容、版权或其它问题,请联系:service@qianzhan.com)品牌合作与广告投放请联系:0755-33015062或hezuo@qianzhan.com

在招股说明书、公司年度报告等任何公开信息披露中引用本篇文章内容,需要获取前瞻产业研究院的正规授权。如有IPO业务合作需求请直接联系前瞻产业研究院IPO团队,联系方式:400-068-7188。

p43q0我要投稿

UVc分享:标签:新一代人工智能发展前瞻十四五核心产业规模人工智能行业

品牌、内容合作请点这里:寻求合作››

产业规划

园区规划

产业招商

可行性研究

碳中和

市场调研

IPO咨询

前瞻经济学人专注于中国各行业市场分析、未来发展趋势等。扫一扫立即关注。

前瞻产业研究院中国产业咨询领导者,专业提供产业规划、产业申报、产业升级转型、产业园区规划、可行性报告等领域解决方案,扫一扫关注。相关阅读RELEVANT

重磅!2023年中国及重点省市抗体偶联药物(ADC)行业政策汇总及解读(全)云南、江西、河南已写入“十四五”规划

2022年中国机场场面监视雷达行业市场规模及发展前景分析“十四五”期间新增市场规模超11亿元【组图】

“十四五”体育发展规划出炉中国足球该如何发展?——场地篇

“十四五”体育发展规划出炉中国足球该如何发展?——青训篇

国务院发布《“十四五”国家知识产权保护和运用规划》深入解读我国知识产权建设新方向

2021年中国废钢市场供需现状与发展前景分析“十四五”时期废钢行业迎来发展

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇